UNIT-V Network synthesis

LC Network Synthesis :

By Kirchhoff's voltage law, the voltage across the capacitor, VC, plus the voltage across the inductor, VL must equal zero:
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Likewise, by Kirchhoff's current law, the current through the capacitor equals the current through the inductor:
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From the constitutive relations for the circuit elements, we also know that
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Differential equation

Rearranging and substituting gives the second order differential equation
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The parameter ω0, the resonant angular frequency, is defined as:
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Using this can simplify the differential equation
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The associated polynomial is
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 where j is the imaginary unit.
Series LC circuit
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Series LC circuit

In the series configuration of the LC circuit, the inductor L and capacitor C are connected in series, as shown here. The total voltage v across the open terminals is simply the sum of the voltage across the inductor and the voltage across the capacitor. The current i into the positive terminal of the circuit is equal to the current through both the capacitor and the inductor.
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Resonance

Inductive  reactance  magnitude  ( [image: image3.jpg]AL



 )  increases  as  frequency  increases  while  capacitive
reactance magnitude ( [image: image4.jpg]AC



 ) decreases with the increase in frequency. At one particular frequency, these two reactances are equal in magnitude but opposite in sign; that frequency is called the resonant frequency ( [image: image5.jpg]


) for the given circuit.

Hence, at resonance:
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, we have
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which is defined as the resonant angular frequency of the circuit.

Converting angular frequency (in radians per second) into frequency (in hertz),one has
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In a series configuration, XC and XL cancel each other out. In real, rather than idealised components, the current is opposed, mostly by the resistance of the coil windings. Thus, the current supplied to a series resonant circuit is a maximum at resonance.

· In the limit as [image: image7.jpg]


current is maximum. Circuit impedance is minimum. In this state, a circuit is called an acceptor circuit
· For [image: image8.jpg]
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. Hence, the circuit is capacitive.
· For [image: image10.jpg]
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. Hence, the circuit is inductive.
Impedance

In the series configuration, resonance occurs when the complex electrical impedance of the circuit approaches zero.

First consider the impedance of the series LC circuit. The total impedance is given by the sum of the inductive and capacitive impedances:
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Writing the inductive impedance as ZL = jωL and capacitive impedance as ZC = (jωC)−1 and substituting gives
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.

Writing this expression under a common denominator gives
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Finally, defining the natural angular frequency as
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,

the impedance becomes
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.

The numerator implies that in the limit as [image: image14.jpg]P



, the total impedance Z will be zero and otherwise non-zero. Therefore the series LC circuit, when connected in series with a load, will act as a band-pass filter having zero impedance at the resonant frequency of the LC circuit.

Parallel LC circuit

[image: image135.jpg]



Parallel LC Circuit

In the parallel configuration, the inductor L and capacitor C are connected in parallel, as shown here. The voltage v across the open terminals is equal to both the voltage across the inductor and the voltage across the capacitor. The total current i flowing into the positive terminal of the circuit is equal to the sum of the current flowing through the inductor and the current flowing through the capacitor.
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Resonance

Let R be the internal resistance of the coil. When XL equals XC, the reactive branch currents are equal and opposite. Hence they cancel out each other to give minimum current in the main line. Since total current is minimum, in this state the total impedance is maximum.
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Resonant frequency given by:
.

Note that any reactive branch current is not minimum at resonance, but each is given separately by dividing source voltage (V) by reactance (Z). Hence I=V/Z, as per Ohm's law.
· At f0, line current is minimum. Total impedance is maximum. In this state a circuit is called a rejector circuit.
· Below f0, circuit is inductive.
· Above f0,circuit is capacitive.
Impedance

The same analysis may be applied to the parallel LC circuit. The total impedance is then given by:
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and after substitution of [image: image15.jpg]LT



and [image: image16.jpg]VA»



and simplification, gives
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which further simplifies to
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where
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Note that
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but for all other values of [image: image17.jpg]


the impedance is finite. The parallel LC circuit connected in series with a load will act as band-stop filter having infinite impedance at the resonant frequency of the LC circuit. The parallel LC circuit connected in parallel with a load will act as band-pass filter.
RC Network Synthesis:

A resistor–capacitor circuit (RC circuit), or RC filter or RC network, is an electric circuit composed of resistors and capacitors driven by a voltage or current source. A first order RC circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit.

RC circuits can be used to filter a signal by blocking certain frequencies and passing others. The two most common RC filters are the high-pass filters and low-pass filters; 

 HYPERLINK "http://en.wikipedia.org/wiki/Band-pass_filter" band-pass filters and band-stop filters usually require RLC filters, though crude ones can be made with RC filters.

Introduction

There are three basic, linear passive lumped 

 HYPERLINK "http://en.wikipedia.org/wiki/Analog_circuit" analog circuit components: the resistor (R), the capacitor (C), and the inductor (L). These may be combined in the RC circuit, the RL circuit, the LC circuit, and the RLC circuit, with the abbreviations indicating which components are

used. These circuits, among them, exhibit a large number of important types of behaviour that are fundamental to much of analog electronics. In particular, they are able to act as passive filters. This article considers the RC circuit, in both series and parallel forms, as shown in the diagrams below.

This article relies on knowledge of the complex impedance representation of capacitors and on knowledge of the frequency domain representation of signals.

Natural response
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RC circuit

The simplest RC circuit is a capacitor and a resistor in series. When a circuit consists of only a charged capacitor and a resistor, the capacitor will discharge its stored energy through the resistor. The voltage across the capacitor, which is time dependent, can be found by using Kirchhoff's current law, where the current charging the capacitor must equal the current through the resistor. This results in the linear differential equation
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Solving this equation for V yields the formula for exponential decay:
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where V0 is the capacitor voltage at time t = 0.

The time required for the voltage to fall to [image: image19.jpg]Vo



is called the RC time constant and is given by
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Complex impedance

The complex impedance, ZC (in ohms) of a capacitor with capacitance C (in farads) is
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The complex frequency s is, in general, a complex number,
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where

· [image: image20.jpg]


represents the imaginary unit:
· [image: image21.jpg]


is the exponential decay constant (in radians per second), and

· [image: image22.jpg]


is the sinusoidal 

 HYPERLINK "http://en.wikipedia.org/wiki/Angular_frequency" angular frequency (also in radians per second).
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Series circuit
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Series RC circuit

By viewing the circuit as a voltage divider, the voltage across the capacitor is:
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and the voltage across the resistor is:
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.

Transfer functions

The transfer function from the input voltage to the voltage across the capacitor is
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.

Similarly, the transfer function from the input to the voltage across the resistor is
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.

Poles and zeros

Both transfer functions have a single pole located at
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.

In addition, the transfer function for the resistor has a zero located at the origin.
Gain and phase

The magnitude of the gains across the two components are:
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and
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,

and the phase angles are:
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and
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.

These expressions together may be substituted into the usual expression for the phasor representing the output:
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Current

The current in the circuit is the same everywhere since the circuit is in series:
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Impulse response

The impulse response for each voltage is the inverse Laplace transform of the corresponding transfer function. It represents the response of the circuit to an input voltage consisting of an impulse or Dirac delta function.
The impulse response for the capacitor voltage is
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where u(t) is the Heaviside step function and
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is the time constant.
Similarly, the impulse response for the resistor voltage is
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where δ(t) is the Dirac delta function
Frequency-domain considerations

These are frequency domain expressions. Analysis of them will show which frequencies the circuits (or filters) pass and reject. This analysis rests on a consideration of what happens to these gains as the frequency becomes very large and very small.
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.This shows that, if the output is taken across the capacitor, high frequencies are attenuated (shorted to ground) and low frequencies are passed. Thus, the circuit behaves as a low-pass filter. If, though, the output is taken across the resistor, high frequencies are passed and low frequencies are attenuated (since the capacitor blocks the signal as its frequency approaches 0). In this configuration, the circuit behaves as a high-pass filter.
The range of frequencies that the filter passes is called its bandwidth. The point at which the filter attenuates the signal to half its unfiltered power is termed its cutoff frequency. This requires that the gain of the circuit be reduced to
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.

Solving the above equation yields
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or

[image: image167.jpg]



which is the frequency that the filter will attenuate to half its original power.

Clearly, the phases also depend on frequency, although this effect is less interesting generally than the gain variations.
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As [image: image31.jpg]


:
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So at DC (0 Hz), the capacitor voltage is in phase with the signal voltage while the resistor voltage leads it by 90°. As frequency increases, the capacitor voltage comes to have a 90° lag relative to the signal and the resistor voltage comes to be in-phase with the signal.

Time-domain considerations

The most straightforward way to derive the time domain behaviour is to use the Laplace
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and
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Capacitor voltage step-response.
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Resistor voltage step-response.

Partial fractions expansions and the inverse Laplace transform yield:
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.

These equations are for calculating the voltage across the capacitor and resistor respectively while the capacitor is charging; for discharging, the equations are vice-versa. These equations can be rewritten in terms of charge and current using the relationships C=Q/V and V=IR (see Ohm's law).

Parallel circuit
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Parallel RC circuit

The parallel RC circuit is generally of less interest than the series circuit. This is largely

because the output voltage [image: image34.jpg]


is equal to the input voltage [image: image35.jpg]


— as a result, this circuit does not act as a filter on the input signal unless fed by a current source.
With complex impedances:
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and
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.

This shows that the capacitor current is 90° out of phase with the resistor (and source)

current. Alternatively, the governing differential equations may be used:
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and
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.

When fed by a current source, the transfer function of a parallel RC circuit is:
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.

RL Network Synthesis:

A resistor–inductor circuit (RL circuit), or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. A first order RL circuit is composed of one resistor and one inductor and is the simplest type of RL circuit.

The fundamental passive 

 HYPERLINK "http://en.wikipedia.org/wiki/Linear" linear circuit elements are the resistor (R), capacitor (C) and inductor (L). These circuit elements can be combined to form an electrical circuit in four distinct ways: the RC circuit, the RL circuit, the LC circuit and the RLC circuit with the abbreviations indicating which components are used. These circuits exhibit important types of behaviour that are fundamental to analogue electronics. In particular, they are able to act as passive filters. This article considers the RL circuit in both series and parallel as shown in the diagrams.

In practice, however, capacitors (and RC circuits) are usually preferred to inductors since they can be more easily manufactured and are generally physically smaller, particularly for higher values of components.

Both RC and RL circuits form a single-pole filter. Depending on whether the reactive element (C or L) is in series with the load, or parallel with the load will dictate whether the filter is low-pass or high-pass.

Frequently RL circuits are used for DC power supplies to RF amplifiers, where the inductor is used to pass DC bias current and block the RF getting back into the power supply.

Complex impedance

The complex impedance ZL (in ohms) of an inductor with inductance L (in henries) is
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The complex frequency s is a complex number,
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where

· j represents the imaginary unit:
· [image: image39.jpg]


is the exponential decay constant (in radians per second), and

· [image: image40.jpg]


is the angular frequency (in radians per second).
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Eigenfunctions

The complex-valued eigenfunctions of any linear 

 HYPERLINK "http://en.wikipedia.org/wiki/Time-invariant" time-invariant (LTI) system are of the following forms:
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From Euler's formula, the real-part of these eigenfunctions are exponentially-decaying sinusoids:
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Sinusoidal steady state

Sinusoidal steady state is a special case in which the input voltage consists of a pure sinusoid (with no exponential decay). As a result,
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and the evaluation of s becomes
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Series circuit
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Series RL circuit

By viewing the circuit as a voltage divider, we see that the voltage across the inductor is:
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and the voltage across the resistor is:
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Current

The current in the circuit is the same everywhere since the circuit is in series:
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Transfer functions

The transfer function for the inductor is
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Similarly, the transfer function for the resistor is
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Poles and zeros

Both transfer functions have a single pole located at
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In addition, the transfer function for the inductor has a zero located at the origin.
Gain and phase angle

The gains across the two components are found by taking the magnitudes of the above expressions:
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and
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and the phase angles are:
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and
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Phasor notation

These expressions together may be substituted into the usual expression for the phasor representing the output:
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Impulse response

The impulse response for each voltage is the inverse Laplace transform of the corresponding transfer function. It represents the response of the circuit to an input voltage consisting of an impulse or Dirac delta function.
The impulse response for the inductor voltage is
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where u(t) is the Heaviside step function and
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is the time constant.
Similarly, the impulse response for the resistor voltage is
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Zero input response (ZIR)

The Zero input response, also called the natural response, of an RL circuit describes the behavior of the circuit after it has reached constant voltages and currents and is disconnected from any power source. It is called the zero-input response because it requires no input.

The ZIR of an RL circuit is:
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Frequency domain considerations

These are frequency domain expressions. Analysis of them will show which frequencies the circuits (or filters) pass and reject. This analysis rests on a consideration of what happens to these gains as the frequency becomes very large and very small.
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As [image: image42.jpg]


:
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This shows that, if the output is taken across the inductor, high frequencies are passed and low frequencies are attenuated (rejected). Thus, the circuit behaves as a high-pass filter. If, though, the output is taken across the resistor, high frequencies are rejected and low frequencies are passed. In this configuration, the circuit behaves as a low-pass filter. Compare this with the behaviour of the resistor output in an RC circuit, where the reverse is the case.

The range of frequencies that the filter passes is called its bandwidth. The point at which the filter attenuates the signal to half its unfiltered power is termed its cutoff frequency. This requires that the gain of the circuit be reduced to
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Solving the above equation yields
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which is the frequency that the filter will attenuate to half its original power.

Clearly, the phases also depend on frequency, although this effect is less interesting generally than the gain variations.

As [image: image45.jpg]


:
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:
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So at DC (0 Hz), the resistor voltage is in phase with the signal voltage while the inductor voltage leads it by 90°. As frequency increases, the resistor voltage comes to have a 90° lag relative to the signal and the inductor voltage comes to be in-phase with the signal.

Time domain considerations

The most straightforward way to derive the time domain behaviour is to use the Laplace
transforms of the expressions for [image: image47.jpg]
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given above. This effectively transforms [image: image49.jpg]y (R &



.

Assuming a step input (i.e., [image: image50.jpg]


before [image: image51.jpg]


and then [image: image52.jpg]


afterwards):

[image: image214.jpg]



Inductor voltage step-response.
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Resistor voltage step-response.

Partial fractions expansions and the inverse Laplace transform yield:
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Thus, the voltage across the inductor tends towards 0 as time passes, while the voltage across the resistor tends towards V, as shown in the figures. This is in keeping with the intuitive point that the inductor will only have a voltage across as long as the current in the circuit is changing — as the circuit reaches its steady-state, there is no further current change and ultimately no inductor voltage.

These equations show that a series RL circuit has a time constant, usually denoted [image: image53.jpg]


 being the time it takes the voltage across the component to either fall (across L) or rise

(across R) to within [image: image54.jpg]


of its final value. That is, [image: image55.jpg]


is the time it takes [image: image56.jpg]


to reach [image: image57.jpg]
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to reach [image: image59.jpg]


.

The rate of change is a fractional [image: image60.jpg]


per [image: image61.jpg]


. Thus, in going from [image: image62.jpg]


to [image: image63.jpg]


,

the voltage will have moved about 63% of the way from its level at [image: image64.jpg]


toward its final value. So the voltage across L will have dropped to about 37% after [image: image65.jpg]


, and essentially to zero (0.7%) after about [image: image66.jpg]T



. Kirchhoff's voltage law implies that the voltage across the resistor will rise at the same rate. When the voltage source is then replaced with a short-circuit, the voltage across R drops exponentially with t from [image: image67.jpg]


towards 0. R will be discharged to about 37% after [image: image68.jpg]


, and essentially fully discharged (0.7%) after about [image: image69.jpg]T



. Note that the current, [image: image70.jpg]


, in the circuit behaves as the voltage across R does, via Ohm's Law.
The delay in the rise/fall time of the circuit is in this case caused by the back-EMF from the inductor which, as the current flowing through it tries to change, prevents the current (and hence the voltage across the resistor) from rising or falling much faster than the time-constant of the circuit. Since all wires have some self-inductance and resistance, all circuits have a time constant. As a result, when the power supply is switched on, the current does not

instantaneously reach its steady-state value, [image: image71.jpg]


. The rise instead takes several time-constants to complete. If this were not the case, and the current were to reach steady-state immediately, extremely strong inductive electric fields would be generated by the sharp change in the magnetic field — this would lead to breakdown of the air in the circuit and electric arcing, probably damaging components (and users).

These results may also be derived by solving the differential equation describing the circuit:
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The first equation is solved by using an integrating factor and yields the current which must be differentiated to give [image: image72.jpg]


; the second equation is straightforward. The solutions are exactly the same as those obtained via Laplace transforms.

Parallel circuit
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Parallel RL circuit

The parallel RL circuit is generally of less interest than the series circuit unless fed by a

current source. This is largely because the output voltage [image: image73.jpg]


is equal to the input voltage

[image: image74.jpg]


—as a result, this circuit does not act as a filter for a voltage input signal.

With complex impedances:
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This shows that the inductor lags the resistor (and source) current by 90°.

The parallel circuit is seen on the output of many amplifier circuits, and is used to isolate the amplifier from capacitive loading effects at high frequencies. Because of the phase shift introduced by capacitance, some amplifiers become unstable at very high frequencies, and tend to oscillate. This affects sound quality and component life (especially the transistors), and is to be avoided.

RLC Network Synthesis:
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A series RLC circuit: a resistor, inductor, and a capacitor

An RLC circuit (the letters R, L and C can be in other orders) is an electrical circuit consisting of a resistor, an inductor, and a capacitor, connected in series or in parallel. The RLC part of the name is due to those letters being the usual electrical symbols for resistance, inductance and capacitance respectively. The circuit forms a harmonic oscillator for current and will resonate in a similar way as an LC circuit will. The main difference that the presence of the resistor makes is that any oscillation induced in the circuit will die away over time if it is not kept going by a source. This effect of the resistor is called damping. The presence of the resistance also reduces the peak resonant frequency somewhat. Some resistance is unavoidable in real circuits, even if a resistor is not specifically included as a component. An ideal, pure LC circuit is an abstraction for the purpose of theory.

There are many applications for this circuit. They are used in many different types of oscillator circuits. Another important application is for tuning, such as in radio receivers or television sets, where they are used to select a narrow range of frequencies from the ambient radio waves. In this role the circuit is often referred to as a tuned circuit. An RLC circuit can be used as a band-pass filter, 

 HYPERLINK "http://en.wikipedia.org/wiki/Band-stop_filter" band-stop filter, 

 HYPERLINK "http://en.wikipedia.org/wiki/Low-pass_filter" low-pass filter or high-pass filter. The tuning application, for instance, is an example of band-pass filtering. The RLC filter is described as a second-order circuit, meaning that any voltage or current in the circuit can be described by a second-order differential equation in circuit analysis.

The three circuit elements can be combined in a number of different topologies. All three elements in series or all three elements in parallel are the simplest in concept and the most straightforward to analyse. There are, however, other arrangements, some with practical importance in real circuits. One issue often encountered is the need to take into account inductor resistance. Inductors are typically constructed from coils of wire, the resistance of which is not usually desirable, but it often has a significant effect on the circuit.

Resonance

An important property of this circuit is its ability to resonate at a specific frequency, the

resonance frequency, [image: image75.jpg]


. Frequencies are measured in units of hertz. In this article, however,

angular frequency, [image: image76.jpg]A}



, is used which is more mathematically convenient. This is measured in radians per second. They are related to each other by a simple proportion,
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Resonance occurs because energy is stored in two different ways: in an electric field as the capacitor is charged and in a magnetic field as current flows through the inductor. Energy can be transferred from one to the other within the circuit and this can be oscillatory. A mechanical analogy is a weight suspended on a spring which will oscillate up and down when released. This is no passing metaphor; a weight on a spring is described by exactly the same second order differential equation as an RLC circuit and for all the properties of the one system there will be found an analogous property of the other. The mechanical property answering to the resistor in the circuit is friction in the spring/weight system. Friction will slowly bring any oscillation to a halt if there is no external force driving it. Likewise, the resistance in an RLC circuit will "damp" the oscillation, diminishing it with time if there is no driving AC power source in the circuit.

The resonance frequency is defined as the frequency at which the impedance of the circuit is at a minimum. Equivalently, it can be defined as the frequency at which the impedance is

purely real (that is, purely resistive). This occurs because the impedances of the inductor and capacitor at resonance are equal but of opposite sign and cancel out. Circuits where L and C are in parallel rather than series actually have a maximum impedance rather than a minimum impedance. For this reason they are often described as antiresonators, it is still usual, however, to name the frequency at which this occurs as the resonance frequency.

Natural frequency

The resonance frequency is defined in terms of the impedance presented to a driving source. It is still possible for the circuit to carry on oscillating (for a time) after the driving source has been removed or it is subjected to a step in voltage (including a step down to zero). This is similar to the way that a tuning fork will carry on ringing after it has been struck, and the effect is often called ringing. This effect is the peak natural resonance frequency of the circuit and in general is not exactly the same as the driven resonance frequency, although the two will usually be quite close to each other. Various terms are used by different authors to distinguish the two, but resonance frequency unqualified usually means the driven resonance frequency. The driven frequency may be called the undamped resonance frequency or undamped natural frequency and the peak frequency may be called the damped resonance frequency or the damped natural frequency. The reason for this terminology is that the driven resonance frequency in a series or parallel resonant circuit has the value[1]
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This is exactly the same as the resonance frequency of an LC circuit, that is, one with no resistor present. The resonant frequency for an RLC circuit is the same as a circuit in which there is no damping, hence undamped resonance frequency. The peak resonance frequency, on the other hand, depends on the value of the resistor and is described as the damped resonant frequency. A highly damped circuit will fail to resonate at all when not driven. A circuit with a value of resistor that causes it to be just on the edge of ringing is called critically damped. Either side of critically damped are described as underdamped (ringing happens) and overdamped (ringing is suppressed).

Circuits with topologies more complex than straightforward series or parallel (some examples

described later in the article) have a driven resonance frequency that deviates from [image: image77.jpg]0=




and for those the undamped resonance frequency, damped resonance frequency and driven resonance frequency can all be different.

Damping

Damping is caused by the resistance in the circuit. It determines whether or not the circuit will resonate naturally (that is, without a driving source). Circuits which will resonate in this way are described as underdamped and those that will not are overdamped. Damping attenuation (symbol α) is measured in nepers per second. However, the unitless damping factor (symbol ζ, zeta) is often a more useful measure, which is related to α by
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The special case of ζ = 1 is called critical damping and represents the case of a circuit that is just on the border of oscillation. It is the minimum damping that can be applied without causing oscillation.

Bandwidth

The resonance effect can be used for filtering, the rapid change in impedance near resonance can be used to pass or block signals close to the resonance frequency. Both band-pass and band-stop filters can be constructed and some filter circuits are shown later in the article. A key parameter in filter design is bandwidth. The bandwidth is measured between the 3dB-

 HYPERLINK "http://en.wikipedia.org/wiki/3dB-point" points, that is, the frequencies at which the power passed through the circuit has fallen to half the value passed at resonance. There are two of these half-power frequencies, one above, and one below the resonance frequency
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is the bandwidth, [image: image79.jpg]


is the lower half-power frequency and [image: image80.jpg]


 is the upper half-power frequency. The bandwidth is related to attenuation by,
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when the units are radians per second and nepers per second respectively[citation needed]. Other units may require a conversion factor. A more general measure of bandwidth is the fractional bandwidth, which expresses the bandwidth as a fraction of the resonance frequency and is given by
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The fractional bandwidth is also often stated as a percentage. The damping of filter circuits is adjusted to result in the required bandwidth. A narrow band filter, such as a notch filter, requires low damping. A wide band filter requires high damping.

Q factor

The Q factor is a widespread measure used to characterise resonators. It is defined as the peak energy stored in the circuit divided by the average energy dissipated in it per radian at resonance. Low Q circuits are therefore damped and lossy and high Q circuits are underdamped. Q is related to bandwidth; low Q circuits are wide band and high Q circuits are narrow band. In fact, it happens that Q is the inverse of fractional bandwidth
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Q factor is directly proportional to selectivity, as Q factor depends inversely on bandwidth.

For a series resonant circuit, the Q factor can be calculated as follows:[2]
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Scaled parameters

The parameters ζ, Fb, and Q are all scaled to ω0. This means that circuits which have similar parameters share similar characteristics regardless of whether or not they are operating in the same frequency band.

The article next gives the analysis for the series RLC circuit in detail. Other configurations are not described in such detail, but the key differences from the series case are given. The general form of the differential equations given in the series circuit section are applicable to all second order circuits and can be used to describe the voltage or current in any element of each circuit.

Series RLC circuit
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Figure : RLC series circuit

V – the voltage of the power source

I – the current in the circuit

R – the resistance of the resistor

L – the inductance of the inductor

C – the capacitance of the capacitor

In this circuit, the three components are all in series with the voltage source. The governing differential equation can be found by substituting into Kirchhoff's voltage law (KVL) the constitutive equation for each of the three elements. From KVL,
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 are the voltages across R, L and C respectively and [image: image82.jpg]


 is the time varying voltage from the source. Substituting in the constitutive equations,
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For the case where the source is an unchanging voltage, differentiating and dividing by L leads to the second order differential equation:
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This can usefully be expressed in a more generally applicable form:
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 are both in units of angular frequency. [image: image85.jpg]


 is called the neper frequency, or attenuation, and is a measure of how fast the transient response of the circuit will die away after the stimulus has been removed. Neper occurs in the name because the units can also be

considered to be nepers per second, neper being a unit of attenuation. [image: image86.jpg]A}



 is the angular resonance frequency.[3]
For the case of the series RLC circuit these two parameters are given by:[4]
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and

A useful parameter is the damping factor, [image: image88.jpg]


which is defined as the ratio of these two,
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In the case of the series RLC circuit, the damping factor is given by,
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The value of the damping factor determines the type of transient that the circuit will exhibit.[5] Some authors do not use [image: image89.jpg]


and call [image: image90.jpg]


the damping factor.[6]
Transient response
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Plot showing underdamped and overdamped responses of a series RLC circuit. The critical damping plot is the bold red curve. The plots are normalised for L = 1, C = 1 and [image: image91.jpg]



The differential equation for the circuit solves in three different ways depending on the value

of [image: image92.jpg]


. These are underdamped ( [image: image93.jpg]


), overdamped ( [image: image94.jpg]


) and critically damped ( [image: image95.jpg]


). The differential equation has the characteristic equation

 HYPERLINK "http://en.wikipedia.org/wiki/RLC_circuit#cite_note-Argawal656-7" ,[7]
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The roots of the equation in s are,[7]
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The general solution of the differential equation is an exponential in either root or a linear superposition of both,
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The coefficients A1 and A2 are determined by the boundary conditions of the specific problem being analysed. That is, they are set by the values of the currents and voltages in the circuit at the onset of the transient and the presumed value they will settle to after infinite time.[8]
Overdamped response

The overdamped response ( [image: image96.jpg]


) is,[9]
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The overdamped response is a decay of the transient current without oscillation.[10]
Underdamped response

The underdamped response ( [image: image97.jpg]


) is,[11]
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By applying standard trigonometric identities the two trigonometric functions may be expressed as a single sinusoid with phase shift,[12]
[image: image244.jpg]



The underdamped response is a decaying oscillation at frequency [image: image98.jpg]A



. The oscillation decays at a rate determined by the attenuation [image: image99.jpg]


. The exponential in [image: image100.jpg]


describes the envelope of the oscillation. B1 and B2 (or B3 and the phase shift [image: image101.jpg]


in the second form) are arbitrary constants

determined by boundary conditions. The frequency [image: image102.jpg]A



is given by,[11]
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This is called the damped resonance frequency or the damped natural frequency. It is the frequency the circuit will naturally oscillate at if not driven by an external source. The

resonance frequency, [image: image103.jpg]A}



 , which is the frequency at which the circuit will resonate when driven by an external oscillation, may often be referred to as the undamped resonance frequency to distinguish it.[13]
Critically damped response

The critically damped response ( [image: image104.jpg]


) is,[14]
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The critically damped response represents the circuit response that decays in the fastest possible time without going into oscillation. This consideration is important in control systems where it is required to reach the desired state as quickly as possible without overshooting. D1 and D2 are arbitrary constants determined by boundary conditions.[15]
Laplace domain

The series RLC can be analyzed for both transient and steady AC state behavior using the Laplace transform

 HYPERLINK "http://en.wikipedia.org/wiki/RLC_circuit#cite_note-16" .[16] If the voltage source above produces a waveform with Laplace-

transformed V(s) (where s is the complex frequency [image: image105.jpg]S
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), KVL can be applied in the Laplace domain:
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where I(s) is the Laplace-transformed current through all components. Solving for I(s):
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And rearranging, we have that
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Laplace admittance

Solving for the Laplace admittance Y(s):
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Simplifying using parameters α and ωo defined in the previous section, we have
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	Poles and zeros
	
	
	

	The zeros of Y(s) are those values of s such that
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	The poles of Y(s) are those values of s such that
	. By the quadratic formula, we
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The poles of Y(s) are identical to the roots [image: image106.jpg]51



and [image: image107.jpg]59



of the characteristic polynomial of the differential equation in the section above.

General solution

For an arbitrary E(t), the solution obtained by inverse transform of I(s) is:
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where [image: image108.jpg]


, and cosh and sinh are the usual hyperbolic functions.
Sinusoidal steady state

Sinusoidal steady state is represented by letting [image: image109.jpg]


, where [image: image110.jpg]


is the imaginary unit.
Taking the magnitude of the above equation with this substitution:
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and the current as a function of ω can be found from
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There is a peak value of [image: image111.jpg]T(7w)|



. The value of ω at this peak is, in this particular case, equal to the undamped natural resonance frequency:[17]
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Parallel RLC circuit
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Figure RLC parallel circuit

V – the voltage of the power source

I – the current in the circuit

R – the resistance of the resistor

L – the inductance of the inductor

C – the capacitance of the capacitor

The properties of the parallel RLC circuit can be obtained from the duality relationship of electrical circuits and considering that the parallel RLC is the dual impedance of a series RLC. Considering this it becomes clear that the differential equations describing this circuit are identical to the general form of those describing a series RLC.

For the parallel circuit, the attenuation α is given by[18]
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and the damping factor is consequently
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Likewise, the other scaled parameters, fractional bandwidth and Q are also the inverse of each other. This means that a wide band, low Q circuit in one topology will become a narrow band, high Q circuit in the other topology when constructed from components with identical values. The Q and fractional bandwidth of the parallel circuit are given by
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Figure Sinusoidal steady-state analysis

normalised to R = 1 ohm, C = 1 farad, L = 1 henry, and V = 1.0 volt

The complex admittance of this circuit is given by adding up the admittances of the components:
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The change from a series arrangement to a parallel arrangement results in the circuit having a peak in impedance at resonance rather than a minimum, so the circuit is an antiresonator.

The graph opposite shows that there is a minimum in the frequency response of the current at
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the resonance frequency when the circuit is driven by a constant voltage. On the other hand, if driven by a constant current, there would be a maximum in the voltage which would follow the same curve as the current in the series circuit.

Other configurations
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Fig. RLC parallel circuit with resistance in series with the inductor
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Fig. RLC series circuit with resistance in parallel with the capacitor

A series resistor with the inductor in a parallel LC circuit as shown in figure 7 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding. Parallel LC circuits are frequently used for bandpass filtering and the Q is largely governed by this resistance. The resonant frequency of this circuit is,[19]
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This is the resonant frequency of the circuit defined as the frequency at which the admittance has zero imaginary part. The frequency that appears in the generalised form of the characteristic equation (which is the same for this circuit as previously)
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is not the same frequency. In this case it is the natural undamped resonant frequency[20]
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The frequency [image: image112.jpg]


at which the impedance magnitude is maximum is given by,[21]
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where [image: image113.jpg]


is the quality factor of the coil. This can be well approximated by,[21]
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.

Furthermore, the exact maximum impedance magnitude is given by,[21]
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For values of [image: image114.jpg]


greater than unity, this can be well approximated by,[21]
[image: image115.jpg]


.

In the same vein, a resistor in parallel with the capacitor in a series LC circuit can be used to represent a capacitor with a lossy dielectric. This configuration is shown in figure 8. The

resonant frequency (frequency at which the impedance has zero imaginary part) in this case is given by,[22]
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while the frequency [image: image116.jpg]


at which the impedance magnitude is maximum is given by
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where [image: image117.jpg]



Applications

Variable tuned circuits

A very frequent use of these circuits is in the tuning circuits of analogue radios. Adjustable tuning is commonly achieved with a parallel plate variable capacitor which allows the value of C to be changed and tune to stations on different frequencies. For the IF stage in the radio where the tuning is preset in the factory the more usual solution is an adjustable core in the
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Fig. RLC circuit as a low-pass filter
Fig. RLC circuit as a high-pass filter
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Fig.
RLC circuit as a series band-pass filter in Fig.
RLC circuit as a parallel band-pass

series with the line
filter in shunt across the line


Fig.
RLC circuit as a series band-stop filter in Fig. RLC  circuit  as  a  parallel  band-stop

shunt across the line
filter in series with the line

inductor to adjust L. In this design the core (made of a high permeability material that has the effect of increasing inductance) is threaded so that it can

be screwed further in, or screwed further out of the inductor winding as required.

Foster's reactance theorem:

Network synthesis involves the methods used to determine an electric circuit that satisfy certain specifications. Given an impulse response there are many techniques that can be used to synthesize a circuit with the specified response. Different methods may also be used to synthesize circuits, all of which may be optimal. Hence the solution to a network synthesis problem is never unique.

Many applications today use digital processing in lieu of analog processing and the GHz spectrum is finding increasing use in applications such as wireless communications. However, operation at high frequencies requires analog filtering and processing circuits simply because using digital techniques is neither realistic nor economical. Another advantage that analog devices have over their digital counterparts is their ability to operate with wide instantaneous bandwidths and moderately high dynamic ranges at microwave frequencies.

For a Foster 1 realisation the component values are given by the partial fraction expansion


While for the Foster 2 form the values are given by the alternative partial fraction expansion


For the Cauer 1 realization the component values are given by a continued fraction expansion around infinity


The Cauer 2 values are given by a continued fraction expansion around zero


Foster and Cauer network realisations. These allow simple determination of the Required component values by continued and partial fraction expansions


Foster's reactance theorem is an important theorem in the fields of electrical network analysis and synthesis. The theorem states that the reactance of a passive, lossless two-terminal (one-port) network always strictly monotonically increases with frequency. It is easily seen that the reactances of inductors and capacitors individually increase with frequency and from that basis a proof for passive lossless networks generally can be constructed. The proof of the theorem was presented by Ronald Martin Foster in 1924,

although the principle had been published earlier by Foster's colleagues at American Telephone & Telegraph.
The theorem can be extended to admittances and the encompassing concept of immittances. A consequence of Foster's theorem is that poles and zeroes of the reactance must alternate with frequency. Foster used this property to develop two canonical forms for realising these networks. Foster's work was an important starting point for the development of network synthesis.
It is possible to construct non-Foster networks using active components such as amplifiers. These can generate an impedance equivalent to a negative inductance or capacitance. The negative impedance converter is an example of such a circuit.

