[bookmark: _GoBack]Unit -5 PIG
The language used to analyze data in Hadoop using Pig is known as Pig Latin. It is a highlevel data processing language which provides a rich set of data types and operators to perform various operations on the data.
To perform a particular task Programmers using Pig, programmers need to write a Pig script using the Pig Latin language, and execute them using any of the execution mechanisms (Grunt Shell, UDFs, Embedded). After execution, these scripts will go through a series of transformations applied by the Pig Framework, to produce the desired output.
Internally, Apache Pig converts these scripts into a series of MapReduce jobs, and thus, it makes the programmer’s job easy. The architecture of Apache Pig is shown below.
[image: Apache Pig Architecture]

Apache Pig Components
As shown in the figure, there are various components in the Apache Pig framework. Let us take a look at the major components.
Parser
Initially the Pig Scripts are handled by the Parser. It checks the syntax of the script, does type checking, and other miscellaneous checks. The output of the parser will be a DAG (directed acyclic graph), which represents the Pig Latin statements and logical operators.
In the DAG, the logical operators of the script are represented as the nodes and the data flows are represented as edges.
Optimizer
The logical plan (DAG) is passed to the logical optimizer, which carries out the logical optimizations such as projection and pushdown.
Compiler
The compiler compiles the optimized logical plan into a series of MapReduce jobs.
Execution engine
Finally the MapReduce jobs are submitted to Hadoop in a sorted order. Finally, these MapReduce jobs are executed on Hadoop producing the desired results.
Pig Latin Data Model
The data model of Pig Latin is fully nested and it allows complex non-atomic datatypes such as map and tuple. Given below is the diagrammatical representation of Pig Latin’s data model.
[image: Data Model]

Atom
Any single value in Pig Latin, irrespective of their data, type is known as anAtom. It is stored as string and can be used as string and number. int, long, float, double, chararray, and bytearray are the atomic values of Pig. A piece of data or a simple atomic value is known as a field.
Example − ‘raja’ or ‘30’
Tuple
A record that is formed by an ordered set of fields is known as a tuple, the fields can be of any type. A tuple is similar to a row in a table of RDBMS.
Example − (Raja, 30)
Bag
A bag is an unordered set of tuples. In other words, a collection of tuples (non-unique) is known as a bag. Each tuple can have any number of fields (flexible schema). A bag is represented by ‘{}’. It is similar to a table in RDBMS, but unlike a table in RDBMS, it is not necessary that every tuple contain the same number of fields or that the fields in the same position (column) have the same type.
Example − {(Raja, 30), (Mohammad, 45)}
A bag can be a field in a relation; in that context, it is known as inner bag.
Example − {Raja, 30, {9848022338, raja@gmail.com,}}
Map
A map (or data map) is a set of key-value pairs. The key needs to be of type chararray and should be unique. The value might be of any type. It is represented by ‘[]’
Example − [name#Raja, age#30]
Relation
A relation is a bag of tuples. The relations in Pig Latin are unordered (there is no guarantee that tuples are processed in any particular order).
Apache Pig Execution Modes
You can run Apache Pig in two modes, namely, Local Mode and HDFS mode.
Local Mode
In this mode, all the files are installed and run from your local host and local file system. There is no need of Hadoop or HDFS. This mode is generally used for testing purpose.
MapReduce Mode
MapReduce mode is where we load or process the data that exists in the Hadoop File System (HDFS) using Apache Pig. In this mode, whenever we execute the Pig Latin statements to process the data, a MapReduce job is invoked in the back-end to perform a particular operation on the data that exists in the HDFS.
Apache Pig Execution Mechanisms
Apache Pig scripts can be executed in three ways, namely, interactive mode, batch mode, and embedded mode.
· Interactive Mode (Grunt shell) − You can run Apache Pig in interactive mode using the Grunt shell. In this shell, you can enter the Pig Latin statements and get the output (using Dump operator).
· Batch Mode (Script) − You can run Apache Pig in Batch mode by writing the Pig Latin script in a single file with .pig extension.
· Embedded Mode (UDF) − Apache Pig provides the provision of defining our own functions (User Defined Functions) in programming languages such as Java, and using them in our script.
Invoking the Grunt Shell
You can invoke the Grunt shell in a desired mode (local/MapReduce) using the−x option as shown below.
	Local mode
	MapReduce mode

	Command −
$./pig –x local
	Command −
$./pig -x mapreduce

	Output −
[image: Local Mode Output]
	Output −

Either of these commands gives you the Grunt shell prompt as shown below.
grunt>
You can exit the Grunt shell using ‘ctrl + d’.
After invoking the Grunt shell, you can execute a Pig script by directly entering the Pig Latin statements in it.
grunt> customers = LOAD 'customers.txt' USING PigStorage(',');
Executing Apache Pig in Batch Mode
You can write an entire Pig Latin script in a file and execute it using the –x command. Let us suppose we have a Pig script in a file namedsample_script.pig as shown below.
Sample_script.pig
student = LOAD 'hdfs://localhost:9000/pig_data/student.txt' USING
 PigStorage(',') as (id:int,name:chararray,city:chararray);

Dump student;
Now, you can execute the script in the above file as shown below.
	Local mode
	MapReduce mode

	$ pig -x local Sample_script.pig
	$ pig -x mapreduce Sample_script.pig

Note − We will discuss in detail how to run a Pig script in Bach mode and inembedded mode in subsequent chapters.

Pig Latin – Data types
Given below table describes the Pig Latin data types.
	S.N.
	Data Type
	Description & Example

	1
	int
	Represents a signed 32-bit integer.
Example : 8

	2
	long
	Represents a signed 64-bit integer.
Example : 5L

	3
	float
	Represents a signed 32-bit floating point.
Example : 5.5F

	4
	double
	Represents a 64-bit floating point.
Example : 10.5

	5
	chararray
	Represents a character array (string) in Unicode UTF-8 format.
Example : ‘tutorials point’

	6
	Bytearray
	Represents a Byte array (blob).

	7
	Boolean
	Represents a Boolean value.
Example : true/ false.

	8
	Datetime
	Represents a date-time.
Example : 1970-01-01T00:00:00.000+00:00

	9
	Biginteger
	Represents a Java BigInteger.
Example : 60708090709

	10
	Bigdecimal
	Represents a Java BigDecimal
Example : 185.98376256272893883

	Complex Types

	11
	Tuple
	A tuple is an ordered set of fields.
Example : (raja, 30)

	12
	Bag
	A bag is a collection of tuples.
Example : {(raju,30),(Mohhammad,45)}

	13
	Map
	A Map is a set of key-value pairs.
Example : [‘name’#’Raju’, ‘age’#30]

Null Values
Values for all the above data types can be NULL. Apache Pig treats null values in a similar way as SQL does.
A null can be an unknown value or a non-existent value. It is used as a placeholder for optional values. These nulls can occur naturally or can be the result of an operation.
Pig Latin – Relational Operations
The following table describes the relational operators of Pig Latin.
	Operator
	Description

	Loading and Storing

	LOAD
	To Load the data from the file system (local/HDFS) into a relation.

	STORE
	To save a relation to the file system (local/HDFS).

	Filtering

	FILTER
	To remove unwanted rows from a relation.

	DISTINCT
	To remove duplicate rows from a relation.

	FOREACH, GENERATE
	To generate data transformations based on columns of data.

	STREAM
	To transform a relation using an external program.

	Grouping and Joining

	JOIN
	To join two or more relations.

	COGROUP
	To group the data in two or more relations.

	GROUP
	To group the data in a single relation.

	CROSS
	To create the cross product of two or more relations.

	Sorting

	ORDER
	To arrange a relation in a sorted order based on one or more fields (ascending or descending).

	LIMIT
	To get a limited number of tuples from a relation.

	Combining and Splitting

	UNION
	To combine two or more relations into a single relation.

	SPLIT
	To split a single relation into two or more relations.

	Diagnostic Operators

	DUMP
	To print the contents of a relation on the console.

	DESCRIBE
	To describe the schema of a relation.

	EXPLAIN
	To view the logical, physical, or MapReduce execution plans to compute a relation.

	ILLUSTRATE
	To view the step-by-step execution of a series of statements.

The Load Operator
You can load data into Apache Pig from the file system (HDFS/ Local) usingLOAD operator of Pig Latin.
Syntax
The load statement consists of two parts divided by the “=” operator. On the left-hand side, we need to mention the name of the relation where we want to store the data, and on the right-hand side, we have to define how we store the data. Given below is the syntax of the Load operator.
Relation_name = LOAD 'Input file path' USING function as schema;
Where,
· relation_name − We have to mention the relation in which we want to store the data.
· Input file path − We have to mention the HDFS directory where the file is stored. (In MapReduce mode)
· function − We have to choose a function from the set of load functions provided by Apache Pig (BinStorage, JsonLoader, PigStorage, TextLoader).
· Schema − We have to define the schema of the data. We can define the required schema as follows −
(column1 : data type, column2 : data type, column3 : data type);

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt'
 USING PigStorage(',')
 as (id:int, firstname:chararray, lastname:chararray, phone:chararray,
 city:chararray);

Apache Pig using the Store operator.

Syntax
Given below is the syntax of the Store statement.
STORE Relation_name INTO ' required_directory_path ' [USING function];
Example
grunt> STORE student INTO ' hdfs://localhost:9000/pig_Output/ ' USING PigStorage (',');

Dump Operator
The Dump operator is used to run the Pig Latin statements and display the results on the screen. It is generally used for debugging Purpose.
Syntax
Given below is the syntax of the Dump operator.
grunt> Dump Relation_Name
Example
Assume we have a file student_data.txt in HDFS with the following content.
001,Rajiv,Reddy,9848022337,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
003,Rajesh,Khanna,9848022339,Delhi
004,Preethi,Agarwal,9848022330,Pune
005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai.

The describe operator is used to view the schema of a relation.
Syntax
The syntax of the describe operator is as follows −
grunt> Describe Relation_name
Example
Assume we have a file student_data.txt in HDFS with the following content.
001,Rajiv,Reddy,9848022337,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
003,Rajesh,Khanna,9848022339,Delhi
004,Preethi,Agarwal,9848022330,Pune
005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai.
The explain operator is used to display the logical, physical, and MapReduce execution plans of a relation.
Syntax
Given below is the syntax of the explain operator.
grunt> explain Relation_name;
Example
Assume we have a file student_data.txt in HDFS with the following content.
001,Rajiv,Reddy,9848022337,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
003,Rajesh,Khanna,9848022339,Delhi
004,Preethi,Agarwal,9848022330,Pune
005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai.

$ explain student;

2015-10-05 11:32:43,660 [main]
2015-10-05 11:32:43,660 [main] INFO org.apache.pig.newplan.logical.optimizer
.LogicalPlanOptimizer -
{RULES_ENABLED=[AddForEach, ColumnMapKeyPrune, ConstantCalculator,
GroupByConstParallelSetter, LimitOptimizer, LoadTypeCastInserter, MergeFilter,
MergeForEach, PartitionFilterOptimizer, PredicatePushdownOptimizer,
PushDownForEachFlatten, PushUpFilter, SplitFilter, StreamTypeCastInserter]}
#---
New Logical Plan:
#---
student: (Name: LOStore Schema:
id#31:int,firstname#32:chararray,lastname#33:chararray,phone#34:chararray,city#
35:chararray)
|
|---student: (Name: LOForEach Schema:
id#31:int,firstname#32:chararray,lastname#33:chararray,phone#34:chararray,city#
35:chararray)
 | |
 | (Name: LOGenerate[false,false,false,false,false] Schema:
id#31:int,firstname#32:chararray,lastname#33:chararray,phone#34:chararray,city#
35:chararray)ColumnPrune:InputUids=[34, 35, 32, 33,
31]ColumnPrune:OutputUids=[34, 35, 32, 33, 31]
 | | |
 | | (Name: Cast Type: int Uid: 31)
 | | | | | |---id:(Name: Project Type: bytearray Uid: 31 Input: 0 Column: (*))
 | | |
 | | (Name: Cast Type: chararray Uid: 32)
 | | |
 | | |---firstname:(Name: Project Type: bytearray Uid: 32 Input: 1
Column: (*))
 | | |
 | | (Name: Cast Type: chararray Uid: 33)
 | | |
 | | |---lastname:(Name: Project Type: bytearray Uid: 33 Input: 2
	 Column: (*))
 | | |
 | | (Name: Cast Type: chararray Uid: 34)
 | | |
 | | |---phone:(Name: Project Type: bytearray Uid: 34 Input: 3 Column:
(*))
 | | |
 | | (Name: Cast Type: chararray Uid: 35)
 | | |
 | | |---city:(Name: Project Type: bytearray Uid: 35 Input: 4 Column:
(*))
 | |
 | |---(Name: LOInnerLoad[0] Schema: id#31:bytearray)
 | |
 | |---(Name: LOInnerLoad[1] Schema: firstname#32:bytearray)
 | |
 | |---(Name: LOInnerLoad[2] Schema: lastname#33:bytearray)
 | |
 | |---(Name: LOInnerLoad[3] Schema: phone#34:bytearray)
 | |
 | |---(Name: LOInnerLoad[4] Schema: city#35:bytearray)
 |
 |---student: (Name: LOLoad Schema:
id#31:bytearray,firstname#32:bytearray,lastname#33:bytearray,phone#34:bytearray
,city#35:bytearray)RequiredFields:null
#---
Physical Plan: #---
student: Store(fakefile:org.apache.pig.builtin.PigStorage) - scope-36
|
|---student: New For Each(false,false,false,false,false)[bag] - scope-35
 | |
 | Cast[int] - scope-21
 | |
 | |---Project[bytearray][0] - scope-20
 | |
 | Cast[chararray] - scope-24
 | |
 | |---Project[bytearray][1] - scope-23
 | |
 | Cast[chararray] - scope-27
 | |
 | |---Project[bytearray][2] - scope-26
 | |
 | Cast[chararray] - scope-30
 | |
 | |---Project[bytearray][3] - scope-29
 | |
 | Cast[chararray] - scope-33
 | |
 | |---Project[bytearray][4] - scope-32
 |
 |---student: Load(hdfs://localhost:9000/pig_data/student_data.txt:PigStorage(',')) - scope19
2015-10-05 11:32:43,682 [main]
INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MRCompiler -
File concatenation threshold: 100 optimistic? false
2015-10-05 11:32:43,684 [main]
INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.MultiQueryOp timizer -
MR plan size before optimization: 1 2015-10-05 11:32:43,685 [main]
INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.
MultiQueryOp timizer - MR plan size after optimization: 1
#--
Map Reduce Plan
#--
MapReduce node scope-37
Map Plan
student: Store(fakefile:org.apache.pig.builtin.PigStorage) - scope-36
|
|---student: New For Each(false,false,false,false,false)[bag] - scope-35
 | |
 | Cast[int] - scope-21
 | |
 | |---Project[bytearray][0] - scope-20
 | |
 | Cast[chararray] - scope-24
 | |
 | |---Project[bytearray][1] - scope-23
 | |
 | Cast[chararray] - scope-27
 | |
 | |---Project[bytearray][2] - scope-26
 | |
 | Cast[chararray] - scope-30
 | |
 | |---Project[bytearray][3] - scope-29
 | |
 | Cast[chararray] - scope-33
 | |
 | |---Project[bytearray][4] - scope-32
 |
 |---student:
Load(hdfs://localhost:9000/pig_data/student_data.txt:PigStorage(',')) - scope
19-------- Global sort: false

The illustrate operator gives you the step-by-step execution of a sequence of statements.
Syntax
Given below is the syntax of the illustrate operator.
grunt> illustrate Relation_name;
Example
Assume we have a file student_data.txt in HDFS with the following content.
001,Rajiv,Reddy,9848022337,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
003,Rajesh,Khanna,9848022339,Delhi
004,Preethi,Agarwal,9848022330,Pune
005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai.
And we have read it into a relation student using the LOAD operator as shown below.
grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' USING PigStorage(',')
 as (id:int, firstname:chararray, lastname:chararray, phone:chararray, city:chararray);
Now, let us illustrate the relation named student as shown below.
grunt> illustrate student;
Output
On executing the above statement, you will get the following output.
grunt> illustrate student;

INFO org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.PigMapOnly$M ap - Aliases
being processed per job phase (AliasName[line,offset]): M: student[1,10] C: R:

|student | id:int | firstname:chararray | lastname:chararray | phone:chararray | city:chararray |

| | 002 | siddarth | Battacharya | 9848022338 | Kolkata |

The GROUP operator is used to group the data in one or more relations. It collects the data having the same key.
Syntax
Given below is the syntax of the group operator.
grunt> Group_data = GROUP Relation_name BY age;
Example
Assume that we have a file named student_details.txt in the HDFS directory/pig_data/ as shown below.
student_details.txt
001,Rajiv,Reddy,21,9848022337,Hyderabad
002,siddarth,Battacharya,22,9848022338,Kolkata
003,Rajesh,Khanna,22,9848022339,Delhi
004,Preethi,Agarwal,21,9848022330,Pune
005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar
006,Archana,Mishra,23,9848022335,Chennai
007,Komal,Nayak,24,9848022334,trivendram
008,Bharathi,Nambiayar,24,9848022333,Chennai
And we have loaded this file into Apache Pig with the relation namestudent_details as shown below.
grunt> student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt' USING PigStorage(',')
 as (id:int, firstname:chararray, lastname:chararray, age:int, phone:chararray, city:chararray);
Now, let us group the records/tuples in the relation by age as shown below.
grunt> group_data = GROUP student_details by age;
Verification
Verify the relation group_data using the DUMP operator as shown below.
grunt> Dump group_data;
Output
Then you will get output displaying the contents of the relation namedgroup_data as shown below. Here you can observe that the resulting schema has two columns −
· One is age, by which we have grouped the relation.
· The other is a bag, which contains the group of tuples, student records with the respective age.
(21,{(4,Preethi,Agarwal,21,9848022330,Pune),(1,Rajiv,Reddy,21,9848022337,Hydera bad)})
(22,{(3,Rajesh,Khanna,22,9848022339,Delhi),(2,siddarth,Battacharya,22,984802233 8,Kolkata)})
(23,{(6,Archana,Mishra,23,9848022335,Chennai),(5,Trupthi,Mohanthy,23,9848022336 ,Bhuwaneshwar)})
(24,{(8,Bharathi,Nambiayar,24,9848022333,Chennai),(7,Komal,Nayak,24,9848022334, trivendram)

The COGROUP operator works more or less in the same way as the GROUPoperator. The only difference between the two operators is that the groupoperator is normally used with one relation, while the cogroup operator is used in statements involving two or more relations.
Grouping Two Relations using Cogroup
Assume that we have two files namely student_details.txt andemployee_details.txt in the HDFS directory /pig_data/ as shown below.
student_details.txt
001,Rajiv,Reddy,21,9848022337,Hyderabad
002,siddarth,Battacharya,22,9848022338,Kolkata
003,Rajesh,Khanna,22,9848022339,Delhi
004,Preethi,Agarwal,21,9848022330,Pune
005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar
006,Archana,Mishra,23,9848022335,Chennai
007,Komal,Nayak,24,9848022334,trivendram
008,Bharathi,Nambiayar,24,9848022333,Chennai
employee_details.txt
001,Robin,22,newyork
002,BOB,23,Kolkata
003,Maya,23,Tokyo
004,Sara,25,London
005,David,23,Bhuwaneshwar
006,Maggy,22,Chennai
And we have loaded these files into Pig with the relation namesstudent_details and employee_details respectively, as shown below.
grunt> student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt' USING PigStorage(',')
 as (id:int, firstname:chararray, lastname:chararray, age:int, phone:chararray, city:chararray);

grunt> employee_details = LOAD 'hdfs://localhost:9000/pig_data/employee_details.txt' USING PigStorage(',')
 as (id:int, name:chararray, age:int, city:chararray);
Now, let us group the records/tuples of the relations student_details andemployee_details with the key age, as shown below.
grunt> cogroup_data = COGROUP student_details by age, employee_details by age;
Verification
Verify the relation cogroup_data using the DUMP operator as shown below.
grunt> Dump cogroup_data;
Output
It will produce the following output, displaying the contents of the relation named cogroup_data as shown below.
(21,{(4,Preethi,Agarwal,21,9848022330,Pune), (1,Rajiv,Reddy,21,9848022337,Hyderabad)},
 { })
(22,{ (3,Rajesh,Khanna,22,9848022339,Delhi), (2,siddarth,Battacharya,22,9848022338,Kolkata) },
 { (6,Maggy,22,Chennai),(1,Robin,22,newyork) })
(23,{(6,Archana,Mishra,23,9848022335,Chennai),(5,Trupthi,Mohanthy,23,9848022336 ,Bhuwaneshwar)},
 {(5,David,23,Bhuwaneshwar),(3,Maya,23,Tokyo),(2,BOB,23,Kolkata)})
(24,{(8,Bharathi,Nambiayar,24,9848022333,Chennai),(7,Komal,Nayak,24,9848022334, trivendram)},
 { })
(25,{ },
 {(4,Sara,25,London)})
The JOIN operator is used to combine records from two or more relations. While performing a join operation, we declare one (or a group of) tuple(s) from each relation, as keys. When these keys match, the two particular tuples are matched, else the records are dropped. Joins can be of the following types −
· Self-join
· Inner-join
· Outer-join − left join, right join, and full join
This chapter explains with examples how to use the join operator in Pig Latin. Assume that we have two files namely customers.txt and orders.txt in the/pig_data/ directory of HDFS as shown below.
customers.txt
1,Ramesh,32,Ahmedabad,2000.00
2,Khilan,25,Delhi,1500.00
3,kaushik,23,Kota,2000.00
4,Chaitali,25,Mumbai,6500.00
5,Hardik,27,Bhopal,8500.00
6,Komal,22,MP,4500.00
7,Muffy,24,Indore,10000.00
orders.txt
102,2009-10-08 00:00:00,3,3000
100,2009-10-08 00:00:00,3,1500
101,2009-11-20 00:00:00,2,1560
103,2008-05-20 00:00:00,4,2060
And we have loaded these two files into Pig with the relations customers andorders as shown below.
grunt> customers = LOAD 'hdfs://localhost:9000/pig_data/customers.txt' USING PigStorage(',')
 as (id:int, name:chararray, age:int, address:chararray, salary:int);

grunt> orders = LOAD 'hdfs://localhost:9000/pig_data/orders.txt' USING PigStorage(',')
 as (oid:int, date:chararray, customer_id:int, amount:int);
Let us now perform various Join operations on these two relations.
Self - join
Self-join is used to join a table with itself as if the table were two relations, temporarily renaming at least one relation.
Generally, in Apache Pig, to perform self-join, we will load the same data multiple times, under different aliases (names). Therefore let us load the contents of the file customers.txt as two tables as shown below.
grunt> customers1 = LOAD 'hdfs://localhost:9000/pig_data/customers.txt' USING PigStorage(',')
 as (id:int, name:chararray, age:int, address:chararray, salary:int);

grunt> customers2 = LOAD 'hdfs://localhost:9000/pig_data/customers.txt' USING PigStorage(',')
 as (id:int, name:chararray, age:int, address:chararray, salary:int);
Syntax
Given below is the syntax of performing self-join operation using the JOINoperator.
grunt> Relation3_name = JOIN Relation1_name BY key, Relation2_name BY key ;
Example
Let us perform self-join operation on the relation customers, by joining the two relations customers1 and customers2 as shown below.
grunt> customers3 = JOIN customers1 BY id, customers2 BY id;
Verification
Verify the relation customers3 using the DUMP operator as shown below.
grunt> Dump customers3;
Output
It will produce the following output, displaying the contents of the relationcustomers.
(1,Ramesh,32,Ahmedabad,2000,1,Ramesh,32,Ahmedabad,2000)
(2,Khilan,25,Delhi,1500,2,Khilan,25,Delhi,1500)
(3,kaushik,23,Kota,2000,3,kaushik,23,Kota,2000)
(4,Chaitali,25,Mumbai,6500,4,Chaitali,25,Mumbai,6500)
(5,Hardik,27,Bhopal,8500,5,Hardik,27,Bhopal,8500)
(6,Komal,22,MP,4500,6,Komal,22,MP,4500)
(7,Muffy,24,Indore,10000,7,Muffy,24,Indore,10000)
Inner Join
Inner Join is used quite frequently; it is also referred to as equijoin. An inner join returns rows when there is a match in both tables.
It creates a new relation by combining column values of two relations (say A and B) based upon the join-predicate. The query compares each row of A with each row of B to find all pairs of rows which satisfy the join-predicate. When the join-predicate is satisfied, the column values for each matched pair of rows of A and B are combined into a result row.
Syntax
Here is the syntax of performing inner join operation using the JOIN operator.
grunt> result = JOIN relation1 BY columnname, relation2 BY columnname;
Example
Let us perform inner join operation on the two relations customers andorders as shown below.
grunt> coustomer_orders = JOIN customers BY id, orders BY customer_id;

Outer Join: Unlike inner join, outer join returns all the rows from at least one of the relations. An outer join operation is carried out in three ways −
· Left outer join
· Right outer join
· Full outer join
Left Outer Join
The left outer Join operation returns all rows from the left table, even if there are no matches in the right relation.
Syntax
Given below is the syntax of performing left outer join operation using theJOIN operator.
grunt> Relation3_name = JOIN Relation1_name BY id LEFT OUTER, Relation2_name BY customer_id;
Example
Let us perform left outer join operation on the two relations customers and orders as shown below.
grunt> outer_left = JOIN customers BY id LEFT OUTER, orders BY customer_id;
Verification
Verify the relation outer_left using the DUMP operator as shown below.
grunt> Dump outer_left;
Output
It will produce the following output, displaying the contents of the relationouter_left.
(1,Ramesh,32,Ahmedabad,2000,,,,)
(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560)
(3,kaushik,23,Kota,2000,100,2009-10-08 00:00:00,3,1500)
(3,kaushik,23,Kota,2000,102,2009-10-08 00:00:00,3,3000)
(4,Chaitali,25,Mumbai,6500,103,2008-05-20 00:00:00,4,2060)
(5,Hardik,27,Bhopal,8500,,,,)
(6,Komal,22,MP,4500,,,,)
(7,Muffy,24,Indore,10000,,,,)
Right Outer Join
The right outer join operation returns all rows from the right table, even if there are no matches in the left table.
Syntax
Given below is the syntax of performing right outer join operation using theJOIN operator.
grunt> outer_right = JOIN customers BY id RIGHT, orders BY customer_id;
Example
Let us perform right outer join operation on the two relations customers andorders as shown below.
grunt> outer_right = JOIN customers BY id RIGHT, orders BY customer_id;
Verification
Verify the relation outer_right using the DUMP operator as shown below.
grunt> Dump outer_right
Output
It will produce the following output, displaying the contents of the relationouter_right.
(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560)
(3,kaushik,23,Kota,2000,100,2009-10-08 00:00:00,3,1500)
(3,kaushik,23,Kota,2000,102,2009-10-08 00:00:00,3,3000)
(4,Chaitali,25,Mumbai,6500,103,2008-05-20 00:00:00,4,2060)
Full Outer Join
The full outer join operation returns rows when there is a match in one of the relations.
Syntax
Given below is the syntax of performing full outer join using the JOINoperator.
grunt> outer_full = JOIN customers BY id FULL OUTER, orders BY customer_id;
Example
Let us perform full outer join operation on the two relations customers andorders as shown below.
grunt> outer_full = JOIN customers BY id FULL OUTER, orders BY customer_id;
Verification
Verify the relation outer_full using the DUMP operator as shown below.
grun> Dump outer_full;
Output
It will produce the following output, displaying the contents of the relationouter_full.
(1,Ramesh,32,Ahmedabad,2000,,,,)
(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560)
(3,kaushik,23,Kota,2000,100,2009-10-08 00:00:00,3,1500)
(3,kaushik,23,Kota,2000,102,2009-10-08 00:00:00,3,3000)
(4,Chaitali,25,Mumbai,6500,103,2008-05-20 00:00:00,4,2060)
(5,Hardik,27,Bhopal,8500,,,,)
(6,Komal,22,MP,4500,,,,)
(7,Muffy,24,Indore,10000,,,,)

The CROSS operator computes the cross-product of two or more relations. This chapter explains with example how to use the cross operator in Pig Latin.
Syntax
Given below is the syntax of the CROSS operator.
grunt> Relation3_name = CROSS Relation1_name, Relation2_name;
Example
Assume that we have two files namely customers.txt and orders.txt in the/pig_data/ directory of HDFS as shown below.
customers.txt
1,Ramesh,32,Ahmedabad,2000.00
2,Khilan,25,Delhi,1500.00
3,kaushik,23,Kota,2000.00
4,Chaitali,25,Mumbai,6500.00
5,Hardik,27,Bhopal,8500.00
6,Komal,22,MP,4500.00
7,Muffy,24,Indore,10000.00
orders.txt
102,2009-10-08 00:00:00,3,3000
100,2009-10-08 00:00:00,3,1500
101,2009-11-20 00:00:00,2,1560
103,2008-05-20 00:00:00,4,2060
And we have loaded these two files into Pig with the relations customers andorders as shown below.
grunt> customers = LOAD 'hdfs://localhost:9000/pig_data/customers.txt' USING PigStorage(',')
 as (id:int, name:chararray, age:int, address:chararray, salary:int);

grunt> orders = LOAD 'hdfs://localhost:9000/pig_data/orders.txt' USING PigStorage(',')
 as (oid:int, date:chararray, customer_id:int, amount:int);
Let us now get the cross-product of these two relations using the crossoperator on these two relations as shown below.
grunt> cross_data = CROSS customers, orders;

grunt> Dump cross_data;
Output
It will produce the following output, displaying the contents of the relationcross_data.
(7,Muffy,24,Indore,10000,103,2008-05-20 00:00:00,4,2060)
(7,Muffy,24,Indore,10000,101,2009-11-20 00:00:00,2,1560)
(7,Muffy,24,Indore,10000,100,2009-10-08 00:00:00,3,1500)
(7,Muffy,24,Indore,10000,102,2009-10-08 00:00:00,3,3000)
(6,Komal,22,MP,4500,103,2008-05-20 00:00:00,4,2060)
(6,Komal,22,MP,4500,101,2009-11-20 00:00:00,2,1560)
(6,Komal,22,MP,4500,100,2009-10-08 00:00:00,3,1500)
(6,Komal,22,MP,4500,102,2009-10-08 00:00:00,3,3000)
(5,Hardik,27,Bhopal,8500,103,2008-05-20 00:00:00,4,2060)
(5,Hardik,27,Bhopal,8500,101,2009-11-20 00:00:00,2,1560)
(5,Hardik,27,Bhopal,8500,100,2009-10-08 00:00:00,3,1500)
(5,Hardik,27,Bhopal,8500,102,2009-10-08 00:00:00,3,3000)
(4,Chaitali,25,Mumbai,6500,103,2008-05-20 00:00:00,4,2060)
(4,Chaitali,25,Mumbai,6500,101,2009-20 00:00:00,4,2060)
(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560)
(2,Khilan,25,Delhi,1500,100,2009-10-08 00:00:00,3,1500)
(2,Khilan,25,Delhi,1500,102,2009-10-08 00:00:00,3,3000)
(1,Ramesh,32,Ahmedabad,2000,103,2008-05-20 00:00:00,4,2060)
(1,Ramesh,32,Ahmedabad,2000,101,2009-11-20 00:00:00,2,1560)
(1,Ramesh,32,Ahmedabad,2000,100,2009-10-08 00:00:00,3,1500)
(1,Ramesh,32,Ahmedabad,2000,102,2009-10-08 00:00:00,3,3000)-11-20 00:00:00,2,1560)
(4,Chaitali,25,Mumbai,6500,100,2009-10-08 00:00:00,3,1500)
(4,Chaitali,25,Mumbai,6500,102,2009-10-08 00:00:00,3,3000)
(3,kaushik,23,Kota,2000,103,2008-05-20 00:00:00,4,2060)
(3,kaushik,23,Kota,2000,101,2009-11-20 00:00:00,2,1560)
(3,kaushik,23,Kota,2000,100,2009-10-08 00:00:00,3,1500)
(3,kaushik,23,Kota,2000,102,2009-10-08 00:00:00,3,3000)
(2,Khilan,25,Delhi,1500,103,2008-05-20 00:00:00,4,2060)
(2,Khilan,25,Delhi,1500,101,2009-11-20 00:00:00,2,1560)
(2,Khilan,25,Delhi,1500,100,2009-10-08 00:00:00,3,1500)
(2,Khilan,25,Delhi,1500,102,2009-10-08 00:00:00,3,3000)
(1,Ramesh,32,Ahmedabad,2000,103,2008-05-20 00:00:00,4,2060)
(1,Ramesh,32,Ahmedabad,2000,101,2009-11-20 00:00:00,2,1560)
(1,Ramesh,32,Ahmedabad,2000,100,2009-10-08 00:00:00,3,1500)
(1,Ramesh,32,Ahmedabad,2000,102,2009-10-08 00:00:00,3,3000)

The UNION operator of Pig Latin is used to merge the content of two relations. To perform UNION operation on two relations, their columns and domains must be identical.
Syntax
Given below is the syntax of the UNION operator.
grunt> Relation_name3 = UNION Relation_name1, Relation_name2;
Example
Assume that we have two files namely student_data1.txt andstudent_data2.txt in the /pig_data/ directory of HDFS as shown below.
Student_data1.txt
001,Rajiv,Reddy,9848022337,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
003,Rajesh,Khanna,9848022339,Delhi
004,Preethi,Agarwal,9848022330,Pune
005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai.
Student_data2.txt
7,Komal,Nayak,9848022334,trivendram.
8,Bharathi,Nambiayar,9848022333,Chennai.
And we have loaded these two files into Pig with the relations student1 andstudent2 as shown below.
grunt> student1 = LOAD 'hdfs://localhost:9000/pig_data/student_data1.txt' USING PigStorage(',')
 as (id:int, firstname:chararray, lastname:chararray, phone:chararray, city:chararray);

grunt> student2 = LOAD 'hdfs://localhost:9000/pig_data/student_data2.txt' USING PigStorage(',')
 as (id:int, firstname:chararray, lastname:chararray, phone:chararray, city:chararray);
Let us now merge the contents of these two relations using the UNIONoperator as shown below.
grunt> student = UNION student1, student2;

Output
It will display the following output, displaying the contents of the relationstudent.
(1,Rajiv,Reddy,9848022337,Hyderabad) (2,siddarth,Battacharya,9848022338,Kolkata)
(3,Rajesh,Khanna,9848022339,Delhi)
(4,Preethi,Agarwal,9848022330,Pune)
(5,Trupthi,Mohanthy,9848022336,Bhuwaneshwar)
(6,Archana,Mishra,9848022335,Chennai)
(7,Komal,Nayak,9848022334,trivendram)
(8,Bharathi,Nambiayar,9848022333,Chennai)

The SPLIT operator is used to split a relation into two or more relations.
Syntax
Given below is the syntax of the SPLIT operator.
grunt> SPLIT Relation1_name INTO Relation2_name IF (condition1), Relation2_name (condition2),
Example
Assume that we have a file named student_details.txt in the HDFS directory/pig_data/ as shown below.
student_details.txt
001,Rajiv,Reddy,21,9848022337,Hyderabad
002,siddarth,Battacharya,22,9848022338,Kolkata
003,Rajesh,Khanna,22,9848022339,Delhi
004,Preethi,Agarwal,21,9848022330,Pune
005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar
006,Archana,Mishra,23,9848022335,Chennai
007,Komal,Nayak,24,9848022334,trivendram
008,Bharathi,Nambiayar,24,9848022333,Chennai
And we have loaded this file into Pig with the relation name student_detailsas shown below.
student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt' USING PigStorage(',')
 as (id:int, firstname:chararray, lastname:chararray, age:int, phone:chararray, city:chararray);
Let us now split the relation into two, one listing the employees of age less than 23, and the other listing the employees having the age between 22 and 25.
SPLIT student_details into student_details1 if age<23, student_details2 if (22<age and age>25);
grunt> Dump student_details1;

grunt> Dump student_details2;
Output
It will produce the following output, displaying the contents of the relationsstudent_details1 and student_details2 respectively.
grunt> Dump student_details1;
(1,Rajiv,Reddy,21,9848022337,Hyderabad)
(2,siddarth,Battacharya,22,9848022338,Kolkata)
(3,Rajesh,Khanna,22,9848022339,Delhi)
(4,Preethi,Agarwal,21,9848022330,Pune)

grunt> Dump student_details2;
(5,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar)
(6,Archana,Mishra,23,9848022335,Chennai)
(7,Komal,Nayak,24,9848022334,trivendram)
(8,Bharathi,Nambiayar,24,9848022333,Chennai)

The FILTER operator is used to select the required tuples from a relation based on a condition.
Syntax
Given below is the syntax of the FILTER operator.
grunt> Relation2_name = FILTER Relation1_name BY (condition);
Example
Assume that we have a file named student_details.txt in the HDFS directory/pig_data/ as shown below.
student_details.txt
001,Rajiv,Reddy,21,9848022337,Hyderabad
002,siddarth,Battacharya,22,9848022338,Kolkata
003,Rajesh,Khanna,22,9848022339,Delhi
004,Preethi,Agarwal,21,9848022330,Pune
005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar
006,Archana,Mishra,23,9848022335,Chennai
007,Komal,Nayak,24,9848022334,trivendram
008,Bharathi,Nambiayar,24,9848022333,Chennai
And we have loaded this file into Pig with the relation name student_detailsas shown below.
grunt> student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt' USING PigStorage(',')
 as (id:int, firstname:chararray, lastname:chararray, age:int, phone:chararray, city:chararray);
Let us now use the Filter operator to get the details of the students who belong to the city Chennai.
filter_data = FILTER student_details BY city == 'Chennai';
grunt> Dump filter_data;
Output
It will produce the following output, displaying the contents of the relationfilter_data as follows.
(6,Archana,Mishra,23,9848022335,Chennai)
(8,Bharathi,Nambiayar,24,9848022333,Chennai)

The DISTINCT operator is used to remove redundant (duplicate) tuples from a relation.
Syntax
Given below is the syntax of the DISTINCT operator.
grunt> Relation_name2 = DISTINCT Relatin_name1;
Example
Assume that we have a file named student_details.txt in the HDFS directory/pig_data/ as shown below.
student_details.txt
001,Rajiv,Reddy,9848022337,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
002,siddarth,Battacharya,9848022338,Kolkata
003,Rajesh,Khanna,9848022339,Delhi
003,Rajesh,Khanna,9848022339,Delhi
004,Preethi,Agarwal,9848022330,Pune
005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai
006,Archana,Mishra,9848022335,Chennai
And we have loaded this file into Pig with the relation name student_detailsas shown below.
grunt> student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt' USING PigStorage(',')
 as (id:int, firstname:chararray, lastname:chararray, phone:chararray, city:chararray);
Let us now remove the redundant (duplicate) tuples from the relation namedstudent_details using the DISTINCT operator, and store it as another relation named distinct_data as shown below.
grunt> distinct_data = DISTINCT student_details;

grunt> Dump distinct_data;
Output
It will produce the following output, displaying the contents of the relationdistinct_data as follows.
(1,Rajiv,Reddy,9848022337,Hyderabad)
(2,siddarth,Battacharya,9848022338,Kolkata)
(3,Rajesh,Khanna,9848022339,Delhi)
(4,Preethi,Agarwal,9848022330,Pune)
(5,Trupthi,Mohanthy,9848022336,Bhuwaneshwar)
(6,Archana,Mishra,9848022335,Chennai)

The FOREACH operator is used to generate specified data transformations based on the column data.
Syntax
Given below is the syntax of FOREACH operator.
grunt> Relation_name2 = FOREACH Relatin_name1 GENERATE (required data);
Example
Assume that we have a file named student_details.txt in the HDFS directory/pig_data/ as shown below.
student_details.txt
001,Rajiv,Reddy,21,9848022337,Hyderabad
002,siddarth,Battacharya,22,9848022338,Kolkata
003,Rajesh,Khanna,22,9848022339,Delhi
004,Preethi,Agarwal,21,9848022330,Pune
005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar
006,Archana,Mishra,23,9848022335,Chennai
007,Komal,Nayak,24,9848022334,trivendram
008,Bharathi,Nambiayar,24,9848022333,Chennai
And we have loaded this file into Pig with the relation name student_detailsas shown below.
grunt> student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt' USING PigStorage(',')
 as (id:int, firstname:chararray, lastname:chararray,age:int, phone:chararray, city:chararray);
Let us now get the id, age, and city values of each student from the relationstudent_details and store it into another relation named foreach_data using the foreach operator as shown below.
grunt> foreach_data = FOREACH student_details GENERATE id,age,city;
grunt> Dump foreach_data;
Output
It will produce the following output, displaying the contents of the relationforeach_data.
(1,21,Hyderabad)
(2,22,Kolkata)
(3,22,Delhi)
(4,21,Pune)
(5,23,Bhuwaneshwar)
(6,23,Chennai)
(7,24,trivendram)
(8,24,Chennai)

The ORDER BY operator is used to display the contents of a relation in a sorted order based on one or more fields.
Syntax
Given below is the syntax of the ORDER BY operator.
grunt> Relation_name2 = ORDER Relatin_name1 BY (ASC|DESC);
Example
Assume that we have a file named student_details.txt in the HDFS directory/pig_data/ as shown below.
student_details.txt
001,Rajiv,Reddy,21,9848022337,Hyderabad
002,siddarth,Battacharya,22,9848022338,Kolkata
003,Rajesh,Khanna,22,9848022339,Delhi
004,Preethi,Agarwal,21,9848022330,Pune
005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar
006,Archana,Mishra,23,9848022335,Chennai
007,Komal,Nayak,24,9848022334,trivendram
008,Bharathi,Nambiayar,24,9848022333,Chennai
And we have loaded this file into Pig with the relation name student_detailsas shown below.
grunt> student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt' USING PigStorage(',')
 as (id:int, firstname:chararray, lastname:chararray,age:int, phone:chararray, city:chararray);
Let us now sort the relation in a descending order based on the age of the student and store it into another relation named order_by_data using theORDER BY operator as shown below.
grunt> order_by_data = ORDER student_details BY age DESC;
grunt> Dump order_by_data;
Output
It will produce the following output, displaying the contents of the relationorder_by_data.
(8,Bharathi,Nambiayar,24,9848022333,Chennai)
(7,Komal,Nayak,24,9848022334,trivendram)
(6,Archana,Mishra,23,9848022335,Chennai)
(5,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar)
(3,Rajesh,Khanna,22,9848022339,Delhi)
(2,siddarth,Battacharya,22,9848022338,Kolkata)
(4,Preethi,Agarwal,21,9848022330,Pune)
(1,Rajiv,Reddy,21,9848022337,Hyderabad)
The LIMIT operator is used to get a limited number of tuples from a relation.
Syntax
Given below is the syntax of the LIMIT operator.
grunt> Result = LIMIT Relation_name required number of tuples;
Example
Assume that we have a file named student_details.txt in the HDFS directory/pig_data/ as shown below.
student_details.txt
001,Rajiv,Reddy,21,9848022337,Hyderabad
002,siddarth,Battacharya,22,9848022338,Kolkata
003,Rajesh,Khanna,22,9848022339,Delhi
004,Preethi,Agarwal,21,9848022330,Pune
005,Trupthi,Mohanthy,23,9848022336,Bhuwaneshwar
006,Archana,Mishra,23,9848022335,Chennai
007,Komal,Nayak,24,9848022334,trivendram
008,Bharathi,Nambiayar,24,9848022333,Chennai
And we have loaded this file into Pig with the relation name student_detailsas shown below.
grunt> student_details = LOAD 'hdfs://localhost:9000/pig_data/student_details.txt' USING PigStorage(',')
 as (id:int, firstname:chararray, lastname:chararray,age:int, phone:chararray, city:chararray);
Now, let’s sort the relation in descending order based on the age of the student and store it into another relation named limit_data using the ORDER BYoperator as shown below.
grunt> limit_data = LIMIT student_details 4;
grunt> Dump limit_data;
Output
It will produce the following output, displaying the contents of the relationlimit_data as follows.
(1,Rajiv,Reddy,21,9848022337,Hyderabad)
(2,siddarth,Battacharya,22,9848022338,Kolkata)
(3,Rajesh,Khanna,22,9848022339,Delhi)
(4,Preethi,Agarwal,21,9848022330,Pune)

Apache Pig provides various built-in functions namely eval, load, store, math, string, bag and tuple functions.
Eval Functions
Given below is the list of eval functions provided by Apache Pig.
	S.N.
	Function & Description

	1
	AVG()
To compute the average of the numerical values within a bag.

	2
	BagToString()
To concatenate the elements of a bag into a string. While concatenating, we can place a delimiter between these values (optional).

	3
	CONCAT()
To concatenate two or more expressions of same type.

	4
	COUNT()
To get the number of elements in a bag, while counting the number of tuples in a bag.

	5
	COUNT_STAR()
It is similar to the COUNT() function. It is used to get the number of elements in a bag.

	6
	DIFF()
To compare two bags (fields) in a tuple.

	7
	IsEmpty()
To check if a bag or map is empty.

	8
	MAX()
To calculate the highest value for a column (numeric values or chararrays) in a single-column bag.

	9
	MIN()
To get the minimum (lowest) value (numeric or chararray) for a certain column in a single-column bag.

	10
	PluckTuple()
Using the Pig Latin PluckTuple() function, we can define a string Prefix and filter the columns in a relation that begin with the given prefix.

	11
	SIZE()
To compute the number of elements based on any Pig data type.

	12
	SUBTRACT()
To subtract two bags. It takes two bags as inputs and returns a bag which contains the tuples of the first bag that are not in the second bag.

	13
	SUM()
To get the total of the numeric values of a column in a single-column bag.

	14
	TOKENIZE()
To split a string (which contains a group of words) in a single tuple and return a bag which contains the output of the split operation.

The Load and Store functions in Apache Pig are used to determine how the data goes ad comes out of Pig. These functions are used with the load and store operators. Given below is the list of load and store functions available in Pig.
	S.N.
	Function & Description

	1
	PigStorage()
To load and store structured files.

	2
	TextLoader()
To load unstructured data into Pig.

	3
	BinStorage()
To load and store data into Pig using machine readable format.

	4
	Handling Compression
In Pig Latin, we can load and store compressed data.

Given below is the list of Bag and Tuple functions.
	S.N.
	Function & Description

	1
	TOBAG()
To convert two or more expressions into a bag.

	2
	TOP()
To get the top N tuples of a relation.

	3
	TOTUPLE()
To convert one or more expressions into a tuple.

	4
	TOMAP()
To convert the key-value pairs into a Map.

Apache Pig - User Defined Functions
In addition to the built-in functions, Apache Pig provides extensive support forUser Defined Functions (UDF’s). Using these UDF’s, we can define our own functions and use them. The UDF support is provided in six programming languages, namely, Java, Jython, Python, JavaScript, Ruby and Groovy.
For writing UDF’s, complete support is provided in Java and limited support is provided in all the remaining languages. Using Java, you can write UDF’s involving all parts of the processing like data load/store, column transformation, and aggregation. Since Apache Pig has been written in Java, the UDF’s written using Java language work efficiently compared to other languages.
In Apache Pig, we also have a Java repository for UDF’s named Piggybank. Using Piggybank, we can access Java UDF’s written by other users, and contribute our own UDF’s.
Types of UDF’s in Java
While writing UDF’s using Java, we can create and use the following three types of functions −
· Filter Functions − The filter functions are used as conditions in filter statements. These functions accept a Pig value as input and return a Boolean value.
· Eval Functions − The Eval functions are used in FOREACH-GENERATE statements. These functions accept a Pig value as input and return a Pig result.
· Algebraic Functions − The Algebraic functions act on inner bags in a FOREACHGENERATE statement. These functions are used to perform full MapReduce operations on an inner bag.
Writing UDF’s using Java
To write a UDF using Java, we have to integrate the jar file Pig-0.15.0.jar. In this section, we discuss how to write a sample UDF using Eclipse. Before proceeding further, make sure you have installed Eclipse and Maven in your system.
Follow the steps given below to write a UDF function −
· Open Eclipse and create a new project (say myproject).
· Convert the newly created project into a Maven project.
· Copy the following content in the pom.xml. This file contains the Maven dependencies for Apache Pig and Hadoop-core jar files.
<project xmlns = "http://maven.apache.org/POM/4.0.0"
 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation = "http://maven.apache.org/POM/4.0.0http://maven.apache .org/xsd/maven-4.0.0.xsd">
	
 <modelVersion>4.0.0</modelVersion>
 <groupId>Pig_Udf</groupId>
 <artifactId>Pig_Udf</artifactId>
 <version>0.0.1-SNAPSHOT</version>
	
 <build>
 <sourceDirectory>src</sourceDirectory>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.3</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
	
 <dependencies>
	
 <dependency>
 <groupId>org.apache.pig</groupId>
 <artifactId>pig</artifactId>
 <version>0.15.0</version>
 </dependency>
		
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-core</artifactId>
 <version>0.20.2</version>
 </dependency>

 </dependencies>
	
</project>
· Save the file and refresh it. In the Maven Dependencies section, you can find the downloaded jar files.
· Create a new class file with name Sample_Eval and copy the following content in it.
import java.io.IOException;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.Tuple;

import java.io.IOException;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.Tuple;

public class Sample_Eval extends EvalFunc<String>{

 public String exec(Tuple input) throws IOException {
 if (input == null || input.size() == 0)
 return null;
 String str = (String)input.get(0);
 return str.toUpperCase();
 }
}
While writing UDF’s, it is mandatory to inherit the EvalFunc class and provide implementation to exec() function. Within this function, the code required for the UDF is written. In the above example, we have return the code to convert the contents of the given column to uppercase.
· After compiling the class without errors, right-click on the Sample_Eval.java file. It gives you a menu. Select export as shown in the following screenshot.
[image: Select export]
· On clicking export, you will get the following window. Click on JAR file.
[image: Click on Export]
· Proceed further by clicking Next> button. You will get another window where you need to enter the path in the local file system, where you need to store the jar file.
[image: jar export]
· Finally click the Finish button. In the specified folder, a Jar filesample_udf.jar is created. This jar file contains the UDF written in Java.
Using the UDF
After writing the UDF and generating the Jar file, follow the steps given below −
Step 1: Registering the Jar file
After writing UDF (in Java) we have to register the Jar file that contain the UDF using the Register operator. By registering the Jar file, users can intimate the location of the UDF to Apache Pig.
Syntax
Given below is the syntax of the Register operator.
REGISTER path;
Example
As an example let us register the sample_udf.jar created earlier in this chapter.
Start Apache Pig in local mode and register the jar file sample_udf.jar as shown below.
$cd PIG_HOME/bin
$./pig –x local

REGISTER '/$PIG_HOME/sample_udf.jar'
Note − assume the Jar file in the path − /$PIG_HOME/sample_udf.jar
Step 2: Defining Alias
After registering the UDF we can define an alias to it using the Define operator.
Syntax
Given below is the syntax of the Define operator.
DEFINE alias {function | [`command` [input] [output] [ship] [cache] [stderr]] };
Example
Define the alias for sample_eval as shown below.
DEFINE sample_eval sample_eval();
Step 3: Using the UDF
After defining the alias you can use the UDF same as the built-in functions. Suppose there is a file named emp_data in the HDFS /Pig_Data/ directory with the following content.
001,Robin,22,newyork
002,BOB,23,Kolkata
003,Maya,23,Tokyo
004,Sara,25,London
005,David,23,Bhuwaneshwar
006,Maggy,22,Chennai
007,Robert,22,newyork
008,Syam,23,Kolkata
009,Mary,25,Tokyo
010,Saran,25,London
011,Stacy,25,Bhuwaneshwar
012,Kelly,22,Chennai
And assume we have loaded this file into Pig as shown below.
grunt> emp_data = LOAD 'hdfs://localhost:9000/pig_data/emp1.txt' USING PigStorage(',')
 as (id:int, name:chararray, age:int, city:chararray);
Let us now convert the names of the employees in to upper case using the UDFsample_eval.
grunt> Upper_case = FOREACH emp_data GENERATE sample_eval(name);
Verify the contents of the relation Upper_case as shown below.
grunt> Dump Upper_case;

(ROBIN)
(BOB)
(MAYA)
(SARA)
(DAVID)
(MAGGY)
(ROBERT)
(SYAM)
(MARY)
(SARAN)
(STACY)
(KELLY)

image4.png
Fie Edit Source fefact
o V|

I8 Package explore 31 =
a %
b B RE System Library|
b = Referenced Lbrarie
data
& datafiie
Pig_udf

b 10 Fiter function

b BJRE System Ubrary,
b i Maven Dependenc!
b &b

o S|

sample_eval java - pig_ue

Hew
apen

Open wity

Open Type Hierarchy
Show in

copy

Copy Qualifed Name
paste

oelete

Build Path

Source.

Refactor

import

References
Declarations
Refresh

ssign Werking sets.
Debug As

B ds

Vaidate

Tam

Compare With
Replace with

cutev.
Delete rds Evairue
[T e—
ShfeARSS 3o sime() oe 0
ShfteArsT

Rf-m
ppy— o |
ry

>
e

image5.png
- Export x

et A
O i A AR (T G A 0 124

Select an export destination
1 4
55 Ganeral =
> & nstan
< e

& Javadoc

3 Runnable JAR file
> & Plugin Development
» & Runvpebug
> & Team
> o

@ Next > cancel

image6.png
JAR Export

JAR File Specification
Define which resources should be exported into the JAR 1

Select the resources to export
 Export generated class files and resources.
0 Export all output folders for checked projects
0 Export Java source files and resources
Export refactorings for checked projects.

Select the export destination:

JAR file: /nome/Hadoop/Pig/pig_function/sample_udtjar v][Browse.

Finish

< Back Next > cancel

®

image1.png

image2.png
Tuple

image3.png
15/09/28 10:13:03 INFO pig.Main,
Logging error messages to

/home /Hadoop/pig_1443415383991. 1og
2015-09-28 10:13:04,838 [main]

Fo
org.apache.pig.backend. hadoop. execution
engine.HExecutionEngine - Connecting to
hadoop file system at: file:///

grunt>

