The Writable Interface
The Writable interface defines two methods: one for writing its state to a DataOutput binary stream and one for reading its state from a DataInput binary stream.
package org.apache.hadoop.io;
import java.io.DataOutput;
import java.io.DataInput;
import java.io.IOException;
public interface Writable {
void write(DataOutput out) throws IOException;
void readFields(DataInput in) throws IOException;
}
Let’s look at a particular Writable to see what we can do with it. We will use IntWritable, a wrapper for a Java int. We can create one and set its value using the
set() method:
IntWritable writable = new IntWritable();
writable.set(163);
Equivalently, we can use the constructor that takes the integer value:
IntWritable writable = new IntWritable(163);
To examine the serialized form of the IntWritable, we write a small helper method that wraps a java.io.ByteArrayOutputStream in a java.io.DataOutputStream (an implementation of java.io.DataOutput) to capture the bytes in the serialized stream:
public static byte[] serialize(Writable writable) throws IOException {
ByteArrayOutputStream out = new ByteArrayOutputStream();
DataOutputStream dataOut = new DataOutputStream(out);
writable.write(dataOut);
dataOut.close();
return out.toByteArray();
}
An integer is written using four bytes (as we see using JUnit 4 assertions):
byte[] bytes = serialize(writable);
assertThat(bytes.length, is(4));
The bytes are written in big-endian order (so the most significant byte is written to the stream first, which is dictated by the java.io.DataOutput interface), and we can see their hexadecimal representation by using a method on Hadoop’s StringUtils:
assertThat(StringUtils.byteToHexString(bytes), is("000000a3"));
Let’s try deserialization. Again, we create a helper method to read a Writable object from a byte array:
public static byte[] deserialize(Writable writable, byte[] bytes)
throws IOException {
ByteArrayInputStream in = new ByteArrayInputStream(bytes);
DataInputStream dataIn = new DataInputStream(in);
writable.readFields(dataIn);
dataIn.close();
return bytes;
}
We construct a new, value-less IntWritable, and then call deserialize() to read from
the output data that we just wrote. Then we check that its value, retrieved using the
get() method, is the original value, 163:
IntWritable newWritable = new IntWritable();
deserialize(newWritable, bytes);
assertThat(newWritable.get(), is(163));

WritableComparable and comparators
IntWritable implements the WritableComparable interface, which is just a subinterface of the Writable and java.lang.Comparable interfaces:
package org.apache.hadoop.io;
public interface WritableComparable<T> extends Writable, Comparable<T> {
}
Comparison of types is crucial for MapReduce, where there is a sorting phase during which keys are compared with one another. One optimization that Hadoop provides is the RawComparator extension of Java’s Comparator:
package org.apache.hadoop.io;
import java.util.Comparator;
public interface RawComparator<T> extends Comparator<T> {
public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2);
}
This interface permits implementors to compare records read from a stream without deserializing them into objects, thereby avoiding any overhead of object creation. For example, the comparator for IntWritables implements the raw compare() method by reading an integer from each of the byte arrays b1 and b2 and comparing them directly from the given start positions (s1 and s2) and lengths (l1 and l2).
WritableComparator is a general-purpose implementation of RawComparator for
WritableComparable classes. It provides two main functions. First, it provides a default implementation of the raw compare() method that deserializes the objects to be compared from the stream and invokes the object compare() method. Second, it acts as a factory for RawComparator instances (that Writable implementations have registered).
For example, to obtain a comparator for IntWritable, we just use:
RawComparator<IntWritable> comparator = WritableComparator.get(IntWritable.class);
The comparator can be used to compare two IntWritable objects:
IntWritable w1 = new IntWritable(163);
IntWritable w2 = new IntWritable(67);
assertThat(comparator.compare(w1, w2), greaterThan(0));
or their serialized representations:
byte[] b1 = serialize(w1);
byte[] b2 = serialize(w2);
assertThat(comparator.compare(b1, 0, b1.length, b2, 0, b2.length),
greaterThan(0));
Writable Classes
Hadoop comes with a large selection of Writable classes in the org.apache.hadoop.io package.
Writable wrappers for Java primitives
There are Writable wrappers for all the Java primitive types except char (which can be stored in an IntWritable). All have a get() and set() method for retrieving and storing the wrapped value.

Java primitive Writable implementation Serialized size (bytes)
boolean 	BooleanWritable		 1
byte 		ByteWritable		 1
short 		ShortWritable		 2
int 		IntWritable		 	4
VIntWritable 		1–5
float 		FloatWritable		 4
long 		LongWritable		 8
VLongWritable 		1–9
double 	DoubleWritable		 8
When it comes to encoding integers, there is a choice between the fixed-length formats
(IntWritable and LongWritable) and the variable-length formats (VIntWritable and
VLongWritable). The variable-length formats use only a single byte to encode the value if it is small enough (between –112 and 127, inclusive); otherwise, they use the first byte to indicate whether the value is positive or negative, and how many bytes follow.
For example, 163 requires two bytes:
byte[] data = serialize(new VIntWritable(163));
assertThat(StringUtils.byteToHexString(data), is("8fa3"));
How do you choose between a fixed-length and a variable-length encoding? Fixedlength encodings are good when the distribution of values is fairly uniform across the whole value space, such as a (well-designed) hash function. Most numeric variables tend to have nonuniform distributions, and on average the variable-length encoding will save space. Another advantage of variable-length encodings is that you can switch from VIntWritable to VLongWritable, because their encodings are actually the same. So by choosing a variable-length representation, you have room to grow without committing to an 8-byte long representation from the beginning.
Writable Class Hierarchy

[image:]

Text
Text is a Writable for UTF-8 sequences. It can be thought of as the Writable equivalent of java.lang.String. Text is a replacement for the UTF8 class, which was deprecated because it didn’t support strings whose encoding was over 32,767 bytes and because it used Java’s modified UTF-8. The Text class uses an int (with a variable-length encoding) to store the number of bytes in the string encoding, so the maximum value is 2 GB. Furthermore, Text uses standard UTF-8, which makes it potentially easier to interoperate with other tools that understand UTF-8.
Because of its emphasis on using standard UTF-8, there are some differences
between Text and the Java String class. Indexing for the Text class is in terms of position in the encoded byte sequence, not the Unicode character in the string or the Java char code unit (as it is for String). For ASCII strings, these three concepts of index position coincide. Here is an example to demonstrate the use of the charAt() method:
Text t = new Text("hadoop");
assertThat(t.getLength(), is(6));
assertThat(t.getBytes().length, is(6));
assertThat(t.charAt(2), is((int) 'd'));
assertThat("Out of bounds", t.charAt(100), is(-1));
Notice that charAt() returns an int representing a Unicode code point, unlike the
String variant that returns a char. Text also has a find() method, which is analogous
to String’s indexOf():
Text t = new Text("hadoop");
assertThat("Find a substring", t.find("do"), is(2));
assertThat("Finds first 'o'", t.find("o"), is(3));
assertThat("Finds 'o' from position 4 or later", t.find("o", 4), is(4));
assertThat("No match", t.find("pig"), is(-1));
Indexing.
When we start using characters that are encoded with more than a single byte,
the differences between Text and String become clear. Consider the Unicode characters Unicode code point U+0041 U+00DF U+6771 U+10400
Name LATIN CAPITAL
LETTER A
LATIN SMALL LETTER
SHARP S
N/A (a unified
Han ideograph)
DESERET CAPITAL LETTER
LONG I
UTF-8 code units 41 c3 9f e6 9d b1 f0 90 90 80
Java representation \u0041 \u00DF \u6771 \uuD801\uDC00
All but the last character in the table, U+10400, can be expressed using a single Java char. U+10400 is a supplementary character and is represented by two Java chars, known as a surrogate pair. The tests in Example 4-5 show the differences between String and Text when processing a string of the four characters from Table 4-8.
Example 4-5. Tests showing the differences between the String and Text classes
public class StringTextComparisonTest {
@Test
public void string() throws UnsupportedEncodingException {
String s = "\u0041\u00DF\u6771\uD801\uDC00";
assertThat(s.length(), is(5));
assertThat(s.getBytes("UTF-8").length, is(10));
assertThat(s.indexOf("\u0041"), is(0));
assertThat(s.indexOf("\u00DF"), is(1));
assertThat(s.indexOf("\u6771"), is(2));
assertThat(s.indexOf("\uD801\uDC00"), is(3));
assertThat(s.charAt(0), is('\u0041'));
assertThat(s.charAt(1), is('\u00DF'));
assertThat(s.charAt(2), is('\u6771'));
assertThat(s.charAt(3), is('\uD801'));
assertThat(s.charAt(4), is('\uDC00'));
assertThat(s.codePointAt(0), is(0x0041));
assertThat(s.codePointAt(1), is(0x00DF));
assertThat(s.codePointAt(2), is(0x6771));
assertThat(s.codePointAt(3), is(0x10400));
}
@Test
public void text() {
Text t = new Text("\u0041\u00DF\u6771\uD801\uDC00");
Unicode.
2. This example is based on one from the article “Supplementary Characters in the Java Platform.”
assertThat(t.getLength(), is(10));
assertThat(t.find("\u0041"), is(0));
assertThat(t.find("\u00DF"), is(1));
assertThat(t.find("\u6771"), is(3));
assertThat(t.find("\uD801\uDC00"), is(6));
assertThat(t.charAt(0), is(0x0041));
assertThat(t.charAt(1), is(0x00DF));
assertThat(t.charAt(3), is(0x6771));
assertThat(t.charAt(6), is(0x10400));
}
}
The test confirms that the length of a String is the number of char code units it contains (5, made up of one from each of the first three characters in the string and a surrogate pair from the last), whereas the length of a Text object is the number of bytes in its UTF-8 encoding (10 = 1+2+3+4). Similarly, the indexOf() method in String returns an index in char code units, and find() for Text is a byte offset.
The charAt() method in String returns the char code unit for the given index, which
in the case of a surrogate pair will not represent a whole Unicode character. The code PointAt() method, indexed by char code unit, is needed to retrieve a single Unicode character represented as an int. In fact, the charAt() method in Text is more like the codePointAt() method than its namesake in String. The only difference is that it is indexed by byte offset. Iterating over the Unicode characters in Text is complicated by the use of byte offsets for indexing, since you can’t just increment the index. The idiom for iteration is a little obscure (see Example 4-6): turn the Text object into a java.nio.ByteBuffer, then repeatedly call the bytesToCodePoint() static method on Text with the buffer. This method extracts the next code point as an int and updates the position in the buffer.The end of the string is detected when bytesToCodePoint() returns –1.Example 4-6. Iterating over the characters in a Text object
public class TextIterator {
public static void main(String[] args) {
Text t = new Text("\u0041\u00DF\u6771\uD801\uDC00");
ByteBuffer buf = ByteBuffer.wrap(t.getBytes(), 0, t.getLength());
int cp;
while (buf.hasRemaining() && (cp = Text.bytesToCodePoint(buf)) != -1) {
System.out.println(Integer.toHexString(cp));
}
}
}
Running the program prints the code points for the four characters in the string:
Iteration.
% hadoop TextIterator
41
df
6771
10400
Another difference with String is that Text is mutable (like all Writable implementations in Hadoop, except NullWritable, which is a singleton). You can reuse a Text instance by calling one of the set() methods on it. For example:
Text t = new Text("hadoop");
t.set("pig");
assertThat(t.getLength(), is(3));
assertThat(t.getBytes().length, is(3));
In some situations, the byte array returned by the getBytes() method
may be longer than the length returned by getLength():
Text t = new Text("hadoop");
t.set(new Text("pig"));
assertThat(t.getLength(), is(3));
assertThat("Byte length not shortened", t.getBytes().length,
is(6));
This shows why it is imperative that you always call getLength() when calling getBytes(), so you know how much of the byte array is valid data.Text doesn’t have as rich an API for manipulating strings as java.lang.String, so in many cases, you need to convert the Text object to a String.This is done in the usual way, using the toString() method: assertThat(new Text("hadoop").toString(), is("hadoop"));

BytesWritable
BytesWritable is a wrapper for an array of binary data. Its serialized format is an integer field (4 bytes) that specifies the number of bytes to follow, followed by the bytes themselves. For example, the byte array of length two with values 3 and 5 is serialized as a 4-byte integer (00000002) followed by the two bytes from the array (03 and 05):
BytesWritable b = new BytesWritable(new byte[] { 3, 5 });
byte[] bytes = serialize(b);
assertThat(StringUtils.byteToHexString(bytes), is("000000020305"));
BytesWritable is mutable, and its value may be changed by calling its set() method.
As with Text, the size of the byte array returned from the getBytes() method for BytesWritable—the capacity—may not reflect the actual size of the data stored in the BytesWritable. You can determine the size of the BytesWritable by calling get
Length(). To demonstrate:
b.setCapacity(11);
assertThat(b.getLength(), is(2));
assertThat(b.getBytes().length, is(11));
Mutability.
Resorting to String.
NullWritable
NullWritable is a special type of Writable, as it has a zero-length serialization. No bytes are written to or read from the stream. It is used as a placeholder; for example, in MapReduce, a key or a value can be declared as a NullWritable when you don’t need to use that position, effectively storing a constant empty value. NullWritable can also be useful as a key in SequenceFile when you want to store a list of values, as opposed to key-value pairs. It is an immutable singleton, and the instance can be retrieved by calling NullWritable.get(). ObjectWritable and GenericWritable ObjectWritable is a general-purpose wrapper for the following: Java primitives, String, enum, Writable, null, or arrays of any of these types. It is used in Hadoop RPC to marshal and unmarshal method arguments and return types. ObjectWritable is useful when a field can be of more than one type. For example, if the values in a SequenceFile have multiple types, you can declare the value type as an ObjectWritable and wrap each type in an ObjectWritable. Being a general-purpose mechanism, it wasted a fair amount of space because it writes the classname of the wrapped type every time it is serialized. In cases where the number of types is small and known ahead of time, this can be improved by having a static array of types and using the index into the array as the serialized reference to the type. This is the approach that GenericWritable takes, and you have to subclass it to specify which types to support.
Writable collections
There are six Writable collection types in the org.apache.hadoop.io package: Array
Writable, ArrayPrimitiveWritable, TwoDArrayWritable, MapWritable,
SortedMapWritable, and EnumSetWritable.
ArrayWritable and TwoDArrayWritable are Writable implementations for arrays and two-dimensional arrays (array of arrays) of Writable instances. All the elements of an ArrayWritable or a TwoDArrayWritable must be instances of the same class, which is specified at construction as follows:

ArrayWritable writable = new ArrayWritable(Text.class);
In contexts where the Writable is defined by type, such as in SequenceFile keys or values or as input to MapReduce in general, you need to subclass ArrayWritable (or TwoDArrayWritable, as appropriate) to set the type statically. For example:
public class TextArrayWritable extends ArrayWritable {
public TextArrayWritable() {
super(Text.class);
}
}
ArrayWritable and TwoDArrayWritable both have get() and set() methods, as well as a toArray() method, which creates a shallow copy of the array (or 2D array).ArrayPrimitiveWritable is a wrapper for arrays of Java primitives. The component type is detected when you call set(), so there is no need to subclass to set the type. MapWritable and SortedMap Writable are implementations of java.util.Map<Writable, Writable> and java.util.SortedMap<WritableComparable, Writable>, respectively. The type of each key and value field is a part of the serialization format for that field. The type is stored as a single byte that acts as an index into an array of types. The array is populated with the standard types in the org.apache.hadoop.io package, but custom Writable types are accommodated, too, by writing a header that encodes the type array for nonstandard types. As they are implemented, MapWritable and SortedMapWritable use positive byte values for custom types, so a maximum of 127 distinct nonstandard Writable classes can be used in any particular MapWritable or SortedMapWritable instance.Here’s a demonstration of using a MapWritable with different types for keys and
values:
MapWritable src = new MapWritable();
src.put(new IntWritable(1), new Text("cat"));
src.put(new VIntWritable(2), new LongWritable(163));
MapWritable dest = new MapWritable();
WritableUtils.cloneInto(dest, src);
assertThat((Text) dest.get(new IntWritable(1)), is(new Text("cat")));
assertThat((LongWritable) dest.get(new VIntWritable(2)), is(new
LongWritable(163)));
Conspicuous by their absence are Writable collection implementations for sets and lists. A general set can be emulated by using a MapWritable (or a SortedMapWritable for a sorted set) with NullWritable values. There is also EnumSetWritable for sets of enum types. For lists of a single type of Writable, ArrayWritable is adequate, but to store different types of Writable in a single list, you can use GenericWritable to wrap the elements in an ArrayWritable. Alternatively, you could write a general ListWritable using the ideas from MapWritable. Implementing a Custom Writable Hadoop comes with a useful set of Writable implementations that serve most purposes; however, on occasion, you may need to write your own custom implementation. With a custom Writable, you have full control over the binary representation and the sort order. Because Writables are at the heart of the MapReduce data path, tuning the binary representation can have a significant effect on performance. The stock Writable implementations that come with Hadoop are well-tuned, but for more elaborate structures, it is often better to create a new Writable type rather than compose the stock types. To demonstrate how to create a custom Writable, we shall write an implementation that represents a pair of strings, called TextPair. The basic implementation is shown
in Example 4-7.
Example 4-7. A Writable implementation that stores a pair of Text objects
import java.io.*;
import org.apache.hadoop.io.*;
public class TextPair implements WritableComparable<TextPair> {
private Text first;
private Text second;
public TextPair() {
set(new Text(), new Text());
}
public TextPair(String first, String second) {
set(new Text(first), new Text(second));
}
public TextPair(Text first, Text second) {
set(first, second);
}
public void set(Text first, Text second) {
this.first = first;
this.second = second;
}
public Text getFirst() {
return first;
}
public Text getSecond() {
return second;
}
@Override
public void write(DataOutput out) throws IOException {
first.write(out);
second.write(out);
}
@Override
public void readFields(DataInput in) throws IOException {
first.readFields(in);
second.readFields(in);
}
@Override
public int hashCode() {
return first.hashCode() * 163 + second.hashCode();
}
@Override
public boolean equals(Object o) {
if (o instanceof TextPair) {
TextPair tp = (TextPair) o;
return first.equals(tp.first) && second.equals(tp.second);
}
return false;
}
@Override
public String toString() {
return first + "\t" + second;
}
@Override
public int compareTo(TextPair tp) {
int cmp = first.compareTo(tp.first);
if (cmp != 0) {
return cmp;
}
return second.compareTo(tp.second);
}
}
The first part of the implementation is straightforward: there are two Text instance variables, first and second, and associated constructors, getters, and setters. All Writable implementations must have a default constructor so that the MapReduce framework can instantiate them, then populate their fields by calling readFields(). Writable instances are mutable and often reused, so you should take care to avoid allocating objects in the write() or readFields() methods. TextPair’s write() method serializes each Text object in turn to the output stream by delegating to the Text objects themselves. Similarly, readFields() deserializes the bytes from the input stream by delegating to each Text object. The DataOutput and DataInput interfaces have a rich set of methods for serializing and deserializing Java primitives, so, in general, you have complete control over the wire format of your Writable object. Just as you would for any value object you write in Java, you should override the hashCode(), equals(), and toString() methods from java.lang.Object. The hash Code() method is used by the HashPartitioner (the default partitioner in MapReduce) to choose a reduce partition, so you should make sure that you write a good hash function that mixes well to ensure reduce partitions are of a similar size. If you ever plan to use your custom Writable with TextOutputFormat, then you must implement its toString() method. TextOutputFormat calls toString() on keys and values for their output representation. For Text Pair, we write the underlying Text objects as strings separated by a tab character. TextPair is an implementation of WritableComparable, so it provides an implementation of the compareTo() method that imposes the ordering you would expect: it sorts by the first string followed by the second. Notice that TextPair differs from TextArrayWritable from the previous section (apart from the number of Text objects it can store), since TextArrayWritable is only a Writable, not a WritableComparable. Implementing a RawComparator for speed The code for TextPair in Example 4-7 will work as it stands; however, there is a further optimization we can make. As explained in “WritableComparable and comparators”
on page 95, when TextPair is being used as a key in MapReduce, it will have to be deserialized into an object for the compareTo() method to be invoked. What if it were possible to compare two TextPair objects just by looking at their serialized representations?
It turns out that we can do this because TextPair is the concatenation of two Text objects, and the binary representation of a Text object is a variable-length integer containing the number of bytes in the UTF-8 representation of the string, followed by the UTF-8 bytes themselves. The trick is to read the initial length so we know how long the first Text object’s byte representation is; then we can delegate to Text’s RawComparator and invoke it with the appropriate offsets for the first or second string. Example
4-8 gives the details (note that this code is nested in the TextPair class).
Example 4-8. A RawComparator for comparing TextPair byte representations
public static class Comparator extends WritableComparator {
private static final Text.Comparator TEXT_COMPARATOR = new Text.Comparator();
public Comparator() {
super(TextPair.class);
}
@Override
public int compare(byte[] b1, int s1, int l1,
byte[] b2, int s2, int l2) {
try {
int firstL1 = WritableUtils.decodeVIntSize(b1[s1]) + readVInt(b1, s1);
int firstL2 = WritableUtils.decodeVIntSize(b2[s2]) + readVInt(b2, s2);
int cmp = TEXT_COMPARATOR.compare(b1, s1, firstL1, b2, s2, firstL2);
if (cmp != 0) {
return cmp;
}
return TEXT_COMPARATOR.compare(b1, s1 + firstL1, l1 - firstL1,
b2, s2 + firstL2, l2 - firstL2);
} catch (IOException e) {
throw new IllegalArgumentException(e);
}
}
}
static {
WritableComparator.define(TextPair.class, new Comparator());
}
We actually subclass WritableComparator rather than implement RawComparator directly,since it provides some convenience methods and default implementations. The subtle part of this code is calculating firstL1 and firstL2, the lengths of the first Text field in each byte stream. Each is made up of the length of the variable-length integer (returned by decodeVIntSize() on WritableUtils) and the value it is encoding (returned by readVInt()). The static block registers the raw comparator so that whenever MapReduce sees the TextPair class, it knows to use the raw comparator as its default comparator. Custom comparators As we can see with TextPair, writing raw comparators takes some care because you have to deal with details at the byte level. It is worth looking at some of the implementations of Writable in the org.apache.hadoop.io package for further ideas if you need to write your own. The utility methods on WritableUtils are very handy, too. Custom comparators should also be written to be RawComparators, if possible. These are comparators that implement a different sort order from the natural sort order defined by the default comparator. Example 4-9 shows a comparator for TextPair, called firstComparator, that considers only the first string of the pair. Note that we override the compare() method that takes objects so both compare() methods have the same semantics.
We will make use of this comparator in Chapter 8, when we look at joins and secondary sorting in MapReduce (see “Joins” on page 283).
Example 4-9. A custom RawComparator for comparing the first field of TextPair byte representations public static class FirstComparator extends WritableComparator {
private static final Text.Comparator TEXT_COMPARATOR = new Text.Comparator();
public FirstComparator() {
super(TextPair.class);
}
@Override
public int compare(byte[] b1, int s1, int l1,
byte[] b2, int s2, int l2) {
try {
int firstL1 = WritableUtils.decodeVIntSize(b1[s1]) + readVInt(b1, s1);
int firstL2 = WritableUtils.decodeVIntSize(b2[s2]) + readVInt(b2, s2);
return TEXT_COMPARATOR.compare(b1, s1, firstL1, b2, s2, firstL2);
} catch (IOException e) {
throw new IllegalArgumentException(e);
[bookmark: _GoBack]
image1.emf

