
Processes in Linux/Unix

A program/command when executed, a special instance is provided by the system to the process.

This instance consists of all the services/resources that may be utilized by the process under

execution.

• Whenever a command is issued in unix/linux, it creates/starts a new process. For

example, pwd when issued which is used to list the current directory location the user is

in, a process starts.

• Through a 5 digit ID number unix/linux keeps account of the processes, this number is

call process id or pid. Each process in the system has a unique pid.

• Used up pid’s can be used in again for a newer process since all the possible

combinations are used.

• At any point of time, no two processes with the same pid exist in the system because it is

the pid that Unix uses to track each process.

Initializing a process

A process can be run in two ways:

1. Foreground Process : Every process when started runs in foreground by default,

receives input from the keyboard and sends output to the screen.

When issuing pwd command

$ ls pwd

Output:

$ /home/geeksforgeeks/root

When a command/process is running in the foreground and is taking a lot of time, no

other processes can be run or started because the prompt would not be available until the

program finishes processing and comes out.

2. Backround Process : It runs in the background without keyboard input and waits till

keyboard input is required. Thus, other processes can be done in parallel with the process

running in background since they do not have to wait for the previous process to be

completed.

Adding & along with the command starts it as a background process
3. $ pwd &

Since pwd does not wants any input from the keyboard, it goes to the stop state until

moved to the foreground and given any data input. Thus, on pressing Enter, :

Output:

[1] + Done pwd

$

That first line contains information about the background process – the job number and

the process ID. It tells you that the ls command background process finishes successfully.

The se The second is a prompt for another command.

Tracking ongoing processes

ps (Process status) can be used to see/list all the running processes.

$ ps

PID TTY TIME CMD

19 pts/1 00:00:00 sh

24 pts/1 00:00:00 ps

For more information -f (full) can be used along with ps

$ ps –f

UID PID PPID C STIME TTY TIME CMD

52471 19 1 0 07:20 pts/1 00:00:00f sh

52471 25 19 0 08:04 pts/1 00:00:00 ps -f

For a single process information, ps along with process id is used

$ ps 19

PID TTY TIME CMD

19 pts/1 00:00:00 sh

For a running program (named process) Pidof finds the process id’s (pids)

Fields described by ps are described as:

UID: User ID that this process belongs to (the person running it)

PID: Process ID

PPID: Parent process ID (the ID of the process that started it)

C: CPU utilization of process

STIME: Process start time

TTY: Terminal type associated with the process

TIME: CPU time taken by the process

CMD: The command that started this process

There are other options which can be used along with ps command :

-a: Shows information about all users

-x: Shows information about processes without terminals

-u: Shows additional information like -f option

-e: Displays extended information

Stopping a process

When running in foreground, hitting Ctrl + c (interrupt character) will exit the command. For

processes running in background kill command can be used if it’s pid is known.

$ ps –f

UID PID PPID C STIME TTY TIME CMD

52471 19 1 0 07:20 pts/1 00:00:00 sh

52471 25 19 0 08:04 pts/1 00:00:00 ps –f

$ kill 19

Terminated

If a process ignores a regular kill command, you can use kill -9 followed by the process ID .

$ kill -9 19

Terminated

Other process commands:

bg: A job control command that resumes suspended jobs while keeping them running in the

background

Syntax:

bg [job]

For example

bg %19

fg: It continues a stopped job by running it in the foreground.

Syntax:

fg [%job_id]

For example

fg 19

top: This command is used to show all the running processes within the working environment of

Linux.

Syntax:

top

nice: It starts a new process (job) and assigns it a priority (nice) value at the same time.

Syntax:

nice [-nice value]

nice value ranges from -20 to 19, where -20 is of the highest priority.

renice : To change the priority of an already running process renice is used.

Syntax:

renice [-nice value] [process id]

df: It shows the amount of available disk space being used by file systems

Syntax:

df

Output:

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/loop0 18761008 15246876 2554440 86% /

none 4 0 4 0% /sys/fs/cgroup

udev 493812 4 493808 1% /dev

tmpfs 100672 1364 99308 2% /run

none 5120 0 5120 0% /run/lock

none 503352 1764 501588 1% /run/shm

none 102400 20 102380 1% /run/user

/dev/sda3 174766076 164417964 10348112 95% /host

free: It shows the total amount of free and used physical and swap memory in the system, as well

as the buffers used by the kernel

Syntax:

free

Output:

 total used free shared buffers cached

Mem: 1006708 935872 70836 0 148244 346656

-/+ buffers/cache: 440972 565736

Swap: 262140 130084 132056

Types of Processes

1. Parent and Child process : The 2nd and 3rd column of the ps –f command shows

process id and parent’s process id number. For each user process there’s a parent process

in the system, with most of the commands having shell as their parent.

2. Zombie and Orphan process : After completing its execution a child process is

terminated or killed and SIGCHLD updates the parent process about the termination and

thus can continue the task assigned to it. But at times when the parent process is killed

before the termination of the child process, the child processes becomes orphan

processes, with the parent of all processes “init” process, becomes their new ppid.

A process which is killed but still shows its entry in the process status or the process table

is called a zombie process, they are dead and are not used.

3. Daemon process : They are system-related background processes that often run with the

permissions of root and services requests from other processes, they most of the time run

in the background and wait for processes it can work along with for ex print daemon.

When ps –ef is executed, the process with ? in the tty field are daemon processes

Internal and External Commands in Linux

The UNIX system is command-based i.e things happen because of the commands that you key

in. All UNIX commands are seldom more than four characters long.

They are grouped into two categories:

• Internal Commands : Commands which are built into the shell. For all the shell built-in

commands, execution of the same is fast in the sense that the shell doesn’t have to search

the given path for them in the PATH variable and also no process needs to be spawned

for executing it.

Examples: source, cd, fg etc.

• External Commands : Commands which aren’t built into the shell. When an external

command has to be executed, the shell looks for its path given in PATH variable and also

a new process has to be spawned and the command gets executed. They are usually

located in /bin or /usr/bin. For example, when you execute the “cat” command, which

usually is at /usr/bin, the executable /usr/bin/cat gets executed.

Examples: ls, cat etc.

If you know about UNIX commands, you must have heard about the ls command. Since ls is a

program or file having an independent existence in the /bin directory(or /usr/bin), it is branded as

an external command that actually means that the ls command is not built into the shell and

these are executables present in separate file. In simple words, when you will key in the ls

command, to be executed it will be found in /bin. Most commands are external in nature, but

there are some which are not really found anywhere, and some which are normally not executed

even if they are in one of the directories specified by PATH. For instance, take echo command:

$type echo

echo is a shell builtin

echo isn’t an external command in the sense that, when you type echo, the shell won’t look in its

PATH to locate it(even if it is there in /bin). Rather, it will execute it from its own set of built-in

commands that are not stored as separate files. These built-in commands, of which echo is a

member, are known as internal commands.

You now might have noticed that it’s the shell that actually does all this works. This program

starts running as soon the user log in, and dies when the user log out. The shell is an external

command with a difference, it possesses its own set of internal commands. So, if a command

exists both as an internal command of the shell as well as external one(in /bin or /usr/bib), the

shell will accord top priority to its own internal command of the same name.

This is exactly the case with echo which is also found in /bin, but rarely ever executed because

the shell makes sure that the internal echo command takes precedence over the external. Now,

talk more about the internal and external commands.

Getting the list of Internal Commands

If you are using bash shell you can get the list of shell built-in commands with help command :

$help

// this will list all

the shell built-in commands //

How to find out whether a command is internal or external?

In addition to this you can also find out about a particular command i.e whether it is internal or

external with the help of type command :

$type cat

cat is /bin/cat

//specifying that cat is

external type//

$type cd

cd is a shell builtin

//specifying that cd is

internal type//

Internal vs External

The question that when to use which command between internal and external command is of no

use cause the user uses a command according to the need of the problem he wants to solve. The

only difference that exists between internal and external command is that internal commands

work much faster than the external ones as the shell has to look for the path when it comes to the

use of external commands.

There are some cases where you can avoid the use of external by using internal in place of them,

like if you need to add two numbers you can do it as:

//use of internal command let

for addition//

$let c=a+b

instead of using :

//use of external command expr

for addition//

$c=`expr $a+$b`

In such a case, use of let will be more better option as it is a shell built-in command so will work

faster than the expr which is an external command.

Process Creation:

In UNIX and POSIX you call fork() and then exec() to create a process. When you fork it clones

a copy of your current process, including all data, code, environment variables, and open files.

This child process is a duplicate of the parent (except for a few details). fork() returns the

process ID of the child to the parent process and a zero to the child process (remember, both are

now executing). The child may then call exec() to replace itself with the code of a different

program (if that was your goal). The new child process will have the same files open as the

parent, except those whose close-on-exec flag was set with fcntl.

In pseudo-code, this is:

 result := fork()

 if result < 0

 #fork() failed

 elseif result > 0

 #this is the Parent

 elseif

 #result=0, this is the Child

 #call exec() to "replace myself" with another prog

 exec()

 #control will Never return here from exec()

 #instead if goes to the new program code

 endif

http://www.robelle.com/smugbook/unix.html
http://www.robelle.com/smugbook/posix.html

About trap

trap is a function built into the shell that responds to hardware signals and other events.

Description

trap defines and activates handlers to be run when the shell receives signals or other special

conditions.

ARG is a command to be read and executed when the shell receives the signal(s) SIGNAL_SPEC.

If ARG is absent (and a single SIGNAL_SPEC is supplied) or ARG is a dash ("-"), each specified

signal is reset to its original value. If ARG is the null string, each SIGNAL_SPEC is ignored by

the shell and by the commands it invokes.

If a SIGNAL_SPEC is EXIT (0), ARG is executed upon exit from the shell.

If a SIGNAL_SPEC is DEBUG, ARG is executed before every simple command.

If a SIGNAL_SPEC is RETURN, ARG is executed each time a shell function or a script run by

the "." or source built-in commands finishes executing.

A SIGNAL_SPEC of ERR means to execute ARG each time a command's failure would cause

the shell to exit when the -e option is enabled.

If no arguments are supplied, trap prints the list of commands associated with each signal.

trap syntax
trap [-lp] [[ARG] SIGNAL_SPEC...]

Options

-l print a list of signal names and their corresponding numbers.

-p display the trap commands associated with each SIGNAL_SPEC.

trap and onitr examples
trap -l

Display a list of signal names and their corresponding numbers. The list will resemble the

following:

 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP

 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1

11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM

16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP

21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ

26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR

https://www.computerhope.com/jargon/f/function.htm
https://www.computerhope.com/jargon/s/shell.htm
https://www.computerhope.com/jargon/h/hardware.htm
https://www.computerhope.com/unix/signals.htm
https://www.computerhope.com/jargon/n/null.htm
https://www.computerhope.com/jargon/s/string.htm
https://www.computerhope.com/jargon/a/argument.htm

31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3

38) SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8

43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13

48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12

53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7

58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2

63) SIGRTMAX-1 64) SIGRTMAX

trap

Display a list of the currently-set signal traps.

trap 'rm -f /tmp/xyz$$; exit' ERR EXIT

stty command is used to manipulate the terminal settings. You can view and modify the terminal

settings using this command as explained below.

1. Display All Settings

-a option displays all the stty settings in a user friendly readable format as shown below.

stty -a

speed 38400 baud; rows 59; columns 208; line = 0;

intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = ; eol2 = ; swtch

= ; start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R; werase = ^W; lnext = ^V;

flush = ^O; min = 1; time = 0;

-parenb -parodd cs8 -hupcl -cstopb cread -clocal -crtscts -cdtrdsr

-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -

ixoff -iuclc -ixany -imaxbel -iutf8

opost -olcuc -ocrnl onlcr -onocr -onlret -ofill -ofdel nl0 cr0 tab0 bs0 vt0

ff0

isig icanon iexten echo echoe echok -echonl -noflsh -xcase -tostop -echoprt

echoctl echoke

You can also speciay -all, which is same as -a.

stty --all

2. Display All Settings (in Stty format)

The following will display all the settings in a format that is readable by stty. Please note that

this is not in readble format. You’ll typically use this if you want to transfers the settings

between systems.

stty -g

500:5:bf:8a3b:3:1c:7f:15:4:0:1:0:11:13:1a:0:12:f:17:16:0:0:0:0:0:0:0:0:0:0:0:

0:0:0:0:0

You can also use –save option, which is same as -g

stty --save

500:5:bf:8a3b:3:1c:7f:15:4:0:1:0:11:13:1a:0:12:f:17:16:0:0:0:0:0:0:0:0:0:0:0:

0:0:0:0:0

3. Specify Device

You can specify a device file as an argument to stty command. In that case, it will use the device

that you’ve specified instead of using the standard input.

stty -F /dev/pts/0

speed 38400 baud; line = 0;

-brkint -imaxbel

4. Set a Stty Value

The following example sets a stty value istrip.

stty istrip

As you see below, istrip is set

stty -a | grep istrip

-ignbrk -brkint -ignpar -parmrk -inpck istrip -inlcr -igncr icrnl ixon -ixoff

5. Negate a Stty Value

To negate a stty value, you need to specify a – in front of the value. The following example

negates the stty value istrip.

stty -istrip

As you see below, istrip is negated. i.e there is a – in front of the istrip.

stty -a | grep istrip

-ignbrk -brkint -ignpar -parmrk -inpck -istrip -inlcr -igncr icrnl ixon -

ixoff

Kill command in UNIX and Linux is normally used to kill a suspended or hanged process or process
group. Though kill is mainly associated with kill operation its mere a signal transporter and can send
specified signal to specified process in UNIX or UNIX like systems e.g. Linux, Solaris or FreeBSD. Like

in windows when we see a particular process hung the system we go to task manager find the process
and kill it, similarly in UNIX and Linux we first find the process ID (PID) of offending process and then

kill it. Though we have killAll command also which doesn't require PID instead it can kill the process
with just process name. Kill commands is often a wrapper around kill () system call but some Linux
systems also has built-in kill in place. In this article we will see some examples of kill command in
UNIX and how we can use kill command to kill the locked process.

Read more: https://javarevisited.blogspot.com/2011/12/kill-command-unix-linux-

example.html#ixzz5SrVE1Mlj
1) Kill command to forcefully kill a process in UNIX
kill -9 is used to forcefully terminate a process in Unix. Here is syntax of kill command in UNIX.

https://javarevisited.blogspot.com/2011/12/kill-command-unix-linux-example.html#ixzz5SrVE1Mlj
https://javarevisited.blogspot.com/2011/12/kill-command-unix-linux-example.html#ixzz5SrVE1Mlj

Read more: https://javarevisited.blogspot.com/2011/12/kill-command-unix-linux-

example.html#ixzz5SrVNNbnI
ps -ef| grep process_identifier // will give you PID

kill -9 PID

2) Unix kills command to kill multiple processes

With kill command in UNIX you can specify multiple PID at same time and all process will be signaled

or if signal is KILL they get killed like below kill command in UNIX

Syntax of kill in UNIX for killing multiple processes:

kill -9 pid1 pid 2

Here is an example of killing multiple processes in UNIX:

trader@asia:/ ps -ef

UID PID PPID TTY STIME COMMAND

trader 5736 5332 1 Nov 14 /usr/bin/bash

trader 5604 5552 0 Nov 16 /usr/bin/bash

trader 3508 4872 2 Nov 17 /usr/bin/bash

trader 6532 5604 0 17:43:19 /usr/bin/man

trader 6352 3420 0 17:43:22 /usr/bin/sh

trader 7432 6352 0 17:43:22 /usr/bin/less

trader 5348 3508 2 17:52:59 /usr/bin/ps

trader@asia:/ kill -9 3420 6352

trader@asia:/ ps -ef

https://javarevisited.blogspot.com/2011/12/kill-command-unix-linux-example.html#ixzz5SrVNNbnI
https://javarevisited.blogspot.com/2011/12/kill-command-unix-linux-example.html#ixzz5SrVNNbnI

UID PID PPID TTY STIME COMMAND

trader 5736 5332 1 Nov 14 /usr/bin/bash

trader 5604 5552 0 Nov 16 /usr/bin/bash

trader 3508 4872 2 Nov 17 /usr/bin/bash

trader 5040 3508 2 17:53:38 /usr/bin/ps

3) Kill command in UNIX to find Signal name

Kill command can also show you name of Signal if you rung it with option "-l". For example "9" is

KILL signal while "3" is QUIT signal.

trader@asia:/ kill -l 3

QUIT

trader@asia:/ kill -l 9

KILL

4) Printing all signals supported by kill in UNIX

You can use kill -l to list down all signals supported by kill command in UNIX as shown in below

example:

trader:~ kill -l

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP

6) SIGABRT 7) SIGEMT 8) SIGFPE 9) SIGKILL 10) SIGBUS

11) SIGSEGV 12) SIGSYS 13) SIGPIPE

5) Sending signals using -s option of kill command in UNIX.

Instead of specifying number you can specify name of signal you are sending to other process with kill

command option "-s". Here is an example of using Kill command in UNIX with signal code.

trader:~ ps -ef

UID PID PPID TTY STIME COMMAND

trader 5736 5332 1 Nov 14 /usr/bin/bash

trader 3508 1 2 Nov 17 /usr/bin/bash

trader 7528 2352 0 18:00:30 /usr/bin/bash

trader 4424 7528 0 18:05:11 /usr/bin/less

trader 168 7528 0 18:05:15 /usr/bin/ps

[1]+ Stopped less -r a

trader:~ kill -s KILL 4424

trader:~ ps -ef

UID PID PPID TTY STIME COMMAND

trader 5736 5332 1 Nov 14 /usr/bin/bash

trader 3508 1 2 Nov 17 /usr/bin/bash

trader 7528 2352 0 18:00:30 /usr/bin/bash

trader 5044 7528 0 18:05:32 /usr/bin/ps

[1]+ Killed less -r a

Important point about kill command in UNIX and Linux
To summarize discussion and examples of UNIX kill command, I have outlined some of the

important points and things to remember related to kill command in UNIX and Linux. You can quickly

refer this point whenever you have some doubt over kill in UNIX.

1) Kill command in UNIX can send signals to any other process in UNIX or Linux.In order to work with

those signals corresponding process should understand those signals.

2) You can get full list of signals supported by kill command in unix is by simply doing "man kill" or

simply by executing command kill -l.

3) Bash has a built-in kill routine. So you can check that by typing /bin/kill –version

Read more: https://javarevisited.blogspot.com/2011/12/kill-command-unix-linux-

example.html#ixzz5SrVU8jL3

Unix job control command list

The following table lists the basic Unix job control commands:

Command Explanation Example

& Run the command in the background % long_cmd &

Ctrl-z Stop the foreground process [Ctrl-z] Stopped

jobs List background processes
% jobs [1] - Stopped vi [2] -

big_job &

%n Refers to the background number n % fg %1

%?str Refers to the background job containing
str

% fg %?ls

bg Restart a stopped background process % bg [2] big_job &

fg Bring a background process to the

foreground
% fg %1

kill Kill a process % kill %2

~ Ctrl-z Suspend an rlogin or ssh session host2>~[Ctrl-z] Stopped host1>

~~ Ctrl-z Suspend a second level rlogin or ssh

session
host3>~~[Ctrl-z] Stopped host2>

https://javarevisited.blogspot.com/2011/12/kill-command-unix-linux-example.html#ixzz5SrVU8jL3
https://javarevisited.blogspot.com/2011/12/kill-command-unix-linux-example.html#ixzz5SrVU8jL3
https://kb.iu.edu/d/agat
https://kb.iu.edu/d/aelc

What is a Process?

An instance of a program is called a Process. In simple terms, any command that you give to

your Linux machine starts a new process.

Having multiple processes for the same program is possible.

Types of Processes:

• Foreground Processes: They run on the screen and need input from the user. For example

Office Programs

• Background Processes: They run in the background and usually do not need user input.

For example Antivirus.

Please be patient. The Video will load in some time. If you still face issue viewing video click

here

Running a Foreground Process

https://www.guru99.com/faq.html#1
https://cdn.guru99.com/images/whatisprocessid.jpg

To start a foreground process, you can either run it from the dashboard, or you can run it from

the terminal.

When using the Terminal, you will have to wait, until the foreground process runs.

Running a Background process

If you start a foreground program/process from the terminal, then you cannot work on the

terminal, till the program is up and running.

Particular, data-intensive tasks take lots of processing power and may even take hours to

complete. You do not want your terminal to be held up for such a long time.

To avoid such a situation, you can run the program and send it to the background so that terminal

remains available to you. Let's learn how to do this -

Fg

You can use the command "fg" to continue a program which was stopped and bring it to the

foreground.

https://cdn.guru99.com/images/foreground.png
https://cdn.guru99.com/images/bg.jpg

The simple syntax for this utility is:

fg jobname

Example

1. Launch 'banshee' music player

2. Stop it with the 'ctrl +z' command

3. Continue it with the 'fg' utility.

Let's look at other important commands to manage processes -

Top

This utility tells the user about all the running processes on the Linux machine.

Press 'q' on the keyboard to move out of the process display.

The terminology follows:

https://cdn.guru99.com/images/fg.png
https://cdn.guru99.com/images/top.png

Field Description Example 1 Example 2

PID The process ID of each task 1525 961

User The username of task owner Home Root

PR Priority Can be 20(highest) or -20(lowest) 20 20

NI The nice value of a task 0 0

VIRT Virtual memory used (kb) 1775 75972

RES Physical memory used (kb) 100 51

SHR Shared memory used (kb) 28 7952

S

Status

There are five types:

 'D' = uninterruptible sleep

 'R' = running

 'S' = sleeping

 'T' = traced or stopped

 'Z' = zombie

S R

%CPU % of CPU time 1.7 1.0

%MEM Physical memory used 10 5.1

TIME+ Total CPU time 5:05.34 2:23.42

Command Command name Photoshop.exe Xorg

PS

This command stands for 'Process Status'. It is similar to the "Task Manager" that pop-ups in a

Windows Machine when we use Cntrl+Alt+Del. This command is similar to 'top' command but

the information displayed is different.

To check all the processes running under a user, use the command -

ps ux

You can also check the process status of a single process, use the syntax -

ps PID

Kill

This command terminates running processes on a Linux machine.

To use these utilities you need to know the PID (process id) of the process you want to kill

Syntax -

kill PID

To find the PID of a process simply type

pidof Process name

Let us try it with an example.

NICE

Linux can run a lot of processes at a time, which can slow down the speed of some high priority

processes and result in poor performance.

To avoid this, you can tell your machine to prioritize processes as per your requirements.

This priority is called Niceness in Linux, and it has a value between -20 to 19. The lower the

Niceness index, the higher would be a priority given to that task.

https://cdn.guru99.com/images/ps.png
https://cdn.guru99.com/images/ps_pid.jpg
https://cdn.guru99.com/images/kill.png

The default value of all the processes is 0.

To start a process with a niceness value other than the default value use the following syntax

nice -n 'Nice value' process name

If there is some process already running on the system, then you can 'Renice' its value using

syntax.

renice 'nice value' -p 'PID'

To change Niceness, you can use the 'top' command to determine the PID (process id) and its

Nice value. Later use the renice command to change the value.

Let us understand this by an example.

DF

This utility reports the free disk space(Hard Disk) on all the file systems.

If you want the above information in a readable format, then use the command

https://cdn.guru99.com/images/changing_niceness.png
https://cdn.guru99.com/images/renicing.png
https://cdn.guru99.com/images/df.png

'df -h'

Free

This command shows the free and used memory (RAM) on the Linux system.

You can use the arguments

free -m to display output in MB

free -g to display output in GB

Summary:

• Any running program or a command given to a Linux system is called a process

• A process could run in foreground or background

• The priority index of a process is called Nice in Linux. Its default value is 0, and it can

vary between 20 to -19

• The lower the Niceness index, the higher would be priority given to that task

Command Description

bg To send a process to the background

fg To run a stopped process in the foreground

top Details on all Active Processes

ps Give the status of processes running for a user

ps PID Gives the status of a particular process

pidof Gives the Process ID (PID) of a process

kill PID Kills a process

nice Starts a process with a given priority

https://cdn.guru99.com/images/df-h.png
https://cdn.guru99.com/images/free.png

Command Description

renice Changes priority of an already running process

df Gives free hard disk space on your system

free Gives free RAM on your system

