
PYTHON PROGRAMMING UNIT-6

Page 6.1

Brief Tour of the Standard Library:

Python‟s standard library is very extensive, offering a wide range of facilities. The

library contains built-in modules that provide access to system functionality such as I/O that

would otherwise be inaccessible to the python programmers.

Operating system interface:

➢ The OS module in Python provides a way of using operating system dependent

functionality.

➢ The functions that the OS module provides allows you to interface with the underlying

operating system that Python is running on – be that Windows, Mac or Linux.

➢ You can find important information about your location or about the process.

OS functions

1. Executing a shell command

os.system()

2. Returns the current working directory.

os.getcwd()

3. Return the real group id of the current process.

os.getgid()

4. Return the current process‟s user id.

os.getuid()

5. Returns the real process ID of the current process.

os.getpid()

6. Set the current numeric umask and return the previous umask.

os.umask(mask)

7. Return information identifying the current operating system.

os.uname()

8. Change the root directory of the current process to path.

os.chroot(path)

9. Return a list of the entries in the directory given by path.

os.listdir(path)

10. Create a directory named path with numeric mode mode.

os.mkdir(path)

11. Remove (delete) the file path.

os.remove(path)

12. Remove directories recursively.

os.removedirs(path)

13. Rename the file or directory src to dst.

os.rename(src, dst)

String Pattern Matching:

The re module provides regular expression tools for advanced string processing. For

complex matching and manipulation, the regular expressions offer succinct, optimized

solutions.

re Functions:

1. match Function

re.match(pattern, string, flags=0)

PYTHON PROGRAMMING UNIT-6

Page 6.2

Here is the description of the parameters:

Parameter Description

Pattern This is the regular expression to be matched.

String
This is the string, which would be searched to match the pattern at
the beginning of string.

Flags
You can specify different flags using bitwise OR (|). These are

modifiers, which are listed in the table below.

The re.match function returns a match object on success, None on failure. We

usegroup(num) or groups() function of match object to get matched expression.

Match Object

Methods
Description

group(num=0) This method returns entire match (or specific subgroup num)

groups()
This method returns all matching subgroups in a tuple (empty if there

weren't any)

 import re

line = "Cats are smarter than dogs"

matchObj = re.match(r'(.*) are (.*?) .*', line, re.M|re.I)

if matchObj:

print "matchObj.group() : ", matchObj.group()
print "matchObj.group(1) : ", matchObj.group(1)

print "matchObj.group(2) : ", matchObj.group(2)
else:

print "No match!!"

Output:

matchObj.group() : Cats are smarter than dogs
matchObj.group(1) : Cats

matchObj.group(2) : smarter

2. search Function

This function searches for first occurrence of RE pattern within string with optional flags.

Here is the syntax for this function:

re.search(pattern, string, flags=0)

Here is the description of the parameters:

Parameter Description

pattern This is the regular expression to be matched.

string
This is the string, which would be searched to match the pattern anywhere

in the string.

flags
You can specify different flags using bitwise OR (|). These are modifiers,

which are listed in the table below.

PYTHON PROGRAMMING UNIT-6

Page 6.3

import re

phone = "2004-959-559 # This is Phone Number"

Delete Python-style comments

num = re.sub(r'#.*$', "", phone)

print "Phone Num : ", num

Remove anything other than digits

num = re.sub(r'\D', "", phone)

print "Phone Num : ", num

The re.search function returns a match object on success, none on failure. We use

group(num) or groups() function of match object to get matched expression.

Match Object

Methods
Description

group(num=0) This method returns entire match (or specific subgroup num)

groups()
This method returns all matching subgroups in a tuple (empty if there

weren't any)

3. sub function:

One of the most important re methods that use regular expressions is sub.

re.sub(pattern, repl, string, max=0)

This method replaces all occurrences of the RE pattern in string with repl, substituting all

occurrences unless max provided. This method returns modified string.

Example:

Output: Phone Num : 2004-959-559

Phone Num : 2004959559

Regular Expression Patterns

Except for control characters, (+ ? . * ^ $ () [] { } | \), all characters match
themselves. You can escape a control character by preceding it with a backslash.

Following table lists the regular expression syntax that is available in Python −

Pattern Description

^ Matches beginning of line.

$ Matches end of line.

.
Matches any single character except newline. Using m option allows it to

match newline as well.

[...] Matches any single character in brackets.

[^...] Matches any single character not in brackets

re* Matches 0 or more occurrences of preceding expression.

re+ Matches 1 or more occurrence of preceding expression.

re? Matches 0 or 1 occurrence of preceding expression.

re{ n} Matches exactly n number of occurrences of preceding expression.

re{ n,} Matches n or more occurrences of preceding expression.

PYTHON PROGRAMMING UNIT-6

Page 6.4

re{ n, m} Matches at least n and at most m occurrences of preceding expression.

a| b Matches either a or b.

(?#...) Comment.

(?= re) Specifies position using a pattern. Doesn't have a range.

(?! re) Specifies position using pattern negation. Doesn't have a range.

(?> re) Matches independent pattern without backtracking.

\w Matches word characters.

\W Matches nonword characters.

\s Matches whitespace. Equivalent to [\t\n\r\f].

\S Matches nonwhitespace.

\d Matches digits. Equivalent to [0-9].

\D Matches nondigits.

\A Matches beginning of string.

\Z Matches end of string. If a newline exists, it matches just before newline.

\z Matches end of string.

\G Matches point where last match finished.

\B Matches nonword boundaries.

\n, \t, etc. Matches newlines, carriage returns, tabs, etc.

\1...\9 Matches nth grouped subexpression.

\10
Matches nth grouped subexpression if it matched already. Otherwise refers

to the octal representation of a character code.

Mathematical Functions:

The math module is a standard module in Python and is always available. To use

mathematical functions under this module, you have to import the module using import

math.

Function Description

ceil(x) Returns the smallest integer greater than or equal to x.

copysign(x, y) Returns x with the sign of y

fabs(x) Returns the absolute value of x

factorial(x) Returns the factorial of x

floor(x) Returns the largest integer less than or equal to x

fmod(x, y) Returns the remainder when x is divided by y

frexp(x) Returns the mantissa and exponent of x as the pair (m, e)

fsum(iterable) Returns an accurate floating point sum of values in the iterable

isfinite(x) Returns True if x is neither an infinity nor a NaN (Not a Number)

ldexp(x, i) Returns x * (2**i)

modf(x) Returns the fractional and integer parts of x

PYTHON PROGRAMMING UNIT-6

Page 6.5

trunc(x) Returns the truncated integer value of x

exp(x) Returns e**x

expm1(x) Returns e**x - 1

log(x[, base]) Returns the logarithm of x to the base (defaults to e)

log10(x) Returns the base-10 logarithm of x

pow(x, y) Returns x raised to the power y

sqrt(x) Returns the square root of x

atan2(y, x) Returns atan(y / x)

cos(x) Returns the cosine of x

hypot(x, y) Returns the Euclidean norm, sqrt(x*x + y*y)

sin(x) Returns the sine of x

tan(x) Returns the tangent of x

degrees(x) Converts angle x from radians to degrees

radians(x) Converts angle x from degrees to radians

acosh(x) Returns the inverse hyperbolic cosine of x

asinh(x) Returns the inverse hyperbolic sine of x

atanh(x) Returns the inverse hyperbolic tangent of x

cosh(x) Returns the hyperbolic cosine of x

sinh(x) Returns the hyperbolic cosine of x

tanh(x) Returns the hyperbolic tangent of x

erf(x) Returns the error function at x

erfc(x) Returns the complementary error function at x

gamma(x) Returns the Gamma function at x

lgamma(x)
Returns the natural logarithm of the absolute value of the Gamma

function at x

pi
Mathematical constant, the ratio of circumference of a circle to it's

diameter (3.14159...)

e mathematical constant e (2.71828...)

Internet Access:

➢ Simple Mail Transfer Protocol (SMTP) is a protocol, which handles sending e-mail and

routing e-mail between mail servers.

➢ Python provides smtplib module, which defines an SMTP client session object that can

be used to send mail to any Internet machine with an SMTP or ESMTP listener daemon.

➢ Here is a simple syntax to create one SMTP object, which can later be used to send an e-

mail:

PYTHON PROGRAMMING UNIT-6

Page 6.6

import smtplib

smtpObj = smtplib.SMTP([host [, port [, local_hostname]]])

➢ Here is the detail of the parameters:

➢ host: This is the host running your SMTP server. You can specify IP address of the

host or a domain name like tutorialspoint.com. This is optional argument.

➢ port: If you are providing host argument, then you need to specify a port, where

SMTP server is listening. Usually this port would be 25.

➢ local_hostname: If your SMTP server is running on your local machine, then you

can specify just localhost as of this option.

An SMTP object has an instance method called sendmail, which is typically used to do the

work of mailing a message. It takes three parameters:

➢ The sender - A string with the address of the sender.

➢ The receivers - A list of strings, one for each recipient.

➢ The message - A message as a string formatted as specified in the various RFCs.

Example: Write a program to send email to any mail address.

import smtplib

from email.mime.text import MIMEText

body="The message you want to send........"

msg=MIMEText(body)

fromaddr="fromaddress@gmail.com"

toaddr="toaddress@gmail.com"

msg['From']=fromaddr

msg['To']=toaddr

msg['Subject']="Subject of mail"

server=smtplib.SMTP('smtp.gmail.com',587)

server.starttls()

server.login(fromaddr,"fromAddressPassword")

server.sendmail(fromaddr,toaddr,msg.as_string())

print "Mail Sent......."

server.quit()

Output:

Mail Sent..........

Note: To send a mail to others you have to change “Allow less secure apps: ON” in from

address mail. Because Google has providing security for vulnerable attacks

Dates and Times:

A Python program can handle date and time in several ways. Converting between date

formats is a common chore for computers. Python's time and calendar modules help track

dates and times.

The time Module

There is a popular time module available in Python which provides functions for

working with times and for converting between representations. Here is the list of all

available methods:

mailto:fromaddress@gmail.com
mailto:toaddress@gmail.com

PYTHON PROGRAMMING UNIT-6

Page 6.7

Sr.
No.

Function with Description

1
time.ctime([secs])
Like asctime(localtime(secs)) and without arguments is like asctime()

2

time.localtime([secs])

Accepts an instant expressed in seconds since the epoch and returns a time-tuple t with
the local time (t.tm_isdst is 0 or 1, depending on whether DST applies to instant secs by
local rules).

3
time.sleep(secs)
Suspends the calling thread for secs seconds.

4
time.time()
Returns the current time instant, a floating-point number of seconds since the epoch.

5

time.clock()

The method returns the current processor time as a floating point numberexpressed in

seconds on Unix.

6

time.asctime([tupletime])

Accepts a time-tuple and returns a readable 24-character string such as 'Tue Dec

11 18:07:14 2008'.

Example:

Output:

import time

print "time: ",time.time()

print "ctime: ",time.ctime()

time.sleep(5)

print "ctime: ",time.ctime()

print "localtime: ",time.localtime()

print "asctime: ",time.asctime(time.localtime(time.time()))

print "clock: ",time.clock()

time: 1506843198.01

ctime: Sun Oct 01 13:03:18 2017

ctime: Sun Oct 01 13:03:23 2017

localtime: time.struct_time(tm_year=2017, tm_mon=10, tm_mday=1, tm_hour=13,

tm_min=3, tm_sec=23, tm_wday=6, tm_yday=274, tm_isdst=0)

asctime: Sun Oct 01 13:03:23 2017

clock: 1.14090912202e-06

The calendar Module:

➢ The calendar module supplies calendar-related functions, including functions to print a

text calendar for a given month or year.

➢ By default, calendar takes Monday as the first day of the week and Sunday as the last one.

To change this, call calendar.setfirstweekday() function.
Sr. No. Function with Description

1

calendar.calendar(year,w=2,l=1,c=6)

Returns a multiline string with a calendar for year formatted into three columns

separated by c spaces. w is the width in characters of each date; each line has length
21*w+18+2*c. l is the number of lines for each week.

2
calendar.isleap(year)

Returns True if year is a leap year; otherwise, False.

3

calendar.setfirstweekday(weekday)

Sets the first day of each week to weekday code weekday. Weekday codes are 0

(Monday) to 6 (Sunday).

PYTHON PROGRAMMING UNIT-6

Page 6.8

4
calendar.leapdays(y1,y2)

Returns the total number of leap days in the years within range(y1,y2).

5

calendar.month(year,month,w=2,l=1)

Returns a multiline string with a calendar for month of year, one line per week plus two
header lines. w is the width in characters of each date; each line has length 7*w+6. l is
the number of lines for each week.

Example:

Output:

import calendar

print "Here it is the calendar:"

print calendar.month(2017,10)

calendar.setfirstweekday(6)

print calendar.month(2017,10)

print "Is 2017 is leap year?",calendar.isleap(2017)

print "No.of Leap days",calendar.leapdays(2000,2013)

print "1990-November-12 is",calendar.weekday(1990,11,12)

Here it is the calendar:

October 2017

Mo Tu We Th Fr Sa Su

1
2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29
30 31

October 2017

Su Mo Tu We Th Fr Sa

1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

Is 2017 is leap year? False

No.of Leap days 4

1990-November-12 is 0

Data Compression

Common data archiving and compression formats are directly supported by the

modules including: zlib, gzip, bz2, lzma, zipfile and tarfile.

Example: write a program to zip the three files into one single “.zip” file

import zipfile

FileNames=['README.txt','NEWS.txt','LICENSE.txt']

with zipfile.ZipFile('reportDir1.zip', 'w') as myzip:

for f in FileNames:

myzip.write(f)

PYTHON PROGRAMMING UNIT-6

Page 6.9

Multithreading

Running several threads is similar to running several different programs concurrently, but

with the following benefits:

➢ Multiple threads within a process share the same data space with the main thread and

can therefore share information or communicate with each other more easily than if

they were separate processes.

➢ Threads sometimes called light-weight processes and they do not require much
memory overhead; they care cheaper than processes.

A thread has a beginning, an execution sequence, and a conclusion. It has an instruction

pointer that keeps track of where within its context it is currently running.

➢ It can be pre-empted (interrupted).

➢ It can temporarily be put on hold (also known as sleeping) while other threads are

running - this is called yielding.

Starting a New Thread

➢ To spawn another thread, you need to call following method available in thread module:

thread.start_new_thread (function, args[, kwargs])

➢ This method call enables a fast and efficient way to create new threads in both Linux and

Windows.

➢ The method call returns immediately and the child thread starts and calls function with

the passed list of agrs. When function returns, the thread terminates.

➢ Here, args is a tuple of arguments; use an empty tuple to call function without passing

any arguments. kwargs is an optional dictionary of keyword arguments.

Example:

import thread

import time

def print_time(tname,delay):

count=0

while count<5:

count+=1

time.sleep(delay)

print tname,time.ctime(time.time())

Output:

thread.start_new_thread(print_time, ("Thread-1", 2))

thread.start_new_thread(print_time, ("Thread-2", 5))

Thread-1 Sun Oct 01 22:15:08 2017

Thread-1 Sun Oct 01 22:15:10 2017

Thread-2 Sun Oct 01 22:15:11 2017

Thread-1 Sun Oct 01 22:15:12 2017

Thread-1 Sun Oct 01 22:15:14 2017

Thread-1Thread-2 Sun Oct 01 22:15:16 2017Sun Oct 01 22:15:16 2017

Thread-2 Sun Oct 01 22:15:21 2017

Thread-2 Sun Oct 01 22:15:26 2017

Thread-2 Sun Oct 01 22:15:31 2017

PYTHON PROGRAMMING UNIT-6

Page 6.10

The Threading Module:

The threading module exposes all the methods of the thread module and provides some

additional methods:

• threading.activeCount(): Returns the number of thread objects that are active.

• threading.currentThread(): Returns the number of thread objects in the caller's thread

control.

• threading.enumerate(): Returns a list of all thread objects that are currently active.

In addition to the methods, the threading module has the Thread class that implements

threading. The methods provided by the Thread class are as follows:

• run(): The run() method is the entry point for a thread.

• start(): The start() method starts a thread by calling the run method.

• join([time]): The join() waits for threads to terminate.

• isAlive(): The isAlive() method checks whether a thread is still executing.

• getName(): The getName() method returns the name of a thread.

• setName(): The setName() method sets the name of a thread.

Creating Thread Using Threading Module:

To implement a new thread using the threading module, you have to do the following:

• Define a new subclass of the Thread class.

• Override the init_(self [,args]) method to add additional arguments.

• Then, override the run(self [,args]) method to implement what the thread should do
when started.

Once you have created the new Thread subclass, you can create an instance of it and then

start a new thread by invoking the start(), which in turn calls run() method.

Example:

import threading

import time

exitFlag = 0

class myThread (threading.Thread):

def init (self, threadID, name, counter):

threading.Thread. init (self)

self.threadID = threadID

self.name = name

self.counter = counter

def run(self):

print "Starting " + self.name

print_time(self.name, self.counter, 5)

print "Exiting " + self.name

def print_time(threadName, delay, counter):

while counter:

if exitFlag:

thread.exit()

time.sleep(delay)

print threadName, time.ctime(time.time())

PYTHON PROGRAMMING UNIT-6

Page 6.11

counter -= 1

Create new threads

thread1 = myThread(1, "Thread-1", 1)

thread2 = myThread(2, "Thread-2", 2)

Output:

Start new Threads

thread1.start()

thread2.start()

print "Exiting Main Thread"

Starting Thread-1Starting Thread-2Exiting Main Thread

Thread-1 Sun Oct 01 22:26:17 2017

Thread-1 Sun Oct 01 22:26:18 2017

Thread-2 Sun Oct 01 22:26:18 2017

Thread-1 Sun Oct 01 22:26:19 2017

Thread-1Thread-2 Sun Oct 01 22:26:20 2017Sun Oct 01 22:26:20 2017

Thread-1 Sun Oct 01 22:26:21 2017

Exiting Thread-1

Thread-2 Sun Oct 01 22:26:22 2017

Thread-2 Sun Oct 01 22:26:24 2017

Thread-2 Sun Oct 01 22:26:26 2017

Exiting Thread-2

Synchronizing Threads

• The threading module provided with Python includes a simple-to-implement locking

mechanism that allows you to synchronize threads. A new lock is created by calling the

Lock() method, which returns the new lock.

• The acquire(blocking) method of the new lock object is used to force threads to run

synchronously. The optional blocking parameter enables you to control whether the

thread waits to acquire the lock.

• If blocking is set to 0, the thread returns immediately with a 0 value if the lock cannot be

acquired and with a 1 if the lock was acquired. If blocking is set to 1, the thread blocks

and waits for the lock to be released.

• The release() method of the new lock object is used to release the lock when it is no

longer required.

Example:

import threading

import time

exitFlag = 0

class myThread (threading.Thread):

def init (self, threadID, name, counter):

threading.Thread. init (self)

self.threadID = threadID

self.name = name

self.counter = counter

PYTHON PROGRAMMING UNIT-6

Page 6.12

def run(self):

print "Starting " + self.name

threadLock.acquire()

print_time(self.name, self.counter, 5)

threadLock.release()

print "Exiting " + self.name

def print_time(threadName, delay, counter):

while counter:

if exitFlag:

thread.exit()

time.sleep(delay)

print threadName, time.ctime(time.time())

counter -= 1

threadLock = threading.Lock()

threads = []

Create new threads

thread1 = myThread(1, "Thread-1", 1)

thread2 = myThread(2, "Thread-2", 2)

Start new Threads

thread1.start()

thread2.start()

Output:

threads.append(thread1)

threads.append(thread2)

wait for all threads to complete

for t in threads:

 oin()

print "Exiting Main Thread"

Starting Thread-1Starting Thread-2

Thread-1 Sun Oct 01 22:32:54 2017

Thread-1 Sun Oct 01 22:32:55 2017

Thread-1 Sun Oct 01 22:32:56 2017

Thread-1 Sun Oct 01 22:32:57 2017

Thread-1 Sun Oct 01 22:32:58 2017

Exiting Thread-1

Thread-2 Sun Oct 01 22:33:00 2017

Thread-2 Sun Oct 01 22:33:02 2017

Thread-2 Sun Oct 01 22:33:04 2017

Thread-2 Sun Oct 01 22:33:06 2017

Thread-2 Sun Oct 01 22:33:08 2017

Exiting Thread-2

Exiting Main Thread

PYTHON PROGRAMMING UNIT-6

Page 6.13

GUI Programming

Python provides various options for developing graphical user interfaces (GUIs). Most

important are listed below:

• Tkinter: Tkinter is the Python interface to the Tk GUI toolkit shipped with Python..

• wxPython: This is an open-source Python interface for wxWindows

http://wxpython.org.

• JPython: JPython is a Python port for Java which gives Python scripts seamless access
to Java class libraries on the local machine http://www.jython.org.

There are many other interfaces available, which you can find them on the net.

Tkinter Programming

Tkinter is the standard GUI library for Python. Python when combined with Tkinter

provides a fast and easy way to create GUI applications. Tkinter provides a powerful object-

oriented interface to the Tk GUI toolkit.

Creating a GUI application using Tkinter is an easy task. All you need to do is

perform the following steps:
✓ Import the Tkinter module.

✓ Create the GUI application main window.

✓ Add one or more of the above-mentioned widgets to the GUI application.

✓ Enter the main event loop to take action against each event triggered by the user.

Example:

import Tkinter
top = Tkinter.Tk()

Code to add widgets will go here...

top.mainloop()

Tkinter Widgets

• Tkinter provides various controls, such as buttons, labels and text boxes used in a GUI

application. These controls are commonly called widgets.

• There are currently 15 types of widgets in Tkinter. We present these widgets as well as a

brief description in the following table:

Operator Description

Button The Button widget is used to display buttons in your application.

Canvas
The Canvas widget is used to draw shapes, such as lines, ovals,

polygons and rectangles, in your application.

Checkbutton
The Checkbutton widget is used to display a number of options as

checkboxes. The user can select multiple options at a time.

Entry
The Entry widget is used to display a single-line text field for accepting

values from a user.

Frame
The Frame widget is used as a container widget to organize other

widgets.

Label
The Label widget is used to provide a single-line caption for other

widgets. It can also contain images.

Listbox The Listbox widget is used to provide a list of options to a user.

Menubutton The Menubutton widget is used to display menus in your application.

Menu
The Menu widget is used to provide various commands to a user. These

commands are contained inside Menubutton.

http://wxpython.org/
http://www.jython.org/

PYTHON PROGRAMMING UNIT-6

Page 6.14

Message
The Message widget is used to display multiline text fields for

accepting values from a user.

Radiobutton

The Radiobutton widget is used to display a number of options as radio

buttons. The user can select only one option at a time. Scale The Scale

widget is used to provide a slider widget.

Scrollbar
The Scrollbar widget is used to add scrolling capability to various

widgets, such as list boxes.

Text The Text widget is used to display text in multiple lines.

Toplevel The Toplevel widget is used to provide a separate window container.

Spinbox
The Spinbox widget is a variant of the standard Tkinter Entry widget,

which can be used to select from a fixed number of values.

PanedWindow
A PanedWindow is a container widget that may contain any number of

panes, arranged horizontally or vertically.

LabelFrame
A labelframe is a simple container widget. Its primary purpose is to act

as a spacer or container for complex window layouts.

tkMessageBox This module is used to display message boxes in your applications.

Button:

The Button widget is used to add buttons in a Python application. These buttons can display

text or images that convey the purpose of the buttons. You can attach a function or a method

to a button which is called automatically when you click the button.

Example:

Output:

import Tkinter

import tkMessageBox

top = Tkinter.Tk()

def helloCallBack():

tkMessageBox.showinfo("Hello Python", "Hello World")

B = Tkinter.Button(top, text ="Hello", command = helloCallBack)

B.pack()

top.mainloop()

Entry

The Entry widget is used to accept single-line text strings from a user.

• If you want to display multiple lines of text that can be edited, then you should use the

Text widget.

• If you want to display one or more lines of text that cannot be modified by the user,

then you should use the Label widget.

PYTHON PROGRAMMING UNIT-6

Page 6.15

Example:

Output:

from Tkinter import *

top = Tk()

L1 = Label(top, text="User Name")

L1.pack(side = LEFT)

E1 = Entry(top, bd =5)

E1.pack(side = RIGHT)

top.mainloop()

Radiobutton

• This widget implements a multiple-choice button, which is a way to offer many possible

selections to the user and lets user choose only one of them.

• In order to implement this functionality, each group of radiobuttons must be associated to

the same variable and each one of the buttons must symbolize a single value. You can

use the Tab key to switch from one radionbutton to another.

Example:

Output:

from Tkinter import *

def sel():

selection = "You selected the option " + str(var.get())

label.config(text = selection)

root = Tk()

var = IntVar()

R1 = Radiobutton(root,text="Option 1",variable=var,value=1,command=sel)

R1.pack(anchor = W)

R2 = Radiobutton(root,text="Option 2",variable=var,value=2,command=sel)

R2.pack(anchor = W)

R3 = Radiobutton(root,text="Option 3",variable=var,value=3,command=sel)

R3.pack(anchor = W)

label = Label(root)

label.pack()

root.mainloop()

PYTHON PROGRAMMING UNIT-6

Page 6.16

Menu

• The goal of this widget is to allow us to create all kinds of menus that can be used by our

applications. The core functionality provides ways to create three menu types: pop-up,

toplevel and pull-down.

• It is also possible to use other extended widgets to implement new types of menus, such

as the OptionMenu widget, which implements a special type that generates a pop-up list

of items within a selection.

Example:

from Tkinter import *

def donothing():

filewin = Toplevel(root)

button = Button(filewin, text="Do nothing button")

button.pack()

root = Tk()

menubar = Menu(root)

filemenu = Menu(menubar, tearoff=0)

filemenu.add_command(label="New", command=donothing)

filemenu.add_command(label="Open", command=donothing)

filemenu.add_command(label="Save", command=donothing)

filemenu.add_command(label="Save as...", command=donothing)

filemenu.add_command(label="Close", command=donothing)

filemenu.add_separator()

filemenu.add_command(label="Exit", command=root.quit)

menubar.add_cascade(label="File", menu=filemenu)

editmenu = Menu(menubar, tearoff=0)

editmenu.add_command(label="Undo", command=donothing)

editmenu.add_separator()

editmenu.add_command(label="Cut", command=donothing)

editmenu.add_command(label="Copy", command=donothing)

editmenu.add_command(label="Paste", command=donothing)

editmenu.add_command(label="Delete", command=donothing)

editmenu.add_command(label="Select All", command=donothing)

menubar.add_cascade(label="Edit", menu=editmenu)

helpmenu = Menu(menubar, tearoff=0)

helpmenu.add_command(label="Help Index", command=donothing)

helpmenu.add_command(label="About...", command=donothing)

menubar.add_cascade(label="Help", menu=helpmenu)

root.config(menu=menubar)

root.mainloop()

PYTHON PROGRAMMING UNIT-6

Page 6.17

Output:

Example: Write a program for Tic-Tac-Toe Game

from Tkinter import *

def callback(r,c):

global player

if player=='X' and states[r][c]==0:

b[r][c].configure(text='x')

states[r][c]='X'

player='O'

if player=='O' and states[r][c]==0:

b[r][c].configure(text='O')

states[r][c]='O'

player='X'

root=Tk()

states=[[0,0,0],[0,0,0],[0,0,0]]

b=[[0,0,0],[0,0,0],[0,0,0]]

for i in range(3):

for j in range(3):

b[i][j]=Button(font=('verdana',56),width=3,bg='yellow',command=lambda

r=i,c=j:callback(r,c))

b[i][j].grid(row=i,column=j)

player='X'

root.mainloop()

PYTHON PROGRAMMING UNIT-6

Page 6.18

Example: Write a GUI for an Expression Calculator using tk

from Tkinter import *

from math import *

root=Tk()

root.title("Calculator")

root.geometry("210x200")

e=Entry(root,bd=8,width=30)

e.grid(row=0,column=1,columnspan=5)

def setText(txt):

l=len(e.get())

e.insert(l,txt)

def clear1():

txt=e.get()

e.delete(0,END)

e.insert(0,txt[:-1])

def clear():

e.delete(0,END)

def sqroot():

txt=sqrt(float(e.get()))

e.delete(0,END)

e.insert(0,txt)

def negation():

txt=e.get()

if txt[0]=="-":

e.delete(0,END)

e.insert(0,txt[1:])

elif txt[0]=="+":

e.delete(0,END)

e.insert(0,"-"+txt[1:])

else:

e.insert(0,"-")

def equals():

try:

s=e.get()

for i in range(0,len(s)):

if s[i]=="+" or s[i]=="-" or s[i]=="*" or s[i]=="/" or s[i]=="%":

expr=str(float(s[:i]))+s[i:]

break

elif s[i]==".":

expr=s

break

e.delete(0,END)

e.insert(0,eval(expr))

PYTHON PROGRAMMING UNIT-6

Page 6.19

except Exception:

e.delete(0,END)

e.insert(0,"INVALID EXPRESSION")

back1=Button(root,text="<--",command=lambda:clear1(),width=10)

back1.grid(row=1,column=1,columnspan=2)

sqr=Button(root,text=u'\u221A',command=lambda:sqroot(),width=4)

sqr.grid(row=1,column=5)

can=Button(root,text="C",command=lambda:clear(),width=4)

can.grid(row=1,column=3)

neg=Button(root,text="+/-",command=lambda:negation(),width=4)

neg.grid(row=1,column=4)

nine=Button(root,text="9",command=lambda:setText("9"),width=4)

nine.grid(row=2,column=1)

eight=Button(root,text="8",command=lambda:setText("8"),width=4)

eight.grid(row=2,column=2)

seven=Button(root,text="7",command=lambda:setText("7"),width=4)

seven.grid(row=2,column=3)

six=Button(root,text="6",command=lambda:setText("6"),width=4)

six.grid(row=3,column=1)

five=Button(root,text="5",command=lambda:setText("5"),width=4)

five.grid(row=3,column=2)

four=Button(root,text="4",command=lambda:setText("4"),width=4)

four.grid(row=3,column=3)

three=Button(root,text="3",command=lambda:setText("3"),width=4)

three.grid(row=4,column=1)

two=Button(root,text="2",command=lambda:setText("2"),width=4)

two.grid(row=4,column=2)

one=Button(root,text="1",command=lambda:setText("1"),width=4)

one.grid(row=4,column=3)

zero=Button(root,text="0",command=lambda:setText("0"),width=10)

zero.grid(row=5,column=1,columnspan=2)

PYTHON PROGRAMMING UNIT-6

Page 6.20

dot=Button(root,text=".",command=lambda:setText("."),width=4)

dot.grid(row=5,column=3)

div=Button(root,text="/",command=lambda:setText("/"),width=4)

div.grid(row=2,column=4)

mul=Button(root,text="*",command=lambda:setText("*"),width=4)

mul.grid(row=3,column=4)

minus=Button(root,text="-",command=lambda:setText("-"),width=4)

minus.grid(row=4,column=4)

plus=Button(root,text="+",command=lambda:setText("+"),width=4)

plus.grid(row=5,column=4)

mod=Button(root,text="%",command=lambda:setText("%"),width=4)

mod.grid(row=2,column=5)

byx=Button(root,text="1/x",command=lambda:setText("%"),width=4)

byx.grid(row=3,column=5)

equal=Button(root,text="=",command=lambda:equals(),width=4,height=3)

equal.grid(row=4,column=5,rowspan=2)

root.mainloop()

PYTHON PROGRAMMING UNIT-6

Page 6.21

Turtle Graphics

➢ Graphics is the discipline that underlies the representation and display of geometric shapes in two

and three-dimensional space.

➢ A Turtle graphics library provides an enjoyable and easy way to draw shapes in a window and

gives you an opportunity to run several functions with an object.

➢ Turtle graphics were originally developed as part of the children‟s programming language called

Logo, created by Seymour Papert and his colleagues at MIT in the late 1960s.

➢ Imagine a turtle crawling on a piece of paper with a pen tied to its tail.

➢ Commands direct the turtle as it moves across the paper and tells it to lift or lower its tail, turn

some number of degrees left or right and move a specified distance.

➢ Whenever the tail is down, the pen drags along the paper, leaving a trail.

➢ In the context of computer, of course, the sheet of paper is a window on a display screen and the

turtle is an invisible pen point.

➢ At any given moment of time, the turtle coordinates. The position is specified with (x, y)

coordinates.

➢ The coordinate system for turtle graphics is the standard Cartesian system, with the origin (0, 0) at

the centre of a window. The turtle‟s initial position is the origin, which is also called the home.

Turtle Operations:

Turtle is an object; its operations are also defined as methods. In the below table the list of

methods of Turtle class.

Turtle Methods WHAT IT DOES

home Moves the turtle to the origin – coordinates (0, 0) – and set its
heading to its start-orientation.

fd | forward Moves the turtle forward for a specified distance, in the direction
where the turtle is headed.

bk | backward Moves the turtle backward for a specified distance, in the

direction where the turtle is headed. Do not change the turtle‟s

heading.

right | rt Turns the turtle right by angle units. Units are by default degrees,
but can be set via the degrees () and radians () functions.

left | lt Turns the turtle left by angle units. Units are by default degrees,
but can be set via the degrees () and radians () functions.

setx Set the turtle‟s first coordinate to x, leaves the second coordinate
unchanged.

sety Set the turtle‟s second coordinate to y, leaves the first coordinate
unchanged.

goto Moves the turtle to an absolute position. If the pen is down,
draws a line. Do not change the turtle‟s orientation.

degrees Set the angle measurement unit to radians. Equivalent to degrees
(2 * math.pi)

radians Set the angle measurement unit, i.e., set the number of degrees
for a full circle. The default value is 3600.

seth Sets the orientation of the turtle to to_angle.

Turtle Object:

t=Turtle() creates a new turtle object and open sits window. The window‟s drawing area is

200 pixels wide and 200 pixels high.

t=Turtle(width, height) creates a new turtle object and open sits window. The window‟s

drawing area has given width and height.

PYTHON PROGRAMMING UNIT-6

Page 6.22

Example-1: Write a program to draw square.

import turtle

turtle.bgcolor('orange')

turtle.pensize(8)

turtle.forward(100)

turtle.left(90)

turtle.forward(100)

turtle.left(90)

turtle.forward(100)

turtle.left(90)

turtle.forward(100)

turtle.left(90)

Example-2:

import turtle

for i in range(20,500,5):

turtle.forward(i)

turtle.left(90)

Example-3:

import turtle

c=["red","green","blue"]

i=0

turtle.pensize(5)

for angle in range(0,360,30):

if i>2:

i=0

turtle.color(c[i])

turtle.seth(angle)

turtle.circle(50)

i=i+1

Example-4:

import turtle

for i in range(36):

for j in range(4):

turtle.forward(70)

turtle.left(90)

turtle.left(10)

PYTHON PROGRAMMING UNIT-6

Page 6.23

Testing: Why testing is required?

Software testing is necessary because we all make mistakes. Some of those mistakes

are unimportant, but some of them are expensive or dangerous. We need to check everything

and anything we produce because things can always go wrong-humans make mistakes all the

time.

Software testing is very important because of the following reasons:

1. Software testing is really required to point out the defects and errors that were made

during the development phases.

2. It‟s essential since it makes sure of the customer‟s reliability and their satisfaction in

the application.

3. It is very important to ensure the quality of the product. Quality product delivered to the

customers helps in gaining their confidence.

4. Testing is necessary in order to provide the facilities to the customers like the delivery

of high quality product or software application which requires lower maintenance cost

and hence results into more accurate, consistent and reliable results.

5. Testing is required for an effective performance of software application or product.

6. It‟s important to ensure that the application should not result into any failures because it

can be very expensive in the future or in the later stages of the development.

7. It‟s required to stay in the business.

Basic concepts of testing:

Basics Summary

Software

Quality

Learn how software quality is defined and what it means. Software

quality is the degree of conformance to explicit or implicit

requirements and expectations.

Dimensions of

Quality

Learn the dimensions of quality. Software quality has dimensions

such as Accessibility, Compatibility, Concurrency, Efficiency …

Software

Quality

Assurance

Learn what it means and what its relationship is with Software

Quality Control. Software Quality Assurance is a set of activities

for ensuring quality in software engineering processes.

Software

Quality Control

Learn what it means and what its relationship is with Software

Quality Assurance. Software Quality Control is a set of activities

for ensuring quality in software products.

SQA and SQC

Differences

Learn the differences between Software Quality Assurance and

Software Quality Control. SQA is process-focused and prevention-

oriented but SQC is product-focused and detection-oriented.

Software

Development

Life Cycle

Learn what SDLC means and what activities a typical SDLC model

comprises of. Software Development Life Cycle defines the

steps/stages/phases in the building of software.

PYTHON PROGRAMMING UNIT-6

Page 6.24

Software

Testing Life

Cycle

Learn what STLC means and what activities a typical STLC model

comprises of. Software Testing Life Cycle (STLC) defines the

steps/ stages/ phases in testing of software.

Definition of

Test

Learn the various definitions of the term „test‟. Merriam Webster

defines Test as “a critical examination, observation, or evaluation”.

Software

Testing Myths

Just as every field has its myths, so does the field of Software

Testing. We explain some of the myths along with their related

facts.

Unit testing in Python:

The first unit testing framework, JUnit was invented by Kent Back and Erich Gamma

in 1997, for testing Java programs. It was so successful that the framework has been

implemented again in every major programming language. Here we discuss the python

version, unit test.

Unit testing is nothing but testing individual „units‟, or functions of a program. It does

not have a lot to say about system integration, whether the various parts of a program fit

together. That‟s a separate issue.

The goals of unit testing framework are:

• To make it easy to write tests. All a „test‟ needs to do is to say that, for this input, the

function should give that result. The framework takes care of running the tests.

• To make it easy to run tests. Usually this is done by clicking a single button or typing a
single keystroke (F5 in IDLE). Ideally, you should be comfortable running tests after

every change in the program, however minor.

• To make it easy to tell if the tests passed. The framework takes care of reporting results;
it either simply indicates that all tests passed, or it provides a detailed list of failures.

Example:

import unittest

class TestStringMethods(unittest.TestCase):

def test_upper(self):

self.assertEqual('foo'.upper(), 'FOO')

Output:

def test_isupper(self):

self.assertTrue('FOO'.isupper())

self.assertFalse('Foo'.isupper())

if name == ' main ':

unittest.main()

..

--

Ran 2 tests in 0.016s

OK

PYTHON PROGRAMMING UNIT-6

Page 6.25

Writing and Running Test cases

➢ Your object is to write test and not to prove that your program works, it‟s to try to find

out where it doesn‟t! Test every „extreme‟ case you can think of.

➢ For example, if you were to write and test a function to sort a list, then the first and last

elements get moved to correct position? Can you sort a 1-element list without getting

an error? How about an empty list?

➢ While you can put as many tests as you like into one test method that you shouldn‟t test

methods should be short and single-purpose. If you are testing different aspects of a

function, they should be in separate tests.
➢ Here are the rules for writing test methods:

o The name of a test method must start with the letters „test‟, otherwise it will be
ignored.

o This is so that you can write „helper‟ methods you can call from your tests, but
are not directly called by the test framework.

o Every test method must have exactly one parameter, which is nothing but
„self‟. You must put self in front of every built-in assertion method you call.

o The tests must be independent of one another, because they may be run in any
order.

o Do not assume they will execute in the order they occur in the program.

➢ Here are some of the built-in test methods you can call. Each has an optional message

parameter, to be printed if the test fails.

Example: Unittest for addition of two numbers.

import unittest

def add(a,b):

if isinstance(a,int) and isinstance(b,int):

return a+b

elif isinstance(a,str) and isinstance(b,str):

return int(a)+int(b)
else:

raise Exception('Invalid arguments')

Method Checks that

assertEqual(a, b) a == b

assertNotEqual(a, b) a != b

assertTrue(x) bool(x) is True

assertFalse(x) bool(x) is False

assertIs(a, b) a is b

assertIsNot(a, b) a is not b

assertIsNone(x) x is None

assertIsNotNone(x) x is not None

assertIn(a, b) a in b

assertNotIn(a, b) a not in b

assertIsInstance(a, b) isinstance(a, b)

assertNotIsInstance(a, b) not isinstance(a, b)

PYTHON PROGRAMMING UNIT-6

class TestAdd(unittest.TestCase):

def test_add(self):

self.assertEqual(5,add(2,3))

self.assertEqual(15,add(-6,21))

self.assertRaises(Exception,add,4.0,5.0)
unittest.main()

Output:

.

--

Ran 1 test in 0.008s

OK

T.MOTHILAL, ASST.PROF Page 6.26

Copy protected with PDF-No-Copy.com

http://www.online-pdf-no-copy.com/

