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Data Structures 

UNIT-V 

GRAPHS 
 
Graph: A graph G = (V,E) is composed of: 

V: set of vertices 
E: set of edges connecting the vertices in V 

• An edge e = (u,v) is a pair of vertices 
 

Example: 
 
 

V= {a,b,c,d,e} 
E={(a,b),(a,c),(a,d),(b,e),(c,d),(c,e),(d,e)} 

 
 
 

 
 

Graph Terminology 
 
Undirected Graph: 
An undirected graph is one in which the pair of vertices in a edge is 
unordered, (v0, v1) = (v1,v0)  

 
Directed Graph:  
A directed graph is one in which each edge is a directed pair of vertices, <v0, 

v1> != <v1,v0> 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
Complete Graph:  

A complete graph is a graph that has the maximum number of edges for 
undirected graph with n vertices, the maximum number of edges is n(n-1)/2 

for directed graph with n vertices, the maximum number of edges is n(n-1)  
 
example: G1 is a complete graph 
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Adjacent and Incident: 
 
If (v0, v1) is an edge in an undirected graph,  

– v0 and v1 are adjacent  
– The edge (v0, v1) is incident on vertices v0 and v1  

If <v0, v1> is an edge in a directed graph 
– v0 is adjacent to v1, and v1 is adjacent from v0  
– The edge <v0, v1> is incident on v0 and v1 

 
Multigraph: 

In a multigraph, there can be more than one edge from vertex P to 
vertex Q. In a simple graph there is at most one. 
  
 
 

 
 
 

 
 

 
 
 

 
 

 
Graph with self edge or graph with feedback loops: 
A self loop is an edge that connects a vertex to itself. In some graph it makes 

sense to allow self-loops; in some it doesn't. 
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Subgraph: 

 
A subgraph of G is a graph G’ such that V(G’) is a subset of V(G) and E(G’) is 

a subset of E(G) 
 
 

 
 
 

 
 

 
 
 

 
Path: 

A path from vertex vp to vertex vq in a graph G, is a sequence of vertices, vp, 
vi1, vi2, ..., vin, vq, such that (vp, vi1), (vi1, vi2), ..., (vin, vq) are edges in an 
undirected graph 

The length of a path is the number of edges on it. 
 
Simple Path and Style: 

A simple path is a path in which all vertices, except possibly the first and 
the last, are distinct. 

A cycle is a simple path in which the first and the last vertices are the same 
In an undirected graph G, two vertices, v0 and v1, are connected if there is a 
path in G from v0 to v1. 

An undirected graph is connected if, for every pair of distinct vertices vi, vj, 
there is a path from vi to vj  
 

 
 

 
 
 

 
Degree 

The degree of a vertex is the number of edges incident to that vertex 
 
For directed graph,  

– the in-degree of a vertex v is the number of edges 

that have v as the head 
– the out-degree of a vertex v is the number of edges 

that have v as the tail 

– if di is the degree of a vertex i in a graph G with n vertices and e 
edges, the number of edges is 
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Example: 
 

 
 

 
 
 

 

 
 
 
 

ADT for Graph 
Graph ADT is  
     Data structures: a nonempty set of vertices and a set of undirected 

      edges, where each edge is a pair of vertices 

     Functions: for all graph  Graph, v, v1 and v2  Vertices  

     Graph Create()::=return an empty graph 
     Graph InsertVertex(graph, v)::= return a graph with v inserted. V 
                has no incident edge. 
 
         Graph InsertEdge(graph, v1,v2)::= return a graph with new edge  

                                                      between v1 and v2  
     Graph DeleteVertex(graph, v)::= return a graph in which v and all  

                                                     edges incident to it are removed 
Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge  

                                                    (v1, v2) is removed                                                           
     Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE  

                                                 else return FALSE 
     List Adjacent(graph,v)::= return a list of all vertices that are adjacent 

              to v 
 
Graph Representations 

Graph can be represented in the following ways: 
a) Adjacency Matrix 

b) Adjacency Lists 
c) Adjacency Multilists  

a) Adjacency Matrix 

Let G=(V,E) be a graph with n vertices. 
The adjacency matrix of G is a two-dimensional by array, say adj_mat.  
If the edge (vi, vj) is in E(G), adj_mat[i][j]=1 

If there is no such edge in E(G), adj_mat[i][j]=0 
 

The adjacency matrix for an undirected graph is symmetric; the adjacency 
matrix for a digraph need not be symmetric 
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Examples for Adjacency Matrix:  
 

 
 

 
Merits of Adjacency Matrix 

From the adjacency matrix, to determine the connection of vertices is easy 
The degree of a vertex is  
For a digraph, the row sum is the out_degree, while the column sum is the 

in_degree  
 
 

 
 

 
b) Adjacency Lists 

Each row in adjacency matrix is represented as an adjacency list. 

 
. 
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Interesting Operations 

 degree of a vertex in an undirected graph 

# of nodes in adjacency list 

 # of edges in a graph 

determined in O(n+e) 

 out-degree of a vertex in a directed graph 

# of nodes in its adjacency list 

 in-degree of a vertex in a directed graph 

traverse the whole data structure 
 

Orthogonal representation for graph G3 
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c) Adjacency Multilists 
An edge in an undirected graph is represented by two nodes in adjacency 

list representation. 
Adjacency Multilists  

– lists in which nodes may be shared among several lists.   
(an edge is shared by two different paths)  

 

 
 
 

Example for Adjacency Multlists 
Lists: vertex 0: M1->M2->M3, vertex 1: M1->M4->M5 

          vertex 2: M2->M4->M6, vertex 3: M3->M5->M6 
 

 
 

Some Graph Operations 
The following are some graph operations: 

a) Traversal 

Given G=(V,E) and vertex v, find all wV, such that w connects v.  
– Depth First Search (DFS) 

             preorder tree traversal  

– Breadth First Search (BFS) 
             level order tree traversal  

b) Spanning Trees 
c) Connected Components 

 

 
 
 

 

marked    vertex1    vertex2      path1       path2 
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Graph G and its adjacency lists 

 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 

depth first search: v0, v1, v3, v7, v4, v5, v2, v6 
breadth first search: v0, v1, v2, v3, v4, v5, v6, v7 

 

Depth First Search 
Depth First Search (DFS) algorithm traverses a graph in a depthward motion 
and uses a stack to remember to get the next vertex to start a search, when a 

dead end occurs in any iteration. 

 
 
 
 
 
 

 
 
 

 

 
As in the example given above, DFS algorithm traverses from A to B to C to 

D first then to E, then to F and lastly to G. It employs the following rules. 
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 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push 

it in a stack. 

 Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will 

pop up all the vertices from the stack, which do not have adjacent vertices.) 

 Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty. 

Step Traversal Description 

1. 

 

Initialize the stack. 

2. 

 

Mark S as visited and put it 
onto the stack. Explore any 
unvisited adjacent node from S. 
We have three nodes and we 
can pick any of them. For this 
example, we shall take the 
node in an alphabetical order. 

3. 

 

Mark A as visited and put it 
onto the stack. Explore any 
unvisited adjacent node from A. 
Both S and D are adjacent 
to A but we are concerned for 
unvisited nodes only. 
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4. 

 

Visit D and mark it as visited 
and put onto the stack. Here, 
we have B and C nodes, which 
are adjacent to D and both are 
unvisited. However, we shall 
again choose in an alphabetical 
order. 

5. 

 

We choose B, mark it as visited 
and put onto the stack. 
Here B does not have any 
unvisited adjacent node. So, we 
pop B from the stack. 

6. 

 

We check the stack top for 
return to the previous node 
and check if it has any 
unvisited nodes. Here, we 
find D to be on the top of the 
stack. 
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7. 

 

Only unvisited adjacent node is 
from D is C now. So we visit C, 
mark it as visited and put it 
onto the stack. 

 As C does not have any unvisited adjacent node so we keep popping 

the stack until we find a node that has an unvisited adjacent node. In 

this case, there's none and we keep popping until the stack is empty. 

Psuedocode for DFS 

  DFS-iterative (G, s):    //Where G is graph and s is source vertex 
      let S be stack 

      S.push( s )            //Inserting s in stack  

      mark s as visited. 

      while ( S is not empty): 

          //Pop a vertex from stack to visit next 
          v  =  S.top( ) 

         S.pop( ) 

         //Push all the neighbours of v in stack that are not visited    

        for all neighbours w of v in Graph G: 

            if w is not visited : 
                     S.push( w )          

                    mark w as visited 

------------------------------------------------------------------------------------------------------------ 

 

    DFS-recursive(G, s): 

        mark s as visited 
        for all neighbours w of s in Graph G: 

            if w is not visited: 

                DFS-recursive(G, w) 

 
Breadth First Search 
 
Breadth First Search (BFS) algorithm traverses a graph in a breadthward 
motion and uses a queue to remember to get the next vertex to start a search, 

when a dead end occurs in any iteration. 
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As in the example given above, BFS algorithm traverses from A to B to E to 

F first then to C and G lastly to D. It employs the following rules. 

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert 

it in a queue. 

 Rule 2 − If no adjacent vertex is found, remove the first vertex from the queue. 

 Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty. 

Step Traversal Description 

1. 

 

Initialize the queue. 
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2. 

 

We start from 
visiting S (starting node), and 
mark it as visited. 

3. 

 

We then see an unvisited 
adjacent node from S. In this 
example, we have three nodes 
but alphabetically we choose A, 
mark it as visited and enqueue 
it. 

4. 

 

Next, the unvisited adjacent 
node from S is B. We mark it 
as visited and enqueue it. 

5. 

 

Next, the unvisited adjacent 
node from S is C. We mark it 
as visited and enqueue it. 
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6. 

 

Now, S is left with no unvisited 
adjacent nodes. So, we 
dequeue and find A. 

7. 

 

From A we have D as unvisited 
adjacent node. We mark it as 
visited and enqueue it. 

 At this stage, we are left with no unmarked (unvisited) nodes. But as 

per the algorithm we keep on dequeuing in order to get all unvisited 

nodes. When the queue gets emptied, the program is over. 

Psuedocode for BFS 
 

BFS (G, s)                  //Where G is the graph and s is the source node 

      let Q be queue. 

      Q.enqueue( s )  

      mark s as visited. 

      while ( Q is not empty) 

           v  =  Q.dequeue( ) 

 

          //processing all the neighbours of v   

          for all neighbours w of v in Graph G 

               if w is not visited  

                        Q.enqueue( w )            

                        mark w as visited. 
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Spanning Trees 
When graph G is connected, a depth first or breadth first search starting at 
any vertex will visit all vertices in G 

A spanning tree is any tree that consists solely of edges in G and that 
includes all the vertices 
E(G): T (tree edges) + N (nontree edges) 

where  T: set of edges used during search 
  N: set of remaining edges 

Examples of Spanning Tree 

 
 
Either dfs or bfs can be used to create a  

spanning tree 
– When dfs is used, the resulting spanning tree is  

known as a depth first spanning tree  
– When bfs is used, the resulting spanning tree is  

known as a breadth first spanning tree  

While adding a nontree edge into any spanning  
tree, this will create a cycle 

DFS VS BFS Spanning Tree 
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A spanning tree is a minimal subgraph, G’, of G such that V(G’)=V(G) and G’ 
is connected. 

Any connected graph with n vertices must have at least n-1 edges. 
A biconnected graph is a connected graph that hasno articulation points. 

 
 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
biconnected component: a maximal connected subgraph H (no subgraph 
that is both biconnected and properly contains H). 

 



17 
Data Structures 

Minimum Cost Spanning Tree 

 The cost of a spanning tree of a weighted undirected graph is the sum 

of the costs of the edges in the spanning tree 

 A minimum cost spanning tree is a spanning tree of least cost 

 Three different algorithms can be used 

– Kruskal  
– Prim 
– Sollin  

 
Kruskal’s Algorithm 

 
Build a minimum cost spanning tree T by adding edges to T one at a time 
Select the edges for inclusion in T in nondecreasing order of the cost 

An edge is added to T if it does not form a cycle 
Since G is connected and has n > 0 vertices, exactly n-1 edges will be 
selected 

 
 
 Kruskal’s algorithm 

1. Sort all the edges in non-decreasing order of their weight. 
 
2. Pick the smallest edge. Check if it forms a cycle with the spanning 
tree formed so far. If cycle is not formed, include this edge. Else, 
discard it.   
 
3. Repeat step#2 until there are (V-1) edges in the spanning tree. 

 

Psuedocode for Kruskal’s Algorithm 
 
Kruskal(G, V, E) 

{ 
T= {}; 
while(T contains less than n-1 edges && E is not empty)  

{ 
      choose a least cost edge (v,w) from E; 

      delete (v,w) from E; 
      if ((v,w) does not create a cycle in T) 
              add (v,w) to T 

      else  
              discard (v,w); 
} 

if (T contains fewer than n-1 edges) 
                      printf(“No spanning tree\n”); 

 
} 
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Examples for Kruskal’s Algorithm 

 
 
 

 
 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

  

 Iteration 1 Iteration 2 

Iteration 3 

 

 

Iteration 4 

 

Iteration 5 
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Iteration 6 

 

 

Prim’s Algorithm 

Prim's algorithm to find minimum cost spanning tree (as Kruskal's 

algorithm) uses the greedy approach. Prim's algorithm shares a similarity 

with the shortest path first algorithms. 

Prim's algorithm, in contrast with Kruskal's algorithm, treats the nodes as 

a single tree and keeps on adding new nodes to the spanning tree from the 

given graph. 

To contrast with Kruskal's algorithm and to understand Prim's algorithm 

better, we shall use the same example − 

Steps of Prim's Algorithm: 
The following are the main 3 steps of the Prim's Algorithm: 

 
1. Begin with any vertex which you think would be suitable and add it to 

the tree. 
2. Find an edge that connects any vertex in the tree to any vertex that is 

not in the tree. Note that, we don't have to form cycles. 

3. Stop when n - 1 edges have been added to the tree. 
 

Psuedocode of Prim’s algorithm 
Prims(G,V,E) 

{ 
T={}; 
TV={0}; 

while (T contains fewer than n-1 edges) 
{ 

let (u,v) be a least cost edge such that and if (there is no 
such edge ) break; 

     add v to TV; 

     add (u,v) to T; 
} 

if (T contains fewer than n-1 edges) 
    printf(“No spanning tree\n”); 
} 



20 
Data Structures 

Examples for Prim’s Algorithm  
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Sollin’s Algorithm 
     

 

 
 

  

  

  

 

Single Source All Destinations 
Graph and shortest paths from v0 
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#define MAX_VERTICES 6 
int cost[][MAX_VERTICES]= 

    {{   0,   50,   10, 1000,   45, 1000}, 
     {1000,    0,   15, 1000,   10, 1000}, 
     {  20, 1000,    0,   15, 1000, 1000}, 

     {1000,   20, 1000,    0,   35, 1000}, 
     {1000, 1000,   30, 1000,    0, 1000}, 
     {1000, 1000, 1000,    3, 1000,    0}}; 

int distance[MAX_VERTICES]; 
short int found{MAX_VERTICES]; 

int n = MAX_VERTICES; 
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void shortestpath(int v, int cost[][MAX_ERXTICES], int distance[], int n, 
short int found[]) 

{ 
     int i, u, w; 

     for (i=0; i<n; i++)  
     { 
          found[i] = FALSE; 

          distance[i] = cost[v][i]; 
      } 
     found[v] = TRUE; 

     distance[v] = 0; 
     for (i=0; i<n-2; i++)  

          { 
               determine n-1 paths from v  
               u = choose(distance, n, found); 

               found[u] = TRUE; 
               for (w=0; w<n; w++)  

               if (!found[w]) 
                    if (distance[u]+cost[u][w]<distance[w]) 
                             distance[w] = distance[u]+cost[u][w]; 

            } 
} 

 
All Pairs Shortest Paths 
All pairs shortest path algorithm finds the shortest paths between all pairs 

of vertices. 
Solution 1 

 Apply shortest path n times with each vertex as source. 

  O(n3)  
Solution 2 

 Represent the graph G by its cost adjacency matrix with cost[i][j] 

 If the edge <i,j> is not in G, the cost[i][j] is set to some sufficiently 

large number 

 A[i][j] is the cost of the shortest path form i to j, using only those 
intermediate vertices with an index <= k 

 The cost of the shortest path from i to j is A  [i][j], as no vertex in G 
has an index greater than n-1 

 A [i][j]=cost[i][j] 

 Calculate the A, A, A, ..., A   from A  iteratively 

 A [i][j]=min{A  [i][j], A  [i][k]+A  [k][j]}, k>=0 
 

Graph with negative cycle  
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Algorithm for All Pairs Shortest Paths 
void allcosts(int cost[][MAX_VERTICES], int distance[][MAX_VERTICES], int n) 

{ 
  int i, j, k; 

  for (i=0; i<n; i++) 
    for (j=0; j<n; j++)  
       distance[i][j] = cost[i][j]; 

  for (k=0; k<n; k++)  
    for (i=0; i<n; i++) 
      for (j=0; j<n; j++) 

        if (distance[i][k]+distance[k][j] < distance[i][j]) 
           distance[i][j]= distance[i][k]+distance[k][j]; 

}    
 
Example 

Directed graph and its cost matrix 
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Transitive Closure  
Goal: given a graph with unweighted edges, determine if there is a path 

from i to j for all i and j. 
(1) Require positive path (> 0) lengths. transitive closure matrix 

(2) Require nonnegative path (0) lengths. reflexive transitive closure matrix 

 

 

******* 


