
1
Data Structures

UNIT-V

GRAPHS

Graph: A graph G = (V,E) is composed of:

V: set of vertices
E: set of edges connecting the vertices in V

• An edge e = (u,v) is a pair of vertices

Example:

V= {a,b,c,d,e}
E={(a,b),(a,c),(a,d),(b,e),(c,d),(c,e),(d,e)}

Graph Terminology

Undirected Graph:
An undirected graph is one in which the pair of vertices in a edge is
unordered, (v0, v1) = (v1,v0)

Directed Graph:
A directed graph is one in which each edge is a directed pair of vertices, <v0,

v1> != <v1,v0>

Complete Graph:

A complete graph is a graph that has the maximum number of edges for
undirected graph with n vertices, the maximum number of edges is n(n-1)/2

for directed graph with n vertices, the maximum number of edges is n(n-1)

example: G1 is a complete graph

2
Data Structures

Adjacent and Incident:

If (v0, v1) is an edge in an undirected graph,

– v0 and v1 are adjacent
– The edge (v0, v1) is incident on vertices v0 and v1

If <v0, v1> is an edge in a directed graph
– v0 is adjacent to v1, and v1 is adjacent from v0
– The edge <v0, v1> is incident on v0 and v1

Multigraph:

In a multigraph, there can be more than one edge from vertex P to
vertex Q. In a simple graph there is at most one.

Graph with self edge or graph with feedback loops:
A self loop is an edge that connects a vertex to itself. In some graph it makes

sense to allow self-loops; in some it doesn't.

3
Data Structures

Subgraph:

A subgraph of G is a graph G’ such that V(G’) is a subset of V(G) and E(G’) is

a subset of E(G)

Path:

A path from vertex vp to vertex vq in a graph G, is a sequence of vertices, vp,
vi1, vi2, ..., vin, vq, such that (vp, vi1), (vi1, vi2), ..., (vin, vq) are edges in an
undirected graph

The length of a path is the number of edges on it.

Simple Path and Style:

A simple path is a path in which all vertices, except possibly the first and
the last, are distinct.

A cycle is a simple path in which the first and the last vertices are the same
In an undirected graph G, two vertices, v0 and v1, are connected if there is a
path in G from v0 to v1.

An undirected graph is connected if, for every pair of distinct vertices vi, vj,
there is a path from vi to vj

Degree

The degree of a vertex is the number of edges incident to that vertex

For directed graph,

– the in-degree of a vertex v is the number of edges

that have v as the head
– the out-degree of a vertex v is the number of edges

that have v as the tail

– if di is the degree of a vertex i in a graph G with n vertices and e
edges, the number of edges is

4
Data Structures

Example:

ADT for Graph
Graph ADT is
 Data structures: a nonempty set of vertices and a set of undirected

 edges, where each edge is a pair of vertices

 Functions: for all graph Graph, v, v1 and v2 Vertices

 Graph Create()::=return an empty graph
 Graph InsertVertex(graph, v)::= return a graph with v inserted. V
 has no incident edge.

 Graph InsertEdge(graph, v1,v2)::= return a graph with new edge

 between v1 and v2
 Graph DeleteVertex(graph, v)::= return a graph in which v and all

 edges incident to it are removed
Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge

 (v1, v2) is removed
 Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE

 else return FALSE
 List Adjacent(graph,v)::= return a list of all vertices that are adjacent

 to v

Graph Representations

Graph can be represented in the following ways:
a) Adjacency Matrix

b) Adjacency Lists
c) Adjacency Multilists

a) Adjacency Matrix

Let G=(V,E) be a graph with n vertices.
The adjacency matrix of G is a two-dimensional by array, say adj_mat.
If the edge (vi, vj) is in E(G), adj_mat[i][j]=1

If there is no such edge in E(G), adj_mat[i][j]=0

The adjacency matrix for an undirected graph is symmetric; the adjacency
matrix for a digraph need not be symmetric

5
Data Structures

Examples for Adjacency Matrix:

Merits of Adjacency Matrix

From the adjacency matrix, to determine the connection of vertices is easy
The degree of a vertex is
For a digraph, the row sum is the out_degree, while the column sum is the

in_degree

b) Adjacency Lists

Each row in adjacency matrix is represented as an adjacency list.

.

6
Data Structures

Interesting Operations

 degree of a vertex in an undirected graph

of nodes in adjacency list

 # of edges in a graph

determined in O(n+e)

 out-degree of a vertex in a directed graph

of nodes in its adjacency list

 in-degree of a vertex in a directed graph

traverse the whole data structure

Orthogonal representation for graph G3

7
Data Structures

c) Adjacency Multilists
An edge in an undirected graph is represented by two nodes in adjacency

list representation.
Adjacency Multilists

– lists in which nodes may be shared among several lists.
(an edge is shared by two different paths)

Example for Adjacency Multlists
Lists: vertex 0: M1->M2->M3, vertex 1: M1->M4->M5

 vertex 2: M2->M4->M6, vertex 3: M3->M5->M6

Some Graph Operations
The following are some graph operations:

a) Traversal

Given G=(V,E) and vertex v, find all wV, such that w connects v.
– Depth First Search (DFS)

 preorder tree traversal

– Breadth First Search (BFS)
 level order tree traversal

b) Spanning Trees
c) Connected Components

marked vertex1 vertex2 path1 path2

8
Data Structures

Graph G and its adjacency lists

depth first search: v0, v1, v3, v7, v4, v5, v2, v6
breadth first search: v0, v1, v2, v3, v4, v5, v6, v7

Depth First Search
Depth First Search (DFS) algorithm traverses a graph in a depthward motion
and uses a stack to remember to get the next vertex to start a search, when a

dead end occurs in any iteration.

As in the example given above, DFS algorithm traverses from A to B to C to

D first then to E, then to F and lastly to G. It employs the following rules.

9
Data Structures

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push

it in a stack.

 Rule 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will

pop up all the vertices from the stack, which do not have adjacent vertices.)

 Rule 3 − Repeat Rule 1 and Rule 2 until the stack is empty.

Step Traversal Description

1.

Initialize the stack.

2.

Mark S as visited and put it
onto the stack. Explore any
unvisited adjacent node from S.
We have three nodes and we
can pick any of them. For this
example, we shall take the
node in an alphabetical order.

3.

Mark A as visited and put it
onto the stack. Explore any
unvisited adjacent node from A.
Both S and D are adjacent
to A but we are concerned for
unvisited nodes only.

10
Data Structures

4.

Visit D and mark it as visited
and put onto the stack. Here,
we have B and C nodes, which
are adjacent to D and both are
unvisited. However, we shall
again choose in an alphabetical
order.

5.

We choose B, mark it as visited
and put onto the stack.
Here B does not have any
unvisited adjacent node. So, we
pop B from the stack.

6.

We check the stack top for
return to the previous node
and check if it has any
unvisited nodes. Here, we
find D to be on the top of the
stack.

11
Data Structures

7.

Only unvisited adjacent node is
from D is C now. So we visit C,
mark it as visited and put it
onto the stack.

 As C does not have any unvisited adjacent node so we keep popping

the stack until we find a node that has an unvisited adjacent node. In

this case, there's none and we keep popping until the stack is empty.

Psuedocode for DFS

 DFS-iterative (G, s): //Where G is graph and s is source vertex
 let S be stack

 S.push(s) //Inserting s in stack

 mark s as visited.

 while (S is not empty):

 //Pop a vertex from stack to visit next
 v = S.top()

 S.pop()

 //Push all the neighbours of v in stack that are not visited

 for all neighbours w of v in Graph G:

 if w is not visited :
 S.push(w)

 mark w as visited

--

 DFS-recursive(G, s):

 mark s as visited
 for all neighbours w of s in Graph G:

 if w is not visited:

 DFS-recursive(G, w)

Breadth First Search

Breadth First Search (BFS) algorithm traverses a graph in a breadthward
motion and uses a queue to remember to get the next vertex to start a search,

when a dead end occurs in any iteration.

12
Data Structures

As in the example given above, BFS algorithm traverses from A to B to E to

F first then to C and G lastly to D. It employs the following rules.

 Rule 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert

it in a queue.

 Rule 2 − If no adjacent vertex is found, remove the first vertex from the queue.

 Rule 3 − Repeat Rule 1 and Rule 2 until the queue is empty.

Step Traversal Description

1.

Initialize the queue.

13
Data Structures

2.

We start from
visiting S (starting node), and
mark it as visited.

3.

We then see an unvisited
adjacent node from S. In this
example, we have three nodes
but alphabetically we choose A,
mark it as visited and enqueue
it.

4.

Next, the unvisited adjacent
node from S is B. We mark it
as visited and enqueue it.

5.

Next, the unvisited adjacent
node from S is C. We mark it
as visited and enqueue it.

14
Data Structures

6.

Now, S is left with no unvisited
adjacent nodes. So, we
dequeue and find A.

7.

From A we have D as unvisited
adjacent node. We mark it as
visited and enqueue it.

 At this stage, we are left with no unmarked (unvisited) nodes. But as

per the algorithm we keep on dequeuing in order to get all unvisited

nodes. When the queue gets emptied, the program is over.

Psuedocode for BFS

BFS (G, s) //Where G is the graph and s is the source node

 let Q be queue.

 Q.enqueue(s)

 mark s as visited.

 while (Q is not empty)

 v = Q.dequeue()

 //processing all the neighbours of v

 for all neighbours w of v in Graph G

 if w is not visited

 Q.enqueue(w)

 mark w as visited.

15
Data Structures

Spanning Trees
When graph G is connected, a depth first or breadth first search starting at
any vertex will visit all vertices in G

A spanning tree is any tree that consists solely of edges in G and that
includes all the vertices
E(G): T (tree edges) + N (nontree edges)

where T: set of edges used during search
 N: set of remaining edges

Examples of Spanning Tree

Either dfs or bfs can be used to create a

spanning tree
– When dfs is used, the resulting spanning tree is

known as a depth first spanning tree
– When bfs is used, the resulting spanning tree is

known as a breadth first spanning tree

While adding a nontree edge into any spanning
tree, this will create a cycle

DFS VS BFS Spanning Tree

16
Data Structures

A spanning tree is a minimal subgraph, G’, of G such that V(G’)=V(G) and G’
is connected.

Any connected graph with n vertices must have at least n-1 edges.
A biconnected graph is a connected graph that hasno articulation points.

biconnected component: a maximal connected subgraph H (no subgraph
that is both biconnected and properly contains H).

17
Data Structures

Minimum Cost Spanning Tree

 The cost of a spanning tree of a weighted undirected graph is the sum

of the costs of the edges in the spanning tree

 A minimum cost spanning tree is a spanning tree of least cost

 Three different algorithms can be used

– Kruskal
– Prim
– Sollin

Kruskal’s Algorithm

Build a minimum cost spanning tree T by adding edges to T one at a time
Select the edges for inclusion in T in nondecreasing order of the cost

An edge is added to T if it does not form a cycle
Since G is connected and has n > 0 vertices, exactly n-1 edges will be
selected

 Kruskal’s algorithm

1. Sort all the edges in non-decreasing order of their weight.

2. Pick the smallest edge. Check if it forms a cycle with the spanning
tree formed so far. If cycle is not formed, include this edge. Else,
discard it.

3. Repeat step#2 until there are (V-1) edges in the spanning tree.

Psuedocode for Kruskal’s Algorithm

Kruskal(G, V, E)

{
T= {};
while(T contains less than n-1 edges && E is not empty)

{
 choose a least cost edge (v,w) from E;

 delete (v,w) from E;
 if ((v,w) does not create a cycle in T)
 add (v,w) to T

 else
 discard (v,w);
}

if (T contains fewer than n-1 edges)
 printf(“No spanning tree\n”);

}

18
Data Structures

Examples for Kruskal’s Algorithm

 Iteration 1 Iteration 2

Iteration 3

Iteration 4

Iteration 5

19
Data Structures

Iteration 6

Prim’s Algorithm

Prim's algorithm to find minimum cost spanning tree (as Kruskal's

algorithm) uses the greedy approach. Prim's algorithm shares a similarity

with the shortest path first algorithms.

Prim's algorithm, in contrast with Kruskal's algorithm, treats the nodes as

a single tree and keeps on adding new nodes to the spanning tree from the

given graph.

To contrast with Kruskal's algorithm and to understand Prim's algorithm

better, we shall use the same example −

Steps of Prim's Algorithm:
The following are the main 3 steps of the Prim's Algorithm:

1. Begin with any vertex which you think would be suitable and add it to

the tree.
2. Find an edge that connects any vertex in the tree to any vertex that is

not in the tree. Note that, we don't have to form cycles.

3. Stop when n - 1 edges have been added to the tree.

Psuedocode of Prim’s algorithm
Prims(G,V,E)

{
T={};
TV={0};

while (T contains fewer than n-1 edges)
{

let (u,v) be a least cost edge such that and if (there is no
such edge) break;

 add v to TV;

 add (u,v) to T;
}

if (T contains fewer than n-1 edges)
 printf(“No spanning tree\n”);
}

20
Data Structures

Examples for Prim’s Algorithm

21
Data Structures

Sollin’s Algorithm

Single Source All Destinations
Graph and shortest paths from v0

22
Data Structures

23
Data Structures

#define MAX_VERTICES 6
int cost[][MAX_VERTICES]=

 {{ 0, 50, 10, 1000, 45, 1000},
 {1000, 0, 15, 1000, 10, 1000},
 { 20, 1000, 0, 15, 1000, 1000},

 {1000, 20, 1000, 0, 35, 1000},
 {1000, 1000, 30, 1000, 0, 1000},
 {1000, 1000, 1000, 3, 1000, 0}};

int distance[MAX_VERTICES];
short int found{MAX_VERTICES];

int n = MAX_VERTICES;

24
Data Structures

void shortestpath(int v, int cost[][MAX_ERXTICES], int distance[], int n,
short int found[])

{
 int i, u, w;

 for (i=0; i<n; i++)
 {
 found[i] = FALSE;

 distance[i] = cost[v][i];
 }
 found[v] = TRUE;

 distance[v] = 0;
 for (i=0; i<n-2; i++)

 {
 determine n-1 paths from v
 u = choose(distance, n, found);

 found[u] = TRUE;
 for (w=0; w<n; w++)

 if (!found[w])
 if (distance[u]+cost[u][w]<distance[w])
 distance[w] = distance[u]+cost[u][w];

 }
}

All Pairs Shortest Paths
All pairs shortest path algorithm finds the shortest paths between all pairs

of vertices.
Solution 1

 Apply shortest path n times with each vertex as source.

 O(n3)
Solution 2

 Represent the graph G by its cost adjacency matrix with cost[i][j]

 If the edge <i,j> is not in G, the cost[i][j] is set to some sufficiently

large number

 A[i][j] is the cost of the shortest path form i to j, using only those
intermediate vertices with an index <= k

 The cost of the shortest path from i to j is A [i][j], as no vertex in G
has an index greater than n-1

 A [i][j]=cost[i][j]

 Calculate the A, A, A, ..., A from A iteratively

 A [i][j]=min{A [i][j], A [i][k]+A [k][j]}, k>=0

Graph with negative cycle

25
Data Structures

Algorithm for All Pairs Shortest Paths
void allcosts(int cost[][MAX_VERTICES], int distance[][MAX_VERTICES], int n)

{
 int i, j, k;

 for (i=0; i<n; i++)
 for (j=0; j<n; j++)
 distance[i][j] = cost[i][j];

 for (k=0; k<n; k++)
 for (i=0; i<n; i++)
 for (j=0; j<n; j++)

 if (distance[i][k]+distance[k][j] < distance[i][j])
 distance[i][j]= distance[i][k]+distance[k][j];

}

Example

Directed graph and its cost matrix

26
Data Structures

Transitive Closure
Goal: given a graph with unweighted edges, determine if there is a path

from i to j for all i and j.
(1) Require positive path (> 0) lengths. transitive closure matrix

(2) Require nonnegative path (0) lengths. reflexive transitive closure matrix
