
PYTHON PROGRAMMING UNIT-5

Page 5.1

Python has been an object-oriented language since it existed. Because of this, creating

and using classes and objects are downright easy. This chapter helps you become an expert in

using Python's object-oriented programming support.

If you do not have any previous experience with object-oriented (OO) programming,

you may want to consult an introductory course on it or at least a tutorial of some sort so that

you have a grasp of the basic concepts.

However, here is small introduction of Object-Oriented Programming (OOP) to bring
you at speed:

Overview of OOP Terminology

➢ Class: A user-defined prototype for an object that defines a set of attributes that

characterize any object of the class. The attributes are data members (class variables

and instance variables) and methods, accessed via dot notation.

➢ Class variable: A variable that is shared by all instances of a class. Class variables are

defined within a class but outside any of the class's methods. Class variables are not

used as frequently as instance variables are.

➢ Data member: A class variable or instance variable that holds data associated with a

class and its objects.

➢ Function overloading: The assignment of more than one behaviour to a particular

function. The operation performed varies by the types of objects or arguments involved.

➢ Instance variable: A variable that is defined inside a method and belongs only to the

current instance of a class.

➢ Inheritance: The transfer of the characteristics of a class to other classes that are

derived from it.

➢ Instance: An individual object of a certain class. An object obj that belongs to a class

Circle, for example, is an instance of the class Circle.
➢ Instantiation: The creation of an instance of a class.

➢ Method: A special kind of function that is defined in a class definition.

➢ Object: A unique instance of a data structure that's defined by its class. An object

comprises both data members (class variables and instance variables) and methods.

➢ Operator overloading: The assignment of more than one function to a particular

operator.

Creation of Class:

A class is created with the keyword class and then writing the classname. The simplest form
of class definition looks like this:

class ClassName:

<statement-1>

.

.

<statement-N>

Class definitions, like function definitions (def statements) must be executed before

they have any effect. (You could conceivably place a class definition in a branch of an if

statement, or inside a function.)

Example: class Student:

def init (self):

self.name="hari"

self.branch="CSE"

def display(self):

print self.name

print self.branch

PYTHON PROGRAMMING UNIT-5

Page 5.2

➢ For example, If we „Student‟ class, we can write code in the class that specifies the
attributes and actions performed by any student.

➢ Observer that the keyword class is used to declare a class. After this, we should write

the class name. So, „Student‟ is our class name. Generally, a class name should start

with a capital letter, hence „S‟ is a capital in „Student‟.

➢ In the class, we have written the variables and methods. Since in python, we cannot

declare variables, we have written the variables inside a special method, i.e. init (). This

method is used to initialize the variables. Hence the name „init‟.

➢ The method name has two underscores before and after. This indicates that this method

is internally defined and we cannot call this method explicitly.

➢ Observe the parameter „self‟ written after the method name in the parentheses. „self‟ is

a variable that refers to current class instance.

➢ When we create an instance for the Student class, a separate memory block is allocated

on the heap and that memory location is default stored in „self‟.

➢ The instance contains the variables „name‟ and „branch‟ which are called instance

variables. To refer to instance variables, we can use the dot operator notation along

with self as „self.name‟ and „self.branch‟.

➢ The method display () also takes the „self‟ variable as parameter. This method displays

the values of variables by referring them using „self‟.

➢ The methods that act on instances (or objects) of a class are called instance methods.

Instance methods use „self‟ as the first parameter that refers to the location of the

instance in the memory.

➢ Writing a class like this is not sufficient. It should be used. To use a class, we should

create an instance to the class. Instance creation represents allotting memory necessary

to store the actual data of the variables, i.e., „hari‟, „CSE‟.

➢ To create an instance, the following syntax is used:

instancename = Classname()

➢ So, to create an instance to the Student class, we can write as:

s1 = Student ()

➢ Here „s1‟ represents the instance name. When we create an instance like this, the

following steps will take place internally:

1. First of all, a block of memory is allocated on heap. How much memory is to be

allocated is decided from the attributes and methods available in the Student class.

2. After allocating the memory block, the special method by the name „ init (self)‟

is called internally. This method stores the initial data into the variables. Since this

method is useful to construct the instance, it is called „constructor‟.

3. Finally, the allocated memory location address of the instance is returned into „s1‟

variable. To see this memory location in decimal number format, we can use id()

function as id(s1).

PYTHON PROGRAMMING UNIT-5

Page 5.3

Self variable:

„self‟ is a default variable that contains the memory address of the instance of the

current class. When an instance to the class is created, the instance name cotains the memory

locatin of the instance. This memory location is internally passed to „self‟.

For example, we create an instance to student class as:

s1 = Student()

Here, „s1‟ contains the memory address of the instance. This memory address is

internally and by default passed to „self‟ variable. Since „self‟ knows the memory address of

the instance, it can refer to all the members of the instance.
We use „self‟ in two eays:

▪ The self variable is used as first parameter in the constructor as:

def init (self):

In this case, „self‟ can be used to refer to the instance variables inside the

constructor.

▪ „self‟ can be used as first parameter in the instance methods as:

def display(self):

Here, display() is instance method as it acts on the instance variables. If this

method wants to act on the instance variables, it should know the memory location

of the instance variables. That memory location is by default available to the

display() method through „self‟.

Constructor:

A constructor is a special method that is used to initialize the instance variables of a

class. In the constructor, we create the instance variables and initialize them with some

starting values. The first parameter of the constructor will be „self‟ variable that contains the

memory address of the instance.

def init (self):

self.name = "hari"

self.branch = "CSE"

Here, the constructor has only one parameter, i.e. „self‟ using „self.name‟ and

„self.branch‟, we can access the instance variables of the class. A constructor is called at the

time of creating an instance. So, the above constructor will be called when we create an

instance as:

s1 = Student()

Let‟s take another example, we can write a constructor with some parameters in

addition to „self‟ as:

def init (self , n = „ ‟ , b = „ ‟): self.name

= n
self.branch = b

PYTHON PROGRAMMING UNIT-5

Page 5.4

Here, the formal arguments are „n‟ and „b‟ whose default values are given as „‟

(None) and „‟ (None). Hence, if we do not pass any values to constructor at the time of

creating an instance, the default values of those formal arguments are stored into name and

branch variables. For example,

s1 = Student()

Since we are not passing any values to the instance, None and None are stored into

name and branch. Suppose, we can create an instance as:

s1 = Student(“mothi”, “CSE”)

In this case, we are passing two actual arguments: “mothi” and “CSE” to the Student

instance.

Example:

Output:

Types of Variables:

class Student:

def init (self,n='',b=''):

self.name=n

self.branch=b
def display(self):

print "Hi",self.name

print "Branch", self.branch

s1=Student()
s1.display()

print “------------------------------”

s2=Student("mothi","CSE")

s2.display()
print “------------------------------”

Hi

Branch

Hi mothi

Branch CSE

The variables which are written inside a class are of 2 types:

a) Instance Variables

b) Class Variables or Static Variables

a) Instance Variables

Instance variables are the variables whose separate copy is created in every instance.

For example, if „x‟ is an instance variable and if we create 3 instances, there will be 3

copies of „x‟ in these 3 instances. When we modify the copy of „x‟ in any instance, it will

not modify the other two copies.

Example: A Python Program to understand instance variables.

class Sample:

def init (self):

self.x = 10

def modify(self):

self.x = self.x + 1

s1=Sample()

s2=Sample()

PYTHON PROGRAMMING UNIT-5

Page 5.5

Output:

print "x in s1=",s1.x

print "x in s2=",s2.x

print "----------------"

s1.modify()

print "x in s1=",s1.x

print "x in s2=",s2.x

print "----------------"

x in s1= 10

x in s2= 10

x in s1= 11

x in s2= 10

Instance variables are defined and initialized using a constructor with „self‟ parameter.

Also, to access instance variables, we need instance methods with „self‟ as first parameter. It

is possible that the instance methods may have other parameters in addition to the „self‟

parameter. To access the instance variables, we can use self.variable as shown in program. It

is also possible to access the instance variables from outside the class, as:

instancename.variable, e.g. s1.x

b) Class Variables or Static Variables

Class variables are the variables whose single copy is available to all the instances of

the class. If we modify the copy of class variable in an instance, it will modify all the

copies in the other instances. For example, if „x‟ is a class variable and if we create 3

instances, the same copy of „x‟ is passed to these 3 instances. When we modify the copy of

„x‟ in any instance using a class method, the modified copy is sent to the other two
instances.

Example: A Python program to understand class variables or static variables.

class Sample:

x=10

@classmethod

def modify(cls):

cls.x = cls.x + 1

s1=Sample()

s2=Sample()

print "x in s1=",s1.x

print "x in s2=",s2.x

print "----------------"
s1.modify()

print "x in s1=",s1.x

print "x in s2=",s2.x

print "----------------"

Output:

x in s1= 10

x in s2= 10

x in s1= 11

x in s2= 11

PYTHON PROGRAMMING UNIT-5

Page 5.6

Namespaces:

A namespace represents a memory block where names are mapped to objects.

Suppose we write: n = 10

Here, „n‟ is the name given to the integer object 10. Please recollect that numbers,

strings, lists etc. Are all considered as objects in python. The name „n‟ is linked to 10 in the

namespace.

a) Class Namespace:

A class maintains its own namespace, called „class namespace‟. In the class

namespace, the names are mapped to class variables. In the following code, „n‟ is a class

variable in the student class. So, in the class namespace, the name „n‟ is mapped or linked to

10 as shown in figure. We can access it in the class namespace, using classname.variable, as:

Student.n which gives 10.

Example:

class Student:

n = 10

print Student.n # displays 10

Student.n += 1

print Student.n # displays 11

s1 = Student()

print s1.n # displays 11

s2 = Student()
print s2.n # displays 11

Before modifying the class variable „n‟ After modifying the class variable „n‟

We know that a single copy of class variable is shared by all the instances. So, if the class

variable is modified in the class namespace, since same copy of the variable is modified, the

modified copy is available to all the instances.

b) Instance namespace:

Every instance will have its own name space, called „instance namespace‟. In the

instance namespace, the names are mapped to instance variables. Every instance will have its

own namespace, if the class variable is modified in one instance namespace, it will not affect

the variables in the other instance namespaces. To access the class variable at the instance

level, we have to create instance first and then refer to the variable as instancename.variable.

Example:
class Student:

n = 10

s1 = Student()

print s1.n # displays 10

s1.n += 1

print s1.n # displays 11

PYTHON PROGRAMMING UNIT-5

Page 5.7

s2 = Student()

print s2.n # displays 11

Before modifying the class variable „n‟ After modifying the class variable „n‟

Types of methods:

We can classify the methods in the following 3 types:

a) Instance methods

➢ Accessor methods

➢ Mutator methods

b) Class methods

c) Static methods

a) Instance Methods:

Instance methods are the methods which act upon the instance variables of the

class.instance methods are bound to instances and hence called as:

instancename.method(). Since instance variables are available in the instance, instance

methods need to know the memory address of instance. This is provided through „self‟

variable by default as first parameter for the instance method. While calling the instance

methods, we need not pass any value to the „self‟ variable.

Example:

class Student:

def init (self,n='',b=''):

self.name=n

self.branch=b

def display(self):

print "Hi",self.name

print "Branch", self.branch

s1=Student()

s1.display()

print “------------------------------”

s2=Student("mothi","CSE")

s2.display()

print “------------------------------”

➢ Instance methods are of two types: accessor methods and mutator methods.

➢ Accessor methods simply access of read data of the variables. They do not modify

the data in the variables. Accessor methods are generally written in the form of

getXXXX() and hence they are also called getter methods.

➢ Mutator methods are the methods which not only read the data but also modify

them. They are written in the form of setXXXX() and hence they are also called

setter methods.

PYTHON PROGRAMMING UNIT-5

Page 5.8

Example:
class Student:

def setName(self,n):
self.name = n

def setBranch(self,b):

self.branch = b

def getName(self):
return self.name

def getBranch(self):

return self.branch

s=Student()

name=input("Enter Name: ")

branch=input("Enter Branch: ")

s.setName(name)

s.setBranch(branch)

print s.getName()

print s.getBranch()

b) Class methods:

These methods act on class level. Class methods are the methods which act on

the class variables or static variables. These methods are written using @classmethod

decorator above them. By default, the first parameter for class methods is „cls‟ which

refers to the class itself.

For example, „cls.var‟ is the format to the class variable. These methods are

generally called using classname.method(). The processing which is commonly

needed by all the instances of class is handled by the class methods.

Example:

class Bird:

wings = 2

@classmethod

def fly(cls,name):
print name,"flies with",cls.wings,"wings"

Bird.fly("parrot") #display "parrot flies with 2 wings"

Bird.fly("sparrow") #display "sparow flies with 2 wings"

c) Static methods:

We need static methods when the processing is at the class level but we need

not involve the class or instances. Static methods are used when some processing is

related to the class but does not need the class or its instances to perform any work.

For example, setting environmental variables, counting the number of

instances of the class or changing an attribute in another class, etc. are the tasks

related to a class.

Such tasks are handled by static methods. Static methods are written with

decorator @staticmethod above them. Static methods are called in the form of

classname.method ().

PYTHON PROGRAMMING UNIT-5

Page 5.9

Example:

Inheritance:

class MyClass:

n = 0
def init (self):

MyClass.n = Myclass.n + 1
def noObjects():

print "No. of instances created: ", MyClass.n

m1=MyClass()

m2=MyClass()

m3=MyClass()

MyClass.noObjects()

• Software development is a team effort. Several programmers will work as a team to

develop software.

• When a programmer develops a class, he will use its features by creating an instance to

it. When another programmer wants to create another class which is similar to the class

already created, then he need not create the class from the scratch. He can simply use the

features of the existing class in creating his own class.

• Deriving new class from the super class is called inheritance.

• The child class inherits the attributes of its parent class, and you can use those attributes

as if they were defined in the child class.

• A child class can also override data members and methods from the parent.

Syntax:

class Subclass(BaseClass):

<class body>

• When an object is to SubClass is created, it contains a copy of BaseClass within it. This

means there is a relation between the BaseClass and SubClass objects.

• We do not create BaseClass object,but still a copy of it is available to SubClass object.

• By using inheritance, a programmer can develop classes very easilt. Hence programmer‟s

productivity is increased. Productivity is a term that refers to the code developed by

the programmer in a given span of time.

• If the programmer used inheritance, he will be able to develop more code in less time.

• In inheritance, we always create only the sub class object. Generally, we do not create

super class object. The reason is clear. Since all the members of the super class are

available to sub class, when we crate an object, we can access the members of both the

super and sub classes.

The super() method:

• super() is a built-in method which is useful to call the super class constructor or methods

from the sub class.

• Any constructor written in the super class is not available to the sub class if the sub class

has a constructor.

• Then how can we initialize the super class instance variables and use them in the sub

class? This is done by calling super class constructor using super() method from inside

the sub class constructor.

• super() is a built-in method which contains the history of super class methods.

• Hence, we can use super() to refer to super class constructor and methods from a aub

class. So, super() can be used as:
super().init() # call super class constructor

super().init(arguments) # call super class constructor and pass arguments
super().method() # call super class method

PYTHON PROGRAMMING UNIT-5

Page 5.10

Example: Write a python program to call the super class constructor in the sub class using
super().

Output:

class Father:

def init (self, p = 0):
self.property = p

def display(self):

print "Father Property",self.property
class Son(Father):

def init (self,p1 = 0, p = 0):

super(). init (p1)

self.property1 = p
def display(self):

print "Son Property",self.property+self.property1

s=Son(200000,500000)

 isplay()

Son Property 700000

Example: Write a python program to access base class constructor and method in the sub

class using super().
class Square:

def init (self, x = 0):

self.x = x
def area(self):

print "Area of square", self.x * self.x
class Rectangle(Square):

def init (self, x = 0, y = 0):

super(). init (x)

self.y = y

def area(self):
super().area()

print "Area of Rectangle", self.x * self.y

r = Rectangle(5,16)

r.area()

Output:

Area of square 25
Area of Rectangle 80

Types of Inheritance:

There are mainly 2 types of inheritance.

a) Single inheritance

b) Multiple inheritance

a) Single inheritance

Deriving one or more sub classes from a single base class is called „single

inheritance‟. In single inheritance, we always have only one base class, but there can

be n number of sub classes derived from it. For example, „Bank‟ is a single base clas

from where we derive „AndhraBank‟ and „StateBank‟ as sub classes. This is called

single inheritance.

PYTHON PROGRAMMING UNIT-5

Page 5.11

Example:
class Bank:

cash = 100

@classmethod
def balance(cls):

print cls.cash

class AndhraBank(Bank):

cash = 500

@classmethod
def balance(cls):

print "AndhraBank",cls.cash + Bank.cash

class StateBank(Bank):

cash = 300

@classmethod

def balance(cls):

print "StateBank",cls.cash +

Bank.cash a=AndhraBank()

a.balance() # displays AndhraBank 600
s=StateBank()
s.balance() #displays StateBank 400

b) Multiple inheritance

Deriving sub classes from multiple (or more than one) base classes is called

„multiple inheritance‟. All the members of super classes are by default available to

sub classes and the sub classes in turn can have their own members.

The best example for multiple inheritance is that parents are producing the

children and the children inheriting the qualities of the parents.

Example:
class Father:

def height(self):

print "Height is 5.8 incehs"
class Mother:

def color(self):

print "Color is brown"
class Child(Father, Mother):

pass

c=Child()

c.height() # displays Height is 5.8 incehs

c.color() # displays Color is brown

Problem in Multiple inheritance:

➢ If the sub class has a constructor, it overrides the super class constructor and
hence the super class constructor is not available to the sub class.

➢ But writing constructor is very common to initialize the instance variables.

➢ In multiple inheritance, let‟s assume that a sub class „C‟ is derived from two

super classes „A‟ and „B‟ having their own constructors. Even the sub class „C‟

also has its constructor.

PYTHON PROGRAMMING UNIT-5

Page 5.12

Example-1:
class A(object):

def init (self):
print "Class A" Output:

class B(object): Class A

def init (self): Class C

print "Class B"
class C(A,B,object):

def init (self):

super(). init ()

print "Class C"
c1= C()

Example-2:
class A(object):

def init (self):
super(). init ()

print "Class A" Output:
class B(object): Class B

def init (self): Class A

super(). init () Class C

print "Class B"

class C(A,B,object):

def init (self):

super(). init ()

print "Class C"
c1= C()

Method Overriding:

When there is a method in the super class, writing the same method in the sub class so

that it replaces the super class method is called „method overriding‟. The programmer

overrides the super class methods when he does not want to use them in sub class.

Example:
import math
class square:

def area(slef, r):

print "Square area=",r * r
class Circle(Square):

def area(self, r):

print "Circle area=", math.pi * r * r
c=Circle()

c.area(15) # displays Circle area= 706.85834

Data hiding:

An object's attributes may or may not be visible outside the class definition. You need

to name attributes with a double underscore prefix, and those attributes then are not be

directly visible to outsiders.

Example:

class JustCounter:

 secretCount = 0
def count(self):

self. secretCount += 1

print self. secretCount

counter = JustCounter()

counter.count()

counter.count()

print counter. secretCount

PYTHON PROGRAMMING UNIT-5

Page 5.13

When the above code is executed, it produces the following result:
1

2

Traceback (most recent call last):

File "C:/Python27/JustCounter.py", line 9, in <module>

print counter. secretCount
AttributeError: JustCounter instance has no attribute ' secretCount'

Python protects those members by internally changing the name to include the class

name. You can access such attributes as object._className attrName. If you would replace

your last line as following, then it works for you:
.........................

print counter._JustCounter secretCount

When the above code is executed, it produces the following result:

1
2

2

Errors and Exceptions:
As human beings, we commit several errors. A software developer is also a human

being and hence prone to commit errors wither in the design of the software or in writing the

code. The errors in the software are called „bugs‟ and the process of removing them are called

„debugging‟. In general, we can classify errors in a program into one of these three types:

a) Compile-time errors

b) Runtime errors

c) Logical errors

a) Compile-time errors

These are syntactical errors found in the code, due to which a program fails to

compile. For example, forgetting a colon in the statements like if, while, for, def, etc.

will result in compile-time error. Such errors are detected by python compiler and the

line number along with error description is displayed by the python compiler.

Example: A Python program to understand the compile-time error.

a = 1

if a == 1

print “hello”

Output:

File ex.py, line 3

If a == 1

^

SyntaxError: invalid syntax

b) Runtime errors

When PVM cannot execute the byte code, it flags runtime error. For example,

insufficient memory to store something or inability of PVM to execute some

statement come under runtime errors. Runtime errors are not detected by the python

compiler. They are detected by the PVM, Only at runtime.

Example: A Python program to understand the compile-time error.

print "hai"+25

PYTHON PROGRAMMING UNIT-5

Page 5.14

Output:

Traceback (most recent call last):

File "<pyshell#0>", line 1, in <module>

print "hai"+25

TypeError: cannot concatenate 'str' and 'int' objects

c) Logical errors

These errors depict flaws in the logic of the program. The programmer might

be using a wrong formula of the design of the program itself is wrong. Logical errors

are not detected either by Python compiler of PVM. The programme is solely

responsible for them. In the following program, the programmer wants to calculate

incremented salary of an employee, but he gets wrong output, since he uses wrong

formula.

Example: A Python program to increment the salary of an employee by 15%.
def increment(sal):

sal = sal * 15/100

return sal
sal = increment(5000)

print “Salary after Increment is”, sal

Output:
Salary after Increment is 750

From the above program the formula for salary is wrong, because only the

increment but it is not adding it to the original salary. So, the correct formula would

be:
sal = sal + sal * 15/100

✓ Compile time errors and runtime errors can be eliminated by the programmer by
modifying the program source code.

✓ In case of runtime errors, when the programmer knows which type of error occurs, he

has to handle them using exception handling mechanism.

Exceptions:
➢ An exception is a runtime error which can be handled by the programmer.

➢ That means if the programmer can guess an error in the program and he can do

something to eliminate the harm caused by that error, then it is called an „exception‟.

➢ If the programmer cannot do anything in case of an error, then it is called an „error‟

and not an exception.

➢ All exceptions are represented as classes in python. The exceptions which are already

available in python are called „built-in‟ exceptions. The base class for all built-in

exceptions is „BaseException‟ class.

➢ From BaseException class, the sub class „Exception‟ is derived. From Exception

class, the sub classes „StandardError‟ and „Warning‟ are derived.
➢ All errors (or exceptions) are defined as sub classes of StandardError. An error should

be compulsory handled otherwise the program will not execute.

➢ Similarly, all warnings are derived as sub classes from „Warning‟ class. A warning

represents a caution and even though it is not handled, the program will execute. So,

warnings can be neglected but errors cannot neglect.

➢ Just like the exceptions which are already available in python language, a programmer

can also create his own exceptions, called „user-defined‟ exceptions.

➢ When the programmer wants to create his own exception class, he should derive his

class from Exception class and not from „BaseException‟ class.

PYTHON PROGRAMMING UNIT-5

Page 5.15

Exception Handling:
➢ The purpose of handling errors is to make the program robust. The word „robust‟ means

„strong‟. A robust program does not terminate in the middle.

➢ Also, when there is an error in the program, it will display an appropriate message to the

user and continue execution.
➢ Designing such programs is needed in any software development.

➢ For that purpose, the programmer should handle the errors. When the errors can be

handled, they are called exceptions.
To handle exceptions, the programmer should perform the following four steps:

Step 1: The programmer should observe the statements in his program where there may be a

possibility of exceptions. Such statements should be written inside a „try‟ block. A try block

looks like as follows:

try:

statements

The greatness of try block is that even if some exception arises inside it, the program

will not be terminated. When PVM understands that there is an exception, it jumps into an
„except‟ block.

Step 2: The programmer should write the „except‟ block where he should display the

exception details to the user. This helps the user to understand that there is some error in the

program. The programmer should also display a message regarding what can be done to

avoid this error. Except block looks like as follows:

except exceptionname:

statements

The statements written inside an except block are called „handlers‟ since they handle the

situation when the exception occurs.

PYTHON PROGRAMMING UNIT-5

Page 5.16

Step 3: If no exception is raised, the statements inside the „else‟ block is executed. Else block
looks like as follows:

else:

statements

Step 4: Lastly, the programmer should perform clean up actions like closing the files and

terminating any other processes which are running. The programmer should write this code in

the finally block. Finally block looks like as follows:

finally:

statements

The speciality of finally block is that the statements inside the finally block are

executed irrespective of whether there is an exception or not. This ensures that all the opened

files are properly closed and all the running processes are properly terminated. So, the data in

the files will not be corrupted and the user is at the safe-side.

Here, the complete exception handling syntax will be in the following format:
try:

statements
except Exception1:

statements
except Exception2:

statements

else:

statements

finally:
statements

The following points are followed in exception handling:

✓ A single try block can be followed by several except blocks.

✓ Multiple except blocks can be used to handle multiple exceptions.

✓ We cannot write except blocks without a try block.

✓ We can write a try block without any except blocks.

✓ Else block and finally blocks are not compulsory.

✓ When there is no exception, else block is executed after try block.

✓ Finally block is always executed.

Example: A python program to handle IOError produced by open() function.
import sys

try:

f = open('myfile.txt','r')
s = f.readline()

print s
f.close()

except IOError as e:

print "I/O error", e.strerror
except:

print "Unexpected error:"

Output:

I/O error No such file or directory

In the if the file is not found, then IOError is raised. Then „except‟ block will display

a message: „I/O error‟. if the file is found, then all the lines of the file are read using

readline() method.

PYTHON PROGRAMMING UNIT-5

Page 5.17

List of Standard Exceptions

Exception Name Description

Exception Base class for all exceptions

StopIteration
Raised when the next() method of an iterator does not point to
any object.

SystemExit Raised by the sys.exit() function.

StandardError
Base class for all built-in exceptions except StopIteration and
SystemExit.

ArithmeticError Base class for all errors that occur for numeric calculation.

OverflowError
Raised when a calculation exceeds maximum limit for a
numeric type.

FloatingPointError Raised when a floating point calculation fails.

ZeroDivisionError
Raised when division or modulo by zero takes place for all
numeric types.

AssertionError Raised in case of failure of the Assert statement.

AttributeError Raised in case of failure of attribute reference or assignment.

EOFError
Raised when there is no input from either the raw_input() or
input() function and the end of file is reached.

ImportError Raised when an import statement fails.

KeyboardInterrupt
Raised when the user interrupts program execution, usually by

pressing Ctrl+c.

LookupError Base class for all lookup errors.

IndexError Raised when an index is not found in a sequence.

KeyError Raised when the specified key is not found in the dictionary.

NameError
Raised when an identifier is not found in the local or global
namespace.

UnboundLocalError
Raised when trying to access a local variable in a function or
method but no value has been assigned to it.

EnvironmentError
Base class for all exceptions that occur outside the Python

environment.

IOError
Raised when an input/ output operation fails, such as the print
statement or the open() function when trying to open a file that
does not exist.

OSError Raised for operating system-related errors.

SyntaxError Raised when there is an error in Python syntax.

IndentationError Raised when indentation is not specified properly.

SystemError
Raised when the interpreter finds an internal problem, but when
this error is encountered the Python interpreter does not exit.

SystemExit
Raised when Python interpreter is quit by using the sys.exit()
function. If not handled in the code, causes the interpreter to
exit.

TypeError
Raised when an operation or function is attempted that is

invalid for the specified data type.

ValueError
Raised when the built-in function for a data type has the valid

type of arguments, but the arguments have invalid values
specified.

RuntimeError Raised when a generated error does not fall into any category.

NotImplementedError
Raised when an abstract method that needs to be implemented
in an inherited class is not actually implemented.

PYTHON PROGRAMMING UNIT-5

Page 5.18

The Except Block:

The „except‟ block is useful to catch an exception that is raised in the try block. When

there is an exception in the try block, then only the except block is executed. it is written in

various formats.

1. To catch the exception which is raised in the try block, we can write except block with

the Exceptionclass name as:

except Exceptionclass:

2. We can catch the exception as an object that contains some description about the

exception.

except Exceptionclass as obj:

3. To catch multiple exceptions, we can write multiple catch blocks. The other way is to

use a single except block and write all the exceptions as a tuple inside parantheses as:
except (Exceptionclass1, Exceptionclass2,):

4. To catch any type of exception where we are not bothered about which type of

exception it is, we can write except block without mentioning any Exceptionclass name

as:

Example:

Output:

except:

try:

f = open('myfile.txt','w')

a=input("Enter a value ")
b=input("Enter a value ")
c=a/float(b)

s = f.write(str(c))

print “Result is stored”
except ZeroDivisionError:

print "Division is not possible"

except:

print "Unexpected error:"

finally:

 lose()

Enter a value 1

Enter a value 5

Result is stored

Raising an Exception

You can raise exceptions in several ways by using the raise statement. The general

syntax for the raise statement is as follows.

raise [Exception [, args [, traceback]]]

Here, Exception is the type of exception (For example, NameError) and argument is a

value for the exception argument. The argument is optional; if not supplied, the exception

argument is None.

For Example, If you need to determine whether an exception was raised but don‟t

intend to handle it, a simpler form of the raise statement allows you to re-raise the exception:

try:

raise NameError('HiThere')

except NameError:

print 'An exception flew by!'

raise

PYTHON PROGRAMMING UNIT-5

Page 5.19

User-Defined Exceptions:
➢ Like the built-in exceptions of python, the programmer can also create his own

exceptions which are called „User-defined exceptions‟ or „Custom exceptions‟. We know

Python offers many exceptions which will raise in different contexts.

➢ But, there may be some situations where none of the exceptions in Python are useful for

the programmer. In that case, the programme has to create his/her own exception and

raise it.

➢ For example, let‟s take a bank where customers have accounts. Each account is

characterized should by customer name and balance amount.

➢ The rule of the bank is that every customer should keep minimum Rs. 2000.00 as balance

amount in his account.

➢ The programmer now is given a task to check the accounts to know every customer is

maintaining minimum balance of Rs. 2000.00 or not.

➢ If the balance amount is below Rs. 2000.00, then the programmer wants to raise an

exception saying „Balance amount is less in the account of so and so person.‟ This will

be helpful to the bank authorities to find out the customer.

➢ So, the programmer wants an exception that is raised when the balance amount in an
account is less than Rs. 2000.00. Since there is no such exception available in python, the

programme has to create his/her own exception.

➢ For this purpose, he/she has to follow these steps:

1. Since all exceptions are classes, the programme is supposed to create his own
exception as a class. Also, he should make his class as a sub class to the in-built

„Exception‟ class.

class MyException(Exception):

def init (self, arg):

self.msg = arg

Here, MyException class is the sub class for „Exception‟ class. This class has a

constructor where a variable „msg‟ is defined. This „msg‟ receives a message passed

from outside through „arg‟.

2. The programmer can write his code; maybe it represents a group of statements or a

function. When the programmer suspects the possibility of exception, he should raise

his own exception using „raise‟ statement as:

raise MyException(‘message’)

Here, raise statement is raising MyException class object that contains the given

„message‟.

3. The programmer can insert the code inside a „try‟ block and catch the exception using

„except‟ block as:

try:

code

except MyException as me:

print me

Here, the object „me‟ contains the message given in the raise statement. All these
steps are shown in below program.

PYTHON PROGRAMMING UNIT-5

Example:

Output:

class MyException(Exception):

def init (self, arg):

self.msg = arg

def check(dict):
for k,v in dict.items():

print "Name=",k,"Balance=",v
if v<2000.00:

raise MyException("Balance amount is less in the account of "+k)

bank={"ravi":5000.00,"ramu":8500.00,"raju":1990.00}

try:

check(bank)

except MyException as me:

print me.msg

Name= ramu Balance= 8500.0

Name= ravi Balance= 5000.0

Name= raju Balance= 1990.0
Balance amount is less in the account of raju

T.MOTHILAL, ASST.PROF Page 5.20

Copy protected with PDF-No-Copy.com

http://www.online-pdf-no-copy.com/

