
1

DATASTRUCTURES

UNIT–IV

TREES

A tree is a non-linear data structure that is used to represents

hierarchical relationships between individual data items.

“A tree is a finite set of one or more nodes such that, there is a

specially designated node called root. The remaining nodes are partitioned

into n>=0 disjoint sets T1,T2,..Tn, where each of these set is a tree T1,…Tn
are called the subtrees of the root.”

REPRESENTATION OF TREES

Root: An Unique node in the tree to which subtrees are attached.

Branch: Branch is the link between the parent and its child.

Leaf: A node with no children is called a leaf.

Subtree: A Subtree is a subset of a tree that is itself a tree.

Degree: The total number of sub-trees of a node is called the degree of the
node. The maximum degree in the tree is called degree of a tree.

Parent: The node having the sub-branches.

Children: The nodes branching from a particular node X are called children of

X.

Siblings: Children of the same parent are said to be siblings.

Ancestors: Ancestors of a node are all the nodes along the path from root to

that node. Hence root is ancestor of all the nodes in the tree.

Level:

Level of a node is defined by letting root at level one. If a node is at level L, then

its children are at level L + 1.

Height or depth: The height or depth of a tree is defined to be the maximum

level of any node in the tree.

Climbing: The process of traversing the tree from the leaf to the root is called
climbing the tree.

Descending: The process of traversing the tree from the root to the leaf is

2

Called descending the tree.

Forest: It is a collection of disjoint trees. It is obtained by removing root.

Non–Terminals: The nodes other than root node and leaf nodes.

Predecessor: Consider the node X, then the node previous to node X is called
predecessor node.

Successor: Consider the node X, then the node that comes next to node X is

called successor node.

BINARYTREES

A binary tree is a tree either empty or consists two disjoint binary
trees called the left subtree and right subtree.

Left child: The node present to the left of the parent node is called the left

child.

Right child: The node present to the right to the parent node is called the

right child.

3

TYPES OF BINARY TREES

Skewed Binary tree

If the new nodes in the tree are added only to one side of the binary tree
then it is a skewed binary tree.

Strictly binary tree

If the binary tree has each node consisting of either two nodes or no

nodes at all, then it is called a strictly binary tree.

Complete binary tree
 A complete binary tree is a binary tree in which every level except
possibly the last is completely filled, and all nodes are as far left.

Fully binary tree

 A fully binary tree is a binary tree in which every

node other than the leaves has two children.

THE ABSTRACT DATA TYPE OF BINARY TREES

ADT Binary _tree

{

instances:

A finite set of nodes either empty or consisting of a root node,left

Binary tree, right Binary tree
operations:

for all bt,bt1,bt2 ,Bin tree, item ϵelement

Bin tree create()

Boolean Is
empty(bt)

- creates an empty binary tree

- if(bt==empty) return true else return false

Bin tree Make bt((bt1,item,bt2)-return binary tree whose left sub tree is

bt1 and whose right sub tree is bt2 and

whose root node contains data item.
Bin tree Lchild(bt) -if(Is empty(bt) return error else return

the left sub tree of bt.

Bin tree Rchild(bt) -if(Is empty(bt) return error else return

the right sub tree of bt.

Bin tree Data(bt) -if(Is empty(bt) return error else return
the data in the root node of bt.

}

PROPERTIES OF BINARY TREES

Some of the important properties of a binary tree are as follows:

1.The maximum number of nodes on level i of a binary tree is 2i-1,i>=1

2.The maximum number of nodes in a binary tree of depth k is 2k-1,
k>=1.

3.The total numberofedges in a full binary tree with n node is n- 1.

BINARY TREE REPRESENTATION

There are two ways in which a binary tree can be represented. They are:

5

1.Array representation of binary trees.

2.Linked representation of binary trees.

1. ARRAY REPRESENTATION OF BINARYTREES

When arrays are used to represent the binary trees, then an array of

size 2k is declared, where k is the depth of the tree.For example if the depth of

the binary tree is 3, then maximum 23-1=7 elements will be present in the
node and hence the array size will be 8.This is because the elements are
stored from position one leaving the position 0 vacant.

But an array of bigger size is declared so that later new nodes can be

added to the existing tree.The following binary tree can be represented using

arrays as shown.

The root element is always stored in position1.The left child of node i is
stored in position 2i and right child of node is stored in position 2i+1. The
formulas for identifying the parent, left child and right child of a particular

node.

Parent (i)=i/2,if I≠1.If i=1then I is the root node and root does not has

parent.

Leftchild (i)=2i,if 2i≤2n,where n is the maximum number of elements in the
tree. If 2i > n,then i has no left child.
Rightchild (i)=2i+1,if 2i+1≤2n.If 2i+1>n,then i has no right child.

The empty positions in the tree where no node is connected are

represented in the array using -1,indicating absence of a node.Using the
formula,we can see that for a node 3,the parent is 3/2 is1.Referring to the

array locations, we find that 50 is the parent of 40.The left child of node 3 is

6

2*3 is 6.But the position 6 consists of -1 indicating that the left child does

note x is t for the node 3.Hence 50 does not have a left child.The right child of
node 3 is 2*3+1 is 7.The position 7 in the array consists of 20.Hence, 20 is
the right child of 40.
2. LINKED REPRESENTATION:

In linked representation of binary trees, instead of arrays, pointers are
used to connect the various nodes of the tree.Hence each node of the binary

tree consists of three parts namely, the data, left and right.The data part
stores the data, left part stores the address of the left child and the right part

stores the address of the right child.

Struct binary tree

{

Struct binary tree *Left Child;

int data;

Struct binary tree *Right Child;

};

Struct binary tree node;

node *root = NULL;

Logically the binary tree in linked form can be represented as shown.

The pointers storing NULL value indicates that there is no node attached it.

Traversing through this type of representation is very easy.

The left child of a particular node can be accessed by following the left link of
that node and the right child of a particular node can be accessed by

following the right link of that node.

7

BINARY TREE TRAVERSALS

A tree traversal is a method of visiting every node in the tree.By visit,

we mean that some type of operation is performed.For example,we may want

to print the contents of the nodes.There are three standard ways of traversing
a binary tree T with root R.They are:

(i) Pre order Traversal

(ii) In order Traversal

(iii) Post order Traversal

Pre order Traversal

(1) Process the root R.

(2) Traverse the left sub tree of R in preorder.
(3) Traverse the right sub tree of R in preorder.

In order Traversal

(1) Traverse the left sub tree of R in inorder.
(2) Process the root R.

(3) Traverse the right sub tree of R in inorder.

Post order Traversal

(1) Traverse the left sub tree of R in post order.
(2) Traverse the right subtree of R in post order.

(3) Process the root R.

Observe that each algorithm m contains the same three steps,and that
the left subtree of Risal ways traversed before the right subtree.The difference

between the algorithms is the time at which the root R is processed.The three

algorithms are sometimes called the node-left-right (NLR)traversal,the left-

node-right(LNR)traversal and the left-right-node (LRN) traversal. Traversal
algorithms using recursive approach.

Pre order Traversal

In the pre order traversal, the node element is visited first and then the
left sub tree of the node and then the right sub tree of the node is visited.

Consider we have 6 nodes in the tree A,B,C,D,E,F.The traversal always starts
from the root of the tree.The node A is the root and hence it is visited first.

The value at this node is processed.

Now we check if there existsany leftchild for this node if so apply the
pre order procedure on the left subtree.Now check if there is any right sub

tree for the node A,the pre order procedure is applied on the right

8

sub tree.Consider the left sub tree for node A,B is now considered as the root

of the left subtree of A and pre order procedure is applied.Hence we find that
B is processed next and then it is checked if B has a left subtree. This
recursive method is continued until all the nodes are visited.

9

Algorithm for

Preorder
PREORDER(ROOT)
Temp = ROOT

If temp = NULL

return

displaytemp -> data

Iftemp - > left ≠NULL

PREORDER (temp - > left)
If temp -> right≠ NULL

PREORDER (temp - > right)

In order Traversal

In the In order traversal method,the left subtree of the node element is

visited first and then the node element is processed and at last the right sub
tree of the node element is visited.Forexample,the traversal starts with the

root of the binary tree.The node A is the root and it is checked if it has the

left sub tree.Then the in order traversal procedure is applied on the left
subtree of the node A.

Now we find that node D does not have left subtree.Hence the node D is
processed and then it is checked if here is a right sub tree for node D. Since

there is no right sub tree,the control returns back to the previous function
which was applied on B.Since left of B is already visited,now B is processed.It

is checked if B has the right subtree.If so apply the in roder traversal method
on the right sub tree of the node B.This recursive procedure is followed till all

the nodes are visited.

10

Algorithm for In orderINORDER(ROOT) Temp = ROOT

If temp = NULL

return

Iftemp - > left≠ NULL

INORDER (temp- >left)

displaytemp -> data

If temp -> right≠NULL

INORDER (temp- >right)

Post order Traversal

In the post order traversal method the left subtree is visited first,then

the right sub tree and at last the node element is processed.Forexample,A

11

is the root node.Since A has the left sub tree the post order traversal method

is applied recursively on the left sub tree of A.Then when left sub tree of A is
completely is processed, the post order traversal method is recursively
applied on the right sub tree of the node A.If right sub tree is completely

processed, then the node element A is processed.

Algorithm for

Postorder
POSTORDER(ROOT)

Temp = ROOT

If temp = NULL

return

12

Iftemp - > left≠ NULL

POSTORDER (temp-> left)
If temp -> right≠NULL

POSTORDER (temp- > right)

displaytemp -> data

EXPRESSION TREES

The trees are many times used to represent an expression and if done

so,those types of trees are called expression trees.The following expression is

represented using the binary tree,where the leaves represent the operands
and the internal nodes representthe operators.

B ^ A + B * A – C

If the expression tree is traversed using pre order,in order and post order

traversal methods, then we get the expressions in prefix, infix and postfix

forms as shown.

- + ^ B A * B A - C
B ^ A + B * A - CB

A ^ B A * C –

THREADED BINARY TREES

In binary tree, the leaf nodes have no children.Therefore the left and

right fields of the leaf nodes are made NULL.But, NULL wastes memory space
so to avoid NULL in the node we will set threads.

THREADS

Threads are links that point to its predecessor node and successor
node. To construct threads we use the following rules.

 If ptr->left child is NULL, replace ptr->left child with a pointer to its

13

inorder predecessor of ptr

 If ptr -> right child is NULL, replace ptr -> right child with a pointer to

its in order successor of ptr

Let us consider the binary tree as follows

The corresponding threaded binary tree is as follows

Since INORDER Traversal for above binary tree : HDIBEAFCG

The structure of a threaded binary tree is as follows

struct threadedbtree

{

int leftthread, rightthread;

int data;

struct threadedbtree *leftchild;

struct threadedbtree *rightchild;

};

INORDER TRAVERSAL OF A THREADED BINARY TREE

The basic idea in inorder threaded binary tree is that the leftthread

should point to the predecessor and the right thread points to inorder

successor. The head node is the starting node and the root node of the trees
is attached to the left of the head node.

There are two additional fields in each node named as left thread and

rightthread set initially to 0.To explain about inorder thread traversing of a

14

binary tree let us consider the values for creating a threaded binary tree

10, 8, 6, 12, 9, 11, 14

Initially, create a head node of the tree

Now let us take the first value 10,this will be the root node and attached to

the left of head node as follows

The NULL links of the roots left and right will be pointedto the head node as

follows

Next comes 8 now 8 is compared with root as it is lessthan attach 8 as the

left child of the root 10.

15

new - > left = root- > left

new - > right = root
root - > left = new

root - > lth = 1

The left link of node 8 points to its inorder predecessor and right link of

the node 8 points to its inorder successor.

Similarly,the next node 6 is attached to the left of the node 8.The next
node is 12 when compared with the root node 10 it is greater so we attach the

node 12 to the right of the root node 10 which is as follows.

16

new - > right = root- > right

new - > left = root
root - >right = 1

root - > right = new

Similarly we construct the remaining the nodes to the threaded binary

tree by comparing with root node for the nodes 9, 11, 14 as follows

INSERTING A NODE INTO A THREADED BINARY TREE

Let us consider now how to insert the node into the threaded binary
tree. The case we consider here is inserting the node “r” as the right child of
a node “s”.The cases for insertion are

 If “s” has an empty right sub tree, then the insertion is simple as

shown below

17

 If the right subtree of “s” is not empty,then this right subtree is made

the right subtree of “r” after insertion.Then “r” becomes inorder

predecessor of a node that has leftthread == true and consequently

there is a thread which has to be updated to point to “r”.the node

containing this thread was previously the inorder successor of “s”.

HEAPS

PRIORITY QUEUES

Heaps are used to implement priority queues. In this type of queues the
element to be deleted is one with highest(lowest)priority. We can insert the

element at arbitrary priority can be inserted into the queue. The ADT of max
priority is as follows.

Abstract Datatype MaxPriorityQueue

{

instances:

A collection of n>0 elements, each element has a key

18

operations:

for all q ϵMaxPriorityQueue, item ϵElement, n ϵintegers

MaxPriorityQueuecreate()

Boolean Isempty(q,n)

- creates an empty dictionay

- if(n>0) return true else return false

Elementtop(q,n) -if(!isempty(q,n))return an instance of
the largest element in q else return

error.

Elementpop(q,n) -if(!isempty(q,n))return an instance of
the largest element in q and remove it

from the heap else return error.
MaxPriorityQueuepush(q,item,n)-insert item in to p q and return the

resulting priority queue.

}

EXAMPLE OF PRIORITY QUEUES

Consider that we are selling the services of a machine. Each user pays

a fixed amount per their use.
But the time needed by the each user is different. Now we want to

maximize the returns from the machine under the assumption that the

machine is not idle. This can be maintained by using a priority queue of all
persons waiting to use the machine. Whenever the machine becomes idle, the

user with the smallest time requirement is selected. Hence a min priority
queue is required.

If each user needs the same amount of time on the machine but they

are ready to pay different amounts for the service, then a priority queue

based on the amount of payment can be maintained. Whenever the machine
is idle then the user paying more amounts will be selected. This requires a

max priority queue.

DEFINITION OF A MAXHEAP

A maxheap is a complete binary tree that is also a maxtree.A max tree

is a tree in which the key value in each node is larger than the key values of

its children if any.

A minheap is a complete binary tree that is also a mintree.A min

19

tree is a tree in which the key value in each node is smaller than the key val

ues of its children if any.

INSERTION INTO A MAXHEAP

Let us consider a max heap of five elements.

When an element is added to this heap, the resulting is six element
heap and it is a complete binary tree. To determine the correct place for the

element to be inserted we use bubbling up process that begin at newnode and

move to the root. The node we want to insert bubbles up to ensure a max
heap.

If the element we want to insert is with key value1,it may be inserted as

the left child of 2.But if the key value we want to insert is 5then we cannot
insert as left child of 2 because heap property fails. So 2 is moved down as

left child and the place for 5 is the oldplace of 2.

20

DELETION FROM A MAXHEAP

When an element is to be deleted from the maxheap it is taken from the

root of the heap.For example, a deletion from the heap results in removal of

element 21 then the heap will have only five elements.

To do this were move the element in position 6. Now we have right

structure. But the root is vacant and the element 2 is not in the heap. If 2 is

inserted into the root then the result binary tree is notmax heap.

21

The element at the root should be largest in the tree a part from left

and right child. This element is 20.It is moves to the root and creates vacancy

at position 3. Since it has no children we insert 2 at this place.

BINARY SEARCH TREES

A dictionary is a collection of pairs, each pair has a key and an
associated item. We assume no two pairs have the same key. The ADT of a

dictionary is shown below

22

Abstract Datatype dictionary

{

instances:

a collection of pairs where n>0 each pair has a key and an

associated item

operations:

for all d ϵdictionary, item ϵ Item, k ϵkey, n ϵintegers

dictionary create() - creates an empty dictionary

Boolean Isempty(bt)

Elementsearch(d,k)

Element delete(d,k)

Void insert(d,item,k)
}

- if(n>0) return true else return false

-return item with key k otherwise return NULL

if no such element.

- delete and return item with key k.
- insert item with key k into d.

A Binary Search Tree (BST) is a binary tree. It may be empty or it may if

not empty than it satisfies the following properties.
 Each node has exactly one key and the keys in the tree are distinct

 The keys if any in the left sub tree are smaller than the key in the root

 The keys if any in the right sub tree are larger than the key in the root

 The left and right sub trees are also binary search trees.

The reason why we go for a Binary Search tree is
searching efficiency. The average case time complexity
operation in a binary search tree is O(log n).

To improve the
of the search

Consider the following list of numbers. A binary search tree can be
constructed using this list of numbers, as shown.

38, 14, 8, 23, 18, 20, 56, 45, 82,70

23

Initially 38 is taken and placed as the root node. The next number 14 is

taken and compared with 38. As 14 is lesser than 38, it is placed as the left

child of 38. Now the third number 8 is taken and compared starting from the
root node 38. Since is 8 is less than 38 move towards left of 38. Now 8 is

compared with 14, and as it is less than 14 and also14 does not have any

child, 8 is attached as the left child of 14.

This process is repeated until all the numbers are inserted in to the
tree. Remember that if a number to be inserted is greater than a particular
node element, then we move towards the right of the node and start

comparing again.

SEARCH OPERATION IN A BINARY SEARCH TREE

The search operation on a BST returns the address of the node where

the element is found. The pointer LOC is used to store the address of the
node where the element is found. The pointer PAR is used to point to the

parent of LOC. Initially the pointer TEMP is made to point to the root node.

Let us search for a value 70 in the following BST. Let k=70.The k value
is compared with 38.As k is greater that 38, move to the right child of 38, i.e.,

56. K is greater than 56 and hence we move to the right child of 56, which is

82.Now since k is lesser than 82, temp is moved to the left child of 82. The k
value matches here and hence the address of this node is stored in the

pointer LOC.

Every time the temp pointer is moved to the next node, the current

node is made pointed by PAR. Hence we get the address of that node where
the k value is found, and also the address of its parent node though PAR.

24

AlgorithmSEARCH(ROOT,k)

temp=ROOT,
par= NULL,
loc = NULL
while temp≠ NULL

If k =temp - >data
loc=temp

break
If k <temp - >data

par=temp
temp=temp- >left
 else

par=temp

temp=temp->right

25

INSERT INTO A BINARYSEARCH TREE

The BST itself is constructed using the insert operation described
below. Consider the following list of numbers. A binary tree can be

constructed using this list of numbers.

38, 14, 8, 23, 18, 20, 56, 45, 82.

For example we want to insert the element is 70.While inserting a node

in to the binary search tree first we have find the appropriate position in the
binary search tree. We start comparing the node value 70 with the root if it is

greater than the root then it is inserted on the right branch of the root else on

the left branch of the root.

Now compare the node 70 with root node 38. As node 70 is greater than

the root 38 we will move to the right subtree. Now compare node 70 with the

node 56 as it greater then move to right and compare node 70 with node 82

as it lessthan the node 82 we attach 70 as left child of node82. The diagram
is shown below.

26

Algorithm INSERT(ROOT,k)

1.Read the value for the node which is to be created and store it in a node

called new.

2. Initially if(root!=NULL) then root = new
3. Again read the next value of node created in new
4.If(new->data<root->data)then attach the newnode as a left child of root

otherwise attach the new node as a right child of root

5.Repeat step3 and 4 for constructing required binary search tree completely.

DELETION FROM A BINARYSEARCHTREE

The deletion of a node from a binary search tree occurs with three
possibilities

1.Deletion of a leaf node.

2.Deletion of a node having one child.

3.Deletion of a node having two children.

1.Deletion of a leaf node

This is the simplest deletion in which we can simple remove it from

the tree. For example consider the binary search tree as follows.

27

From the above tree diagram the node we want to delete is the node 8,

then we will set the left pointer of its parent (node14) to NULL. Then after
deletion the binary search tree is as follows.

Algorithm

if(temp - > left == NULL && temp- > right == NULL)

if(parent - > left == temp)
parent - > left = NULL

else

parent - > right = NULL

2.DeletionOf a node having one child

The node if we wantto delete is having onlyone child(i.e. either left or

right child), delete it and replace it with its child.From the diagram the node
we want to delete is having the value

23 then we simple copy node 18 at the place of 23 and set thenode free.

Algorithm

if(temp - > left !=NULL && temp - > right == NULL)

if(parent - > left ==temp)

parent - > left = temp - > left

else
parent - > right = temp - > left

temp == NULL

delete temp

28

3.Deletion of a node having two children

Suppose the node to be deleted is called N.Were place the value of N
with either its in-order successor (the left-most child of the right subtree) or

the in-order precedessor (the right-most child of the the left subtree).
The node if we want to delete is having two children .From the diagram

the node we want to delete is having the value 23 then we find the inorder
successor of the node 23 and it is copied at the place of 23 and set the node

25 left pointer to NULL.

Algorithm

if(temp - > left != NULL && temp -> right != NULL)

parent = temp

temp_succ = temp - > right

while(temp_succ - > left != NULL)

parent = temp_succ

temp_succ = temp_succ- > left

temp - > data = temp_succ- > data
parent- > right = NULL

HEIGHT OF A BINARYSEARCH TREE

The height of a binary search tree with “n” elements can become as

large as “n”. For instance, when the values like1,2,--------n are inserted in to
the empty binary search tree. If insertions and deletions are made at random

then the height of the binary search tree is O(log n) on average.

Search trees with worst case height of O(logn) are called balanced

search trees. These trees permit insertions, deletions and searches to be
performed at time O(h).for example, AVLtrees, Red/Black Trees, B-Trees, 2 –

3 Trees etc.
