
PYTHON PROGRAMMING UNIT-3

Page 3.1

A sequence is a datatype that represents a group of elements. The purpose of any

sequence is to store and process group elements. In python, strings, lists, tuples and

dictionaries are very important sequence datatypes.

LIST:

A list is similar to an array that consists of a group of elements or items. Just like an

array, a list can store elements. But, there is one major difference between an array and a list.

An array can store only one type of elements whereas a list can store different types of

elements. Hence lists are more versatile and useful than an array.

Creating a List:

Creating a list is as simple as putting different comma-separated values between

square brackets.

student = [556, “Mothi”, 84, 96, 84, 75, 84]

We can create empty list without any elements by simply writing empty square

brackets as: student=[]

We can create a list by embedding the elements inside a pair of square braces []. The

elements in the list should be separated by a comma (,).

Accessing Values in list:

To access values in lists, use the square brackets for slicing along with the index or

indices to obtain value available at that index. To view the elements of a list as a whole, we

can simply pass the list name to print function.

Ex:

student = [556, “Mothi”, 84, 96, 84, 75, 84]

print student

print student[0] # Access 0th element

print student[0:2] # Access 0th to 1st elements

print student[2:] # Access 2nd to end of list elements

print student[:3] # Access starting to 2nd elements

print student[:] # Access starting to ending elements

print student[-1] # Access last index value

print student[-1:-7:-1] # Access elements in reverse order

Output:

[556, “Mothi”, 84, 96, 84, 75, 84]

Mothi

[556, “Mothi”]

[84, 96, 84, 75, 84]

[556, “Mothi”, 84]

[556, “Mothi”, 84, 96, 84, 75, 84]

84

[84, 75, 84, 96, 84, “Mothi”]

PYTHON PROGRAMMING UNIT-3

Page 3.2

Creating lists using range() function:

We can use range() function to generate a sequence of integers which can be stored in

a list. To store numbers from 0 to 10 in a list as follows.

numbers = list(range(0,11))

print numbers # [0,1,2,3,4,5,6,7,8,9,10]

To store even numbers from 0 to 10in a list as follows.

numbers = list(range(0,11,2))

print numbers # [0,2,4,6,8,10]

Looping on lists:

We can also display list by using for loop (or) while loop. The len() function useful

to know the numbers of elements in the list. while loop retrieves starting from 0th to the last

element i.e. n-1

Ex-1:

numbers = [1,2,3,4,5]

for i in numbers:

print i,

Output:

1 2 3 4 5

Updating and deleting lists:

Lists are mutable. It means we can modify the contents of a list. We can append,

update or delete the elements of a list depending upon our requirements.

Appending an element means adding an element at the end of the list. To, append a

new element to the list, we should use the append() method.

Example:

lst=[1,2,4,5,8,6]

print lst # [1,2,4,5,8,6]

lst.append(9)

print lst # [1,2,4,5,8,6,9]

Updating an element means changing the value of the element in the list. This can be

done by accessing the specific element using indexing or slicing and assigning a new value.

Example:

lst=[4,7,6,8,9,3]

print lst # [4,7,6,8,9,3]

lst[2]=5 # updates 2nd element in the list

print lst # [4,7,5,8,9,3]

lst[2:5]=10,11,12 # update 2nd element to 4th element in the list

print lst # [4,7,10,11,12,3]

PYTHON PROGRAMMING UNIT-3

Page 3.3

Deleting an element from the list can be done using ‘del’ statement. The del statement

takes the position number of the element to be deleted.

Example:

lst=[5,7,1,8,9,6]

del lst[3] # delete 3rd element from the list i.e., 8

print lst # [5,7,1,9,6]

If we want to delete entire list, we can give statement like del lst.

Concatenation of Two lists:

We can simply use „+‟ operator on two lists to join them. For example, „x‟ and „y‟ are

two lists. If we wrte x+y, the list „y‟ is joined at the end of the list „x‟.

Example:

x=[10,20,32,15,16]

y=[45,18,78,14,86]

print x+y # [10,20,32,15,16,45,18,78,14,86]

Repetition of Lists:

We can repeat the elements of a list „n‟ number of times using „*‟

operator. x=[10,54,87,96,45]

print x*2 # [10,54,87,96,45,10,54,87,96,45]

Membership in Lists:

We can check if an element is a member of a list by using „in‟ and „not in‟ operator. If

the element is a member of the list, then „in‟ operator returns True otherwise returns False. If

the element is not in the list, then „not in‟ operator returns True otherwise returns False.

Example:

x=[10,20,30,45,55,65]

a=20

print a in x # True

a=25

print a in x # False

a=45

print a not in x # False

a=40

print a not in x # True

Aliasing and Cloning Lists:

Giving a new name to an existing list is called ‘aliasing’. The new name is called

‘alias name’. To provide a new name to this list, we can simply use assignment operator (=).

Example:

x = [10, 20, 30, 40, 50, 60]

y=x # x is aliased as y

print x # [10,20,30,40,50,60]

print y # [10,20,30,40,50,60]

x[1]=90 # modify 1st element in x

print x # [10,90,30,40,50,60]

print y # [10,90,30,40,50,60]

PYTHON PROGRAMMING UNIT-3

Page 3.4

In this case we are having only one list of elements but with two different names „x‟

and „y‟. Here, „x‟ is the original name and „y‟ is the alias name for the same list. Hence, any

modifications done to x‟ will also modify „y‟ and vice versa.

Obtaining exact copy of an existing object (or list) is called „cloning‟. To Clone a list,

we can take help of the slicing operation [:].

Example:

x = [10, 20, 30, 40, 50, 60]

y=x[:] # x is cloned as y

print x # [10,20,30,40,50,60]

print y # [10,20,30,40,50,60]

x[1]=90 # modify 1st element in x

print x # [10,90,30,40,50,60]

print y # [10,20,30,40,50,60]

When we clone a list like this, a separate copy of all the elements is stored into „y‟.

The lists „x‟ and „y‟ are independent lists. Hence, any modifications to „x‟ will not affect „y‟ and

vice versa.

Methods in Lists:

Method Description

lst.index(x) Returns the first occurrence of x in the list.

lst.append(x) Appends x at the end of the list.

lst.insert(i,x) Inserts x to the list in the position specified by i.

lst.copy() Copies all the list elements into a new list and returns it.

lst.extend(lst2) Appends lst2 to list.

lst.count(x) Returns number of occurrences of x in the list.

lst.remove(x) Removes x from the list.

lst.pop() Removes the ending element from the list.

lst.sort() Sorts the elements of list into ascending order.

lst.reverse() Reverses the sequence of elements in the list.

lst.clear() Deletes all elements from the list.

max(lst) Returns biggest element in the list.

min(lst) Returns smallest element in the list.

PYTHON PROGRAMMING UNIT-3

Page 3.5

Example:

lst=[10,25,45,51,45,51,21,65]

lst.insert(1,46)

print lst # [10,46,25,45,51,45,51,21,65]

print lst.count(45) # 2

Finding Common Elements in Lists:

Sometimes, it is useful to know which elements are repeated in two lists. For

example, there is a scholarship for which a group of students enrolled in a college. There is

another scholarship for which another group of students got enrolled. Now, we wan to know

the names of the students who enrolled for both the scholarships so that we can restrict them

to take only one scholarship. That means, we are supposed to find out the common students

(or elements) both the lists.

First of all, we should convert the lists into lists into sets, using set() function, as:

set(list). Then we should find the common elements in the two sets using intersection()

method.

Example:

scholar1=[„mothi‟, „sudheer‟, „vinay‟, „narendra‟, „ramakoteswararao‟

]scholar2=[„vinay‟, „narendra‟, „ramesh‟]

s1=set(scholar1)

s2=set(scholar2)

s3=s1.intersection(s2)

common =list(s3)

print common # display [„vinay‟, „narendra‟]

Nested Lists:

A list within another list is called a nested list. We know that a list contains several

elements. When we take a list as an element in another list, then that list is called a nested list.

Example:

a=[10,20,30]

b=[45,65,a]

print b # display [45, 65, [10, 20, 30]]

print b[1] # display 65

print b[2] # display [10, 20, 30]

print b[2][0] # display 10

print b[2][1] # display 20

print b[2][2] # display 30

for x in b[2]:

print x, # display 10 20 30

PYTHON PROGRAMMING UNIT-3

Page 3.6

mat=[[1,2,3],[4,5,6],[7,8,9]]

for r in mat:

print r

print ""

m=len(mat)

n=len(mat[0])

for i in range(0,m):

for j in range(0,n):

print mat[i][j],

print ""

print ""

for i in range(0,m1):

for j in range(0,n1):

c[i][j]= a[i][j]+b[i][j]

Nested Lists as Matrices:

Suppose we want to create a matrix with 3 rows 3 columns, we should create a list

with 3 other lists as:

mat = [[1, 2, 3] , [4, 5, 6] , [7, 8, 9]]

Here, „mat‟ is a list that contains 3 lists which are rows of the „mat‟ list. Each row contains

again 3 elements as:

[[1, 2, 3] , # first row

[4, 5, 6] , # second row

[7, 8, 9]] # third row

Example:

One of the main use of nested lists is that they can be used to represent matrices. A

matrix represents a group of elements arranged in several rows and columns. In python,

matrices are created as 2D arrays or using matrix object in numpy. We can also create a

matrix using nested lists.

Q) Write a program to perform addition of two matrices.

a=[[1,2,3],[4,5,6],[7,8,9]]

b=[[4,5,6],[7,8,9],[1,2,3]]

c=[[0,0,0],[0,0,0],[0,0,0]]

m1=len(a)

n1=len(a[0])

m2=len(b)

n2=len(b[0])

for i in range(0,m1):

for j in range(0,n1):

print "\t",c[i][j],

print ""

PYTHON PROGRAMMING UNIT-3

Page 3.7

Q) Write a program to perform multiplication of two matrices.

a=[[1,2,3],[4,5,6]]

b=[[4,5],[7,8],[1,2]]

c=[[0,0],[0,0]]

m1=len(a)

n1=len(a[0])

m2=len(b)

n2=len(b[0])

for i in range(0,m1):

for j in range(0,n2):

for k in range(0,n1):

c[i][j] += a[i][k]*b[k][j]

for i in range(0,m1):

for j in range(0,n2):

print "\t",c[i][j],

print ""

List Comprehensions:

List comprehensions represent creation of new lists from an iterable object (like a list,

set, tuple, dictionary or range) that satisfy a given condition. List comprehensions contain

very compact code usually a single statement that performs the task.

We want to create a list with squares of integers from 1 to 100. We can write code as:

squares=[]

for i in range(1,11):

squares.append(i**2)

The preceding code will create „squares‟ list with the elements as shown below:

 [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

The previous code can rewritten in a compact way as:

 squares=[x**2 for x in range(1,11)]

This is called list comprehension. From this, we can understand that a list

comprehension consists of square braces containing an expression (i.e., x**2). After the

expression, a fro loop and then zero or more if statements can be written.

[expression for item1 in iterable if statement1

 for item1 in iterable if statement2

 for item1 in iterable if statement3 …..]

Example:

 Even_squares = [x**2 for x in range(1,11) if x%2==0]

It will display the list even squares as list.

 [4, 16, 36, 64, 100]

PYTHON PROGRAMMING UNIT-3

Page 3.8

TUPLE:

A Tuple is a python sequence which stores a group of elements or items. Tuples are

similar to lists but the main difference is tuples are immutable whereas lists are mutable.

Once we create a tuple we cannot modify its elements. Hence, we cannot perform operations

like append(), extend(), insert(), remove(), pop() and clear() on tuples. Tuples are generally

used to store data which should not be modified and retrieve that data on demand.

Creating Tuples:

We can create a tuple by writing elements separated by commas inside parentheses().

The elements can be same datatype or different types.

To create an empty tuple, we can simply write empty parenthesis, as:

 tup=()

To create a tuple with only one element, we can, mention that element in parenthesis

and after that a comma is needed. In the absence of comma, python treats the element assign

ordinary data type.

tup = (10) tup = (10,)

print tup # display 10 print tup # display 10

print type(tup) # display <type „int‟> print type(tup) # display<type „tuple‟>

To create a tuple with different types of elements:

 tup=(10, 20, 31.5, „Gudivada‟)

If we do not mention any brackets and write the elements separating them by comma,

then they are taken by default as a tuple.

 tup= 10, 20, 34, 47

It is possible to create a tuple from a list. This is done by converting a list into a tuple

using tuple function.

n=[1,2,3,4]

tp=tuple(n)

print tp # display (1,2,3,4)

Another way to create a tuple by using range() function that returns a sequence.

t=tuple(range(2,11,2))

print t # display (2,4,6,8,10)

Accessing the tuple elements:

Accessing the elements from a tuple can be done using indexing or slicing. This is

same as that of a list. Indexing represents the position number of the element in the tuple. The

position starts from 0.

tup=(50,60,70,80,90)

print tup[0] # display 50

print tup[1:4] # display (60,70,80)

print tup[-1] # display 90

print tup[-1:-4:-1] # display (90,80,70)

print tup[-4:-1] # display (60,70,80)

PYTHON PROGRAMMING UNIT-3

Page 3.9

Updating and deleting elements:

Tuples are immutable which means you cannot update, change or delete the values of

tuple elements.

Example-1:

Example-2:

However, you can always delete the entire tuple by using the statement.

Note that this exception is raised because you are trying print the deleted element.

PYTHON PROGRAMMING UNIT-3

Page 3.10

Operations on tuple:

Operation Description

len(t) Return the length of tuple.

tup1+tup2 Concatenation of two tuples.

Tup*n Repetition of tuple values in n number of times.

x in tup Return True if x is found in tuple otherwise returns False.

cmp(tup1,tup2) Compare elements of both tuples

max(tup) Returns the maximum value in tuple.

min(tup) Returns the minimum value in tuple.

tuple(list) Convert list into tuple.

tup.count(x)
Returns how many times the element „x‟ is found in
tuple.

tup.index(x)
Returns the first occurrence of the element „x‟ in tuple.
Raises ValueError if „x‟ is not found in the tuple.

sorted(tup)
Sorts the elements of tuple into ascending order.
sorted(tup,reverse=True) will sort in reverse order.

cmp(tuple1, tuple2)

The method cmp() compares elements of two tuples.

Syntax

cmp(tuple1, tuple2)

Parameters

tuple1 -- This is the first tuple to be compared

tuple2 -- This is the second tuple to be compared

Return Value

If elements are of the same type, perform the compare and return the result. If elements are

different types, check to see if they are numbers.

➢ If numbers, perform numeric coercion if necessary and compare.

➢ If either element is a number, then the other element is "larger" (numbers are

"smallest").

➢ Otherwise, types are sorted alphabetically by name.

If we reached the end of one of the tuples, the longer tuple is "larger." If we exhaust both

tuples and share the same data, the result is a tie, meaning that 0 is returned.

Example:

Nested Tuples:

Python allows you to define a tuple inside another tuple. This is called a nested tuple.

Output: (“RAVI”, “CSE”, 92.00)

(“RAMU”, “ECE”, 93.00)

(“RAJA”, “EEE”, 87.00)

#display -1

#display 1

tuple1 = (123, 'xyz')

tuple2 = (456, 'abc')

print cmp(tuple1, tuple2)

print cmp(tuple2, tuple1)

students=((“RAVI”, “CSE”, 92.00), (“RAMU”, “ECE”, 93.00), (“RAJA”, “EEE”, 87.00))

for i in students:

print i

PYTHON PROGRAMMING UNIT-3

Page 3.11

Set_variable_name={var1, var2, var3, var4, …….}

s={1, 2.5, “abc” }

print s # display set([1, 2.5, “abc”])

s=set([1, 2.5, “abc”])

print s # display set([1, 2.5, “abc”])

SET:

Set is another data structure supported by python. Basically, sets are same as lists but

with a difference that sets are lists with no duplicate entries. Technically a set is a mutable

and an unordered collection of items. This means that we can easily add or remove items

from it.

Creating a Set:

A set is created by placing all the elements inside curly brackets {}. Separated by

comma or by using the built-in function set().

Syntax:

Example:

Converting a list into set:

A set can have any number of items and they may be of different data types. set()

function is used to converting list into set.

We can also convert tuple or string into set.

tup= (1, 2, 3, 4, 5)

print set(tup) # set([1, 2, 3, 4, 5])

str= “MOTHILAL”

print str # set(['i', 'h', 'm', 't', 'o'])

Operations on set:

Sno Operation Result

1 len(s) number of elements in set s (cardinality)

2 x in s test x for membership in s

3 x not in s test x for non-membership in s

4

s.issubset(t)

(or)

s <= t

test whether every element in s is in t

5

s.issuperset(t)

(or)

s >= t

test whether every element in t is in s

6 s = = t
Returns True if two sets are equivalent and returns

False.

7 s ! = t
Returns True if two sets are not equivalent and

returns False.

8

s.union(t)

(or)

s|t

new set with elements from both s and t

9

s.intersection(t)

(or)

s & t

new set with elements common to s and t

PYTHON PROGRAMMING UNIT-3

Page 3.12

Sno Operation Result

10

s.difference(t)

(or)

s-t

new set with elements in s but not in t

11

s.symmetric_difference(t)

(or)

s ^ t

new set with elements in either s or t but not both

12 s.copy() new set with a shallow copy of s

13 s.update(t) return set s with elements added from t

14 s.intersection_update(t) return set s keeping only elements also found in t

15 s.difference_update(t) return set s after removing elements found in t

16
s.symmetric_difference_up

date(t)
return set s with elements from s or t but not both

17 s.add(x) add element x to set s

18 s.remove(x) remove x from set s; raises KeyError if not present

19 s.discard(x) removes x from set s if present

20 s.pop()
remove and return an arbitrary element from s;

raises KeyError if empty

21 s.clear() remove all elements from set s

22 max(s) Returns Maximum value in a set

23 min(s) Returns Minimum value in a set

24 sorted(s)
Return a new sorted list from the elements in the

set.

Note:

To create an empty set you cannot write s={}, because python will make this as a

directory. Therefore, to create an empty set use set() function.

s=set() s={}

print type(s) # display <type „set‟> print type(s) # display <type „dict‟>

Updating a set:

Since sets are unordered, indexing has no meaning. Set operations do not allow users

to access or change an element using indexing or slicing.

PYTHON PROGRAMMING UNIT-3

Page 3.13

d= { „Regd.No‟: 556, „Name‟:‟Mothi‟, „Branch‟: „CSE‟ } print

d[„Regd.No‟] # 556

print d[„Name‟] # Mothi

print d[„Branch‟] # CSE

Dictionary:

A dictionary represents a group of elements arranged in the form of key-value pairs.

The first element is considered as „key‟ and the immediate next element is taken as its

„value‟. The key and its value are separated by a colon (:). All the key-value pairs in a

dictionary are inserted in curly braces { }.

d= { „Regd.No‟: 556, „Name‟:‟Mothi‟, „Branch‟: „CSE‟ }

Here, the name of dictionary is „dict‟. The first element in the dictionary is a string

„Regd.No‟. So, this is called „key‟. The second element is 556 which is taken as its „value‟.

Example:

To access the elements of a dictionary, we should not use indexing or slicing. For example,
dict[0] or dict[1:3] etc. expressions will give error. To access the value associated with a key,

we can mention the key name inside the square braces, as: dict[„Name‟].

If we want to know how many key-value pairs are there in a dictionary, we can use the len()

function, as shown

d= { „Regd.No‟: 556, „Name‟:‟Mothi‟, „Branch‟: „CSE‟ } print

len(d) # 3

We can also insert a new key-value pair into an existing dictionary. This is done by

mentioning the key and assigning a value to it.

d={'Regd.No':556,'Name':'Mothi','Branch':'CSE'}

print d #{'Branch': 'CSE', 'Name': 'Mothi', 'Regd.No': 556}

d['Gender']="Male"

print d # {'Gender': 'Male', 'Branch': 'CSE', 'Name': 'Mothi', 'Regd.No': 556}

Suppose, we want to delete a key-value pair from the dictionary, we can use del statement as:

del dict[„Regd.No‟] #{'Gender': 'Male', 'Branch': 'CSE', 'Name': 'Mothi'}

To Test whether a „key‟ is available in a dictionary or not, we can use „in‟ and „not in‟

operators. These operators return either True or False.

We can use any datatypes for value. For example, a value can be a number, string, list, tuple

or another dictionary. But keys should obey the rules:

➢ Keys should be unique. It means, duplicate keys are not allowd. If we enter same key

again, the old key will be overwritten and only the new key will be available.

emp={'nag':10,'vishnu':20,'nag':20}

print emp # {'nag': 20, 'vishnu': 20}

➢ Keys should be immutable type. For example, we can use a number, string or tuples

as keys since they are immutable. We cannot use lists or dictionaries as keys. If they

are used as keys, we will get „TypeError‟.

emp={['nag']:10,'vishnu':20,'nag':20}

Traceback (most recent call last):

File "<pyshell#2>", line 1, in <module>

emp={['nag']:10,'vishnu':20,'nag':20}

TypeError: unhashable type: 'list'

„Name‟ in d # check if „Name‟ is a key in d and returns True / False

PYTHON PROGRAMMING UNIT-3

Page 3.14

countries = ['USA', 'INDIA', 'GERMANY', 'FRANCE']

cities = ['Washington', 'New Delhi', 'Berlin', 'Paris']

z=zip(countries, cities)

d=dict(z)

print d

Dictionary Methods:

Method Description
d.clear() Removes all key-value pairs from dictionary„d‟.

d2=d.copy() Copies all elements from„d‟ into a new dictionary d2.

d.fromkeys(s [,v])
Create a new dictionary with keys from sequence„s‟ and
values all set to „v‟.

d.get(k [,v])
Returns the value associated with key „k‟. If key is not
found, it returns „v‟.

d.items()
Returns an object that contains key-value pairs of„d‟. The
pairs are stored as tuples in the object.

d.keys() Returns a sequence of keys from the dictionary„d‟.

d.values() Returns a sequence of values from the dictionary„d‟.

d.update(x) Adds all elements from dictionary „x‟ to„d‟.

d.pop(k [,v])

Removes the key „k‟ and its value from„d‟ and returns the

value. If key is not found, then the value „v‟ is returned. If

key is not found and „v‟ is not mentioned then „KeyError‟
is raised.

d.setdefault(k [,v])
If key „k‟ is found, its value is returned. If key is not
found, then the k, v pair is stored into the dictionary„d‟.

Using for loop with Dictionaries:

for loop is very convenient to retrieve the elements of a dictionary. Let‟s take a simple

dictionary that contains color code and its name as:

colors = { 'r':"RED", 'g':"GREEN", 'b':"BLUE", 'w':"WHITE" }

Here, „r‟, „g‟, „b‟ represents keys and „RED‟, „GREEN‟, „BLUE‟ and „WHITE‟

indicate values.

colors = { 'r':"RED", 'g':"GREEN", 'b':"BLUE", 'w':"WHITE" }

for k in colors:

print k # displays only keys

for k in colors:

print colors[k] # keys to to dictionary and display the values

Converting Lists into Dictionary:

When we have two lists, it is possible to convert them into a dictionary. For example,

we have two lists containing names of countries and names of their capital cities.

There are two steps involved to convert the lists into a dictionary. The first step is to

create a „zip‟ class object by passing the two lists to zip() function. The zip() function is

useful to convert the sequences into a zip class object. The second step is to convert the zip

object into a dictionary by using dict() function.

Example:

Output:

{'GERMANY': 'Berlin', 'INDIA': 'New Delhi', 'USA': 'Washington', 'FRANCE': 'Paris'}

PYTHON PROGRAMMING UNIT-3

d={'m1':85,'m3':84,'eng':86,'c':91}

sum=0

for i in d.values():

sum+=i

print sum # 346

Converting Strings into Dictionary:

When a string is given with key and value pairs separated by some delimiter like a

comma (,) we can convert the string into a dictionary and use it as dictionary.

s="Vijay=23,Ganesh=20,Lakshmi=19,Nikhil=22"

s1=s.split(',')

s2=[]

d={}

for i in s1:

s2.append(i.split('='))

print d

{'Ganesh': '20', 'Lakshmi': '19', 'Nikhil': '22', 'Vijay': '23'}

Q) A Python program to create a dictionary and find the sum of values.

Q) A Python program to create a dictionary with cricket player’s names and scores in a

match. Also we are retrieving runs by entering the player’s name.

Enter How many players? 3

Enter Player name: "Sachin"

Enter score: 98

Enter Player name: "Sehwag"

Enter score: 91

Enter Player name: "Dhoni"

Enter score: 95

{'Sehwag': 91, 'Sachin': 98, 'Dhoni': 95}

Enter name of player for score: "Sehwag"

The Score is 91

T.MOTHILAL, ASST.PROF Page 3.15

Copy protected with PDF-No-Copy.com

n=input("Enter How many players? ")

d={}

for i in range(0,n):

k=input("Enter Player name: ")

v=input("Enter score: ")

d[k]=v

print d

name=input("Enter name of player for score: ")

print "The Score is",d[name]

http://www.online-pdf-no-copy.com/

