

UNIT – II

STACK AS ABSTRACT DATATYPE

A stack is a data structure in which addition of new element or deletion of an

existing element always takes place at the same end. This end is known as top of

stack. When an item is added to a stack, the operation is called push, and when an

item is removed from the stack the operation is called pop. Stack is also called as

Last-In-First-Out (LIFO) list which means that the last element that is inserted will be

the first element to be removed from the stack.

Abstract Datatype Stack

{

instances:

Linear list of elements, one end is called top and other end is called

bottom.

operations:

empty() – returns true if stack is empty otherwise false

size() – returns the number of elements in the stack

top() – returns top element of the stack

push(x) – add element x at the top of the stack

pop() – remove top element from the stack

}

Representation of stacks (operations performed on stacks)

There are two possible operations performed on a stack. They are push and

pop.
✓ Push: Allows adding an element at the top of the stack.

✓ Pop: Allows removing an element from the top of the stack.

Algorithm for PUSH Operation

1. stack overflow? If top=max_stacksize then write overflow and exit.
2. read item
3. set top = top + 1
4. set stack[top] = item
5. exit

If the elements are added continuously to the stack using the push operation
then the stack grows at one end. Initially when the stack is empty the top = -1. The top
is a variable which indicates the position of the topmost element in the stack.

Algorithm for POP Operation

On deletion of elements the stack shrinks at the same end, as the elements at

the top get removed.

1. stack underflow? If top = -1 then write underflow and exit
2. repeat step 3 to 5 until top >= 0
3. set item = stack[top]
4. top = top – 1
5. write deleted item
6. exit

Applications of Stacks

✓ Stack is used by compilers to check for balancing of parentheses, brackets and

braces.

✓ Stack is used to evaluate a postfix expression.

✓ Stack is used to convert an infix expression into postfix/prefix form.

✓ In recursion, all intermediate arguments and return values are stored on the
processor’s stack.

✓ During a function call the return address and arguments are pushed onto a stack and
on return they are popped off.

Implementation of Stacks using Arrays

The stacks can be implemented by using arrays and linked lists. If arrays are

used for implementing the stacks, it would be very easy to manage the stacks. But
the problem with an array is that we are required to declare the size of the array
before using it in a program. This means the size of the stack should be fixed.

C++ program to illustrate about stacks using arrays

#include<iostream.h>

#include<conio.h>

class stack
{

int stk[5], top;
public:

stack()

{

top = -1;

}

void push(int x)

{

if(top>4)

{

cout<<”stack overflow”;
return;

}
stk[++top]=x;

cout<<”Inserted “<<x;
}

void pop()

{

if(top<0)
{

cout<<”stack empty”;
return;

}

cout<<”deleted”<<stk[top--];

}

void display()

{

if(top<0)
{

cout<<”stack empty”;

return;

}

for(int i=top; i>=0; i--)
cout<<stk[i]<<” “;

}

};

main()

{

int opt, ele;
stack st;
while(1)

{

cout<<”\n 1. push 2. pop 3. display 4. exit”;
cout<<” enter the option”;

cin>>opt;
switch(opt)

{

case 1: cout<<” enter the element”;
cin>>ele;

st.push(ele);
break;

case 2: st.pop();

break;

case 3: st.display();

break;

default: exit(0);

}
}

}

QUEUE AS ABSTRACT DATA TYPE

Queue is a linear data structure that permits insertion of new element at one

end and deletion of an element at the other end. The end at which the deletion of an

element take place is called front, and the end at which insertion of a new element can

take place is called rear. The deletion or insertion of elements can take place only at

the front or rear end called dequeue and enqueue. The first element that gets added

into the queue is the first one to get removed from the queue. Hence the queue is

referred to as

First-In-First-Out list (FIFO).

Abstract Datatype Queue

{

instances:

Linear list of elements, one end is called front and other end is called
rear.

operations:

empty() – returns true if queue is empty otherwise false
size() – returns the number of elements in the queue

front(x) – returns first element of queue pointed by front
rear(x) – add element x at the rear of the queue

}

Representation of Queue (operations performed on Queue)

There are two possible operations performed on a queue. They are enqueue

and dequeue.
✓ enqueue: Allows inserting an element at the rear of the queue.

✓ dequeue: Allows removing an element from the front of the queue.

Algorithm for Enqueue (inserting an element)

1. initialize front = 0,rear = -1.
2. check overflow condition? If front = 0and rear = max_size then write overflow and

exit.

3. if front = NULL then set front = 0 and rear = 0 else if rear = max_size then set rear
= 0

4. set rear = rear + 1
5. queue[rear] = item
6. exit

Let us consider a queue, which can hold maximum of five elements.

Initially the queue is empty.

Now, insert 11 to the queue. Then queue status will be:

Next, insert 22 to the queue. Then the queue status is:

Again insert another element 33 to the queue. The status of the queue is:

Again insert another element 44 to the queue. The status of the queue is:

Again insert another element 55 to the queue. The status of the queue is:

Again insert another element 66 to the queue. The status of the queue is:

An element can be added to the queue only at the rear end of the queue.

Before adding an element in the queue, it is checked whether queue is full. If the
queue is full, then addition cannot take place. Otherwise, the element is added to the
end of the list at the rear side.

Algorithm for Dequeue (deleting an element)

1. check underflow condition? if front < 0 then write underflow and exit
2. set item = queue[front]
3. if front = rear then set front = rear = NULL else if front = max_size then set front =

0
4. set front = front + 1
5. exit

Now, delete an element 11. The element deleted is the element at the front of
the queue. So the status of the queue is:

Now, delete an element 22. The element deleted is the element at the front of the

queue. So the status of the queue is:

Now, delete an element 33. The element deleted is the element at the front of the
queue. So the status of the queue is:

Now, delete an element 44. The element deleted is the element at the front of the

queue. So the status of the queue is:

Now, delete an element 55. The element deleted is the element at the front of the

queue. So the status of the queue is empty.

The dequeue operation deletes the element from the front of the queue. Before

deleting and element, it is checked if the queue is empty. If not the element pointed by

front is deleted from the queue and front is now made to

point to the next element in the queue.

Implementation of Queues using Arrays

The stacks can be implemented by using arrays and linked lists. If arrays are

used for implementing the queues, it would be very easy to manage the queues. But

the problem with an array is that we are required to declare the size of the array before

using it in a program. This means the

size of the queue should be fixed.

C++ program to illustrate about queues using arrays

#include<iostream.h>

#include<conio.h>

class queue

{

int que[5];

int front, rear;

public:
queue()

{

front = rear = -1;

}

void enqueue(int x)

{

if(rear > 4)
{

cout<<”queue overflow”;
front = rear = -1;
return;

}

que[++rear]=x;

cout<<”inserted”<<x;

}

void dequeue()

{

if(front = rear)

{

cout<<”queue empty”;
return;

}

cout<<”deleted”<<que[front++];
}

void display()

{

if(rear = front)

{

cout<<”queue empty”;

return;

}

for(int i=front + 1; i<=rear; i++)
cout<<que[i]<<” “;

}

};

main()

{

int opt, ele;
queue qt;
while(1)

{

cout<<”\n 1. enqueue 2. dequeue 3. display 4. exit”;
cout<<” enter the option”;

cin>>opt;
switch(opt)
{

case 1: cout<<” enter the element”;
cin>>ele;

qt.enqueue(ele);
break;

case 2: qt.dequeue();

break;

case 3: qt.display();
break;

default: exit(0);

}
}

}

EVALUATION OF EXPRESSIONS

“An expression is defined as the combination of operators and operands”.

“An expression is defined as the combination of variables, constants and

operators arranged as per the syntax of the language”.

Operand is the quantity on which a mathematical operation is performed. Operand
may be a variable like x, y, z or a constant like 5, 4, 6 etc. Operator is a symbol which
performs a mathematical or logical operation between the operands. Examples of
operators include +, -, *, /, ^ etc.

An expression can be represented using three different notations. They are infix,

postfix and prefix notations:

Infix: an arithmetic expression in which we fix (place) the
arithmetic operator in between the two operands. Example: (A + B) * (C - D)

Prefix: an arithmetic expression in which we fix (place) the arithmetic operator before

(pre) its two operands. The prefix notation is called as polish notation. Example: * + A

B – C D

Postfix: an arithmetic expression in which we fix (place) the arithmetic operator after

(post) its two operands. The postfix notation is called as suffix notation and is also

referred to reverse polish notation. Example: A B + C D - *

The three important features of postfix expression are:

1. The operands maintain the same order as in the equivalent infix expression.

2. The parentheses are not needed to designate the expression unambiguously.

3. While evaluating the postfix expression the priority of the operators is no longer

relevant.

We consider five binary operations: +, -, *, / and $ or ↑ (exponentiation). For

these binary operations, the following in the order of precedence (highest to lowest):

Operator Precedence Value

exponentiation ($, ↑, ^) Highest 1

*, / next highest 2

+, - Lowest 3

As programmers we write the expressions into two types. They are simple and

complex expressions. Let us consider the complex expression as follows:

x = a / b – c + d * e – a * c

Description Operator Rank Associatively

Function expression ()
1 Left to Right

Array expression []

Unary plus +

Unary minus -

Increment/Decrement ++/--

Logical negation !

2 Right to left

One’s complement ~

Pointer reference *

Address of &

Size of an object Sizeof

Type cast (conversion) (type)

Multiplication *

3 Left to Right

Division /

Modulus %

Addition +
4 Left to Right

Subtraction -

Left shift <<
5 Left to Right

Right shift >>

Less than <

Less than or equal to <=
6 Left to Right

Greater than >

Greater than or equal to >=

Equality ==
7

Left to Right

Not equal to ! =

Bit wise AND & 8 Left to Right

Bit wise XOR ^ 9 Left to Right

Bit wise OR | 10 Left to Right

Logical AND && 11 Left to Right

Logical OR || 12 Left to Right

Conditional ? : 13 Right to Left

Assignment =,*=,/=,%=,+=,-
14 Right to Left

=,& etc

Comma operator , 15 Left to Right

In the above expression we first understand the meaning of the expression and

then the order of performing the operation. For example, a = 4, b = c = 2, d = e = 3

then the value of x is found as

((4 / 2) – 2) + (3 * 3) – (4 * 2)

=0 + 9 – 8

=1

Or

(4 / (2 – 2 + 3)) * (3 – 4) * 2

=(4 / 3) * (- 1) * 2

=- 2.66666

Mostly we prefer the first method because we know multiplication is performed
before addition and division is performed before subtraction. In any programming

language, we follow hierarchy of operators for evaluation of expressions. The operator
precedence is shown in the above table.

EVALUATION OF POSTFIX EXPRESSION

The standard representation for writing expressions is infix notation which
means that placing the operator in between the operands. But the compiler uses the

postfix notation for evaluating the expression rather than the infix notation.

It is an easy task for evaluating the postfix expression than infix expression
because there are no parentheses. To evaluate an expression we scan it from left to

right. The postfix expression is evaluated easily by the use of a stack.

When an operand is seen, it is pushed onto the stack. When an operator is seen,

the operator is applied to the two operands that are popped from the stack and the
result is pushed onto the stack. When an expression is given in postfix notation, there is

no need to know any precedence rules.

Example 1

Evaluate the postfix expression: 6 2 / 3 - 4 2 * +

Token
 Stack

Top

[0]

[1] [2]

6 6 0

2 6 2 1

/ 3 0

3 3 3 1

- 0 0

4 0 4 1

2 0 4 2 2

* 0 8 1

+ 8 0

INFIX TO POSTFIX

Procedure to convert from infix expression to postfix expression is as follows.

1. Fully parenthesize the expression.

2. Move all the binary operators so that they replace their corresponding right

parenthesis.
3. Delete all parenthesis.

For example

a / b – c + d * e – a * c

According to step1 of the algorithm ((((a / b) – c) + (d * e)) – (a * c)) Performing the

step2 and step3 gives ab/c-de*+ac*-

Example (simple expression)

We have simple expression a + b * c, then the postfix expression is abc*+. The

output translation of the given infix expression to postfix expression is as follows.

Token
 Stack

top Output

[0] [1] [2]

a -1 a

+ + 0 a

b + 0 ab

* + * 1 ab

c + * 1 abc

eos -1 abc*+

In the above example, we have stacked the operators as long as the

precedence of operator at the top of the stack is less than the incoming operator.

Example (parenthesized expression)

1. Scan the infix expression from left to right.

2. a) If the scanned symbol is left parenthesis, push it onto the stack.

b) If the scanned symbol is an operand, then place directly in the postfix

expression (output).
c) If the symbol scanned is a right parenthesis, then go on popping all the
items from the stack and place them in the postfix expression till we get the
matching left parenthesis.

d) If the scanned symbol is an operator, then go on removing all the operators

from the stack and place them in the postfix expression, if and only if the
precedence of the operator which is on the top of the stack is greater than (or

greater than or equal) to the precedence of the scanned operator and push the

scanned operator onto the stack otherwise, push the scanned operator onto the
stack.

We have parenthesized expression a * (b + c) *d, then the postfix expression
is abc+*d*.

Token Stack top Output

a -1 a

* * 0 a

(* (
 1 a

b
* (

 1 ab

+
* (+ 2 ab

c
* (+ 2 abc

) * 0 abc+

*
* 0 abc+*

d
* 0 abc+*d

eos
* 0 abc+*d*

Parenthesis makes translation process more difficult because the equivalent postfix
expression will be parenthesis free. The postfix of our example is abc+*d*. Here we
stack the operators until we reach the right parenthesis. At that point we unstuck till we

reach the left parenthesis.

