
PYTHON PROGRAMMING UNIT-2

Page 2.1

Standard Data Types:

The data stored in memory can be of many types. For example, a person's age is

stored as a numeric value and his or her address is stored as alphanumeric characters. Python

has various standard data types that are used to define the operations possible on them and the

storage method for each of them.

Python has five standard data types:

• Numbers

• String

• Boolean

• List

• Tuple

• Set

• Dictionary

Python Numbers:

Number data types store numeric values. Number objects are created when you assign

a value to them.

Python supports four different numerical types:

• int (signed integers)

• long (long integers, they can also be represented in octal and hexadecimal)

• float (floating point real values)

• complex (complex numbers)

Python allows you to use a lowercase L with long, but it is recommended that you use

only an uppercase L to avoid confusion with the number 1. Python displays long integers

with an uppercase L.

A complex number consists of an ordered pair of real floating-point numbers denoted

by x + yj, where x is the real part and b is the imaginary part of the complex number.

For example:

Program:

a = 3

b = 2.65

c = 98657412345L

d = 2+5j

print "int is",a

print "float is",b

print "long is",c

print "complex is",d

Output:

int is 3

float is 2.65

long is 98657412345

complex is (2+5j)

PYTHON PROGRAMMING UNIT-2

Page 2.2

Python Strings:

Strings in Python are identified as a contiguous set of characters represented in the

quotation marks. Python allows for either pairs of single or double quotes. Subsets of strings

can be taken using the slice operator ([] and [:]) with indexes starting at 0 in the beginning

of the string and working their way from -1 at the end.

The plus (+) sign is the string concatenation operator and the asterisk (*) is the

repetition operator. For example:

Program:

str ="WELCOME"

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + "CSE" # Prints concatenated string

Output:

WELCOME

W

LCO

LCOME

WELCOMEWELCOME

WELCOMECSE

Built-in String methods for Strings:

SNO Method Name Description

1 capitalize() Capitalizes first letter of string.

2 center(width, fillchar)
Returns a space-padded string with the original
string centered to a total of width columns.

3
count(str, beg=

0,end=len(string))

Counts how many times str occurs in string or in a

substring of string if starting index beg and ending
index end are given.

4
decode(encoding='UTF-

8',errors='strict')

Decodes the string using the codec registered for

encoding. Encoding defaults to the default string

encoding.

5
encode(encoding='UTF-

8',errors='strict')

Returns encoded string version of string; on error,

default is to raise a Value Error unless errors is
given with 'ignore' or 'replace'.

6

endswith(suffix, beg=0,

end=len(string))

Determines if string or a substring of string (if

starting index beg and ending index end are given)

ends with suffix; returns true if so and false
otherwise.

7 expandtabs(tabsize=8)
Expands tabs in string to multiple spaces; defaults
to 8 spaces per tab if tabsize not provided.

8
find(str, beg=0

end=len(string))

Determine if str occurs in string or in a substring of

string if starting index beg and ending index end are
given returns index if found and -1 otherwise.

PYTHON PROGRAMMING UNIT-2

Page 2.3

9
index(str, beg=0,
end=len(string))

Same as find(), but raises an exception if str not
found.

10 isalnum()
Returns true if string has at least 1 character and all
characters are alphanumeric and false otherwise.

11 isalpha()
Returns true if string has at least 1 character and all
characters are alphabetic and false otherwise.

12 isdigit()
Returns true if string contains only digits and false
otherwise.

13

islower()
Returns true if string has at least 1 cased character

and all cased characters are in lowercase and false
otherwise.

14 isnumeric()
Returns true if a unicode string contains only
numeric characters and false otherwise.

15 isspace()
Returns true if string contains only whitespace
characters and false otherwise.

16 istitle()
Returns true if string is properly "titlecased" and
false otherwise.

17

isupper()
Returns true if string has at least one cased

character and all cased characters are in uppercase
and false otherwise.

18

join(seq)
Merges (concatenates) the string representations of

elements in sequence seq into a string, with
separator string.

19 len(string) Returns the length of the string.

20 ljust(width[, fillchar])
Returns a space-padded string with the original
string left-justified to a total of width columns.

21 lower()
Converts all uppercase letters in string to
lowercase.

22 lstrip() Removes all leading whitespace in string.

23 maketrans()
Returns a translation table to be used in translates
function.

24 max(str)
Returns the max alphabetical character from the
string str.

25 min(str)
Returns min alphabetical character from the string
str.

26 replace(old, new [, max])
Replaces all occurrences of old in string with new
or at most max occurrences if max given.

27
rfind(str,
beg=0,end=len(string))

Same as find(), but search backwards in string.

28
rindex(str, beg=0,
end=len(string))

Same as index(), but search backwards in string.

29 rjust(width,[, fillchar])
Returns a space-padded string with the original
string right-justified to a total of width columns.

30 rstrip() Removes all trailing whitespace of string.

31
split(str="",

num=string.count(str))

Splits string according to delimiter str (space if not

provided) and returns list of substrings; split into at

most num substrings if given.

32
splitlines (
num=string.count('\n'))

Splits string at all (or num) NEWLINEs and returns
a list of each line with NEWLINEs removed.

PYTHON PROGRAMMING UNIT-2

Page 2.4

33

startswith(str,

beg=0,end=len(string))

Determines if string or a substring of string (if

starting index beg and ending index end are given)

starts with substring str; returns true if so and false
otherwise.

34 strip([chars]) Performs both lstrip() and rstrip() on string.

35 swapcase() Inverts case for all letters in string.

36

title()
Returns "titlecased" version of string, that is, all

words begin with uppercase and the rest are
lowercase.

37
translate(table,
deletechars="")

Translates string according to translation table
str(256 chars), removing those in the del string.

38 upper() Converts lowercase letters in string to uppercase.

39

zfill (width)
Returns original string leftpadded with zeros to a

total of width characters; intended for numbers,
zfill() retains any sign given (less one zero).

40 isdecimal()
Returns true if a unicode string contains only
decimal characters and false otherwise.

Example:

str1="welcome"

print "Capitalize function---",str1.capitalize()

print str1.center(15,"*")

print "length is",len(str1)

print "count function---",str1.count('e',0,len(str1))

print "endswith function---",str1.endswith('me',0,len(str1))

print "startswith function---",str1.startswith('me',0,len(str1))

print "find function---",str1.find('e',0,len(str1))

str2="welcome2017"

print "isalnum function---",str2.isalnum()

print "isalpha function---",str2.isalpha()

print "islower function---",str2.islower()

print "isupper function---",str2.isupper()

str3=" welcome"

print "lstrip function---",str3.lstrip()

str4="77777777cse777777";

print "lstrip function---",str4.lstrip('7')

print "rstrip function---",str4.rstrip('7')

print "strip function---",str4.strip('7')

str5="welcome to java"

print "replace function---",str5.replace("java","python")

Output:

Capitalize function--- Welcome

****welcome****

length is 7

count function--- 2

endswith function--- True

startswith function--- False

find function--- 1

isalnum function--- True

isalpha function--- False

PYTHON PROGRAMMING UNIT-2

Page 2.5

islower function--- True

isupper function--- False

lstrip function--- welcome

lstrip function--- cse777777

rstrip function--- 77777777cse

strip function--- cse

replace function--- welcome to python

Python Boolean:
Booleans are identified by True or False.

Example:

Program:

a = True

b = False

print a

print b

Output:

True

False

Data Type Conversion:

Sometimes, you may need to perform conversions between the built-in types. To

convert between types, you simply use the type name as a function. For example, it is not

possible to perform “2”+4 since one operand is integer and the other is string type. To

perform this we have convert string to integer i.e., int(“2”) + 4 = 6.

There are several built-in functions to perform conversion from one data type to

another. These functions return a new object representing the converted value.

Function Description

int(x [,base]) Converts x to an integer.

long(x [,base]) Converts x to a long integer.

float(x) Converts x to a floating-point number.

complex(real [,imag]) Creates a complex number.

str(x) Converts object x to a string representation.

repr(x) Converts object x to an expression string.

eval(str) Evaluates a string and returns an object.

tuple(s) Converts s to a tuple.

list(s) Converts s to a list.

set(s) Converts s to a set.

dict(d) Creates a dictionary, d must be a sequence of (key, value) tuples.

frozenset(s) Converts s to a frozen set.

chr(x) Converts an integer to a character.

unichr(x) Converts an integer to a Unicode character.

ord(x) Converts a single character to its integer value.

hex(x) Converts an integer to a hexadecimal string.

oct(x) Converts an integer to an octal string.

PYTHON PROGRAMMING UNIT-2

Page 2.6

Types of Operators:

Python language supports the following types of operators.

• Arithmetic Operators +, -, *, /, %, **, //

• Comparison (Relational) Operators = =, ! =, < >, <, >, <=, >=

• Assignment Operators =, +=, -=, *=, /=, %=, **=, //=

• Logical Operators and, or, not

• Bitwise Operators &, |, ^, ~,<<, >>

• Membership Operators in, not in

• Identity Operators is, is not

Arithmetic Operators:

Some basic arithmetic operators are +, -, *, /, %, **, and //. You can apply these

operators on numbers as well as variables to perform corresponding operations.

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction
Subtracts right hand operand from left hand

operand.
a – b = -10

* Multiplication Multiplies values on either side of the operator a * b = 200

/ Division
Divides left hand operand by right hand

operand
b / a = 2

% Modulus
Divides left hand operand by right hand

operand and returns remainder
b % a = 0

** Exponent
Performs exponential (power) calculation on

operators

a**b =10 to

the power 20

// Floor Division

The division of operands where the result is

the quotient in which the digits after the

decimal point are removed.

9//2 = 4 and

9.0//2.0 = 4.0

Program:

a = 21

b = 10

print "Addition is", a + b

print "Subtraction is ", a - b

print "Multiplication is ", a * b

print "Division is ", a / b

print "Modulus is ", a % b

a = 2

b = 3

print "Power value is ", a ** b

a = 10

b = 4

print "Floor Division is ", a // b

PYTHON PROGRAMMING UNIT-2

Page 2.7

a=20

b=30

if a < b:

print "b is big"

elif a > b:

print "a is big"

else:

print "Both are equal"

Output:

Addition is 31

Subtraction is 11

Multiplication is 210

Division is 2

Modulus is 1

Power value is 8

Floor Division is 2

Comparison (Relational) Operators

These operators compare the values on either sides of them and decide the relation

among them. They are also called Relational operators.

Operator Description Example

= =
If the values of two operands are equal, then the
condition becomes true.

(a == b) is not true.

!=
If values of two operands are not equal, then
condition becomes true.

(a != b) is true.

< >
If values of two operands are not equal, then

condition becomes true.

(a <> b) is true. This

is similar to !=

operator.

>
If the value of left operand is greater than the value
of right operand, then condition becomes true.

(a > b) is not true.

<
If the value of left operand is less than the value of
right operand, then condition becomes true.

(a < b) is true.

> =

If the value of left operand is greater than or equal

to the value of right operand, then condition

becomes true.

(a >= b) is not true.

< =

If the value of left operand is less than or equal to

the value of right operand, then condition becomes

true.

(a <= b) is true.

Example:

Output:

b is big

PYTHON PROGRAMMING UNIT-2

Page 2.8

Assignment Operators

Operator Description Example

=
Assigns values from right side operands to
left side operand

c = a + b assigns
value of a + b into c

+=
Add AND

It adds right operand to the left operand and
assign the result to left operand

c += a is equivalent
to c = c + a

-=
Subtract AND

It subtracts right operand from the left
operand and assign the result to left operand

c -= a is equivalent
to c = c - a

*=
Multiply AND

It multiplies right operand with the left
operand and assign the result to left operand

c *= a is equivalent
to c = c * a

/=
Divide AND

It divides left operand with the right
operand and assign the result to left operand

c /= a is equivalent
to c = c / a

%=

Modulus AND

It takes modulus using two operands and

assign the result to left operand

c %= a is

equivalent to c = c
% a

**=

Exponent AND

Performs exponential (power) calculation

on operators and assign value to the left
operand

c **= a is

equivalent to c = c
** a

//=
Floor Division

It performs floor division on operators and
assign value to the left operand

c //= a is equivalent
to c = c // a

Example:

a=82

b=27

a += b

print a

a=25

b=12

a -= b

print a

a=24

b=4

a *= b

print a

a=4

b=6

a **= b

print a

Output:

109

13

96

4096

PYTHON PROGRAMMING UNIT-2

Page 2.9

Logical Operators

Operator Description Example

And
Logical AND

If both the operands are true then condition
becomes true.

(a and b) is
true.

Or
Logical OR

If any of the two operands are non-zero then
condition becomes true.

(a or b) is true.

not
Logical NOT

Used to reverse the logical state of its operand.
Not (a and b) is
false.

Example:

a=20

b=10

c=30

if a >= b and a >= c:

print "a is big"

elif b >= a and b >= c:

print "b is big"

else:

print "c is big"

Output:

c is big

Bitwise Operators

Operator Description Example

&

Binary AND

Operator copies a bit to the

result if it exists in both

operands.

(a & b) = 12

(means 0000 1100)

|

Binary OR

It copies a bit if it exists in either

operand.

(a | b) = 61

(means 0011 1101)

^

Binary XOR

It copies the bit if it is set in one

operand but not both.

(a ^ b) = 49

(means 0011 0001)

~

Binary Ones

Complement

It is unary and has the effect of

'flipping' bits.

(~a) = -61 (means 1100 0011

in 2's complement form due to

a signed binary number.

<<

Binary Left Shift

The left operands value is

moved left by the number of bits

specified by the right operand.

a << 2 = 240

(means 1111 0000)

>>

Binary Right Shift

The left operands value is

moved right by the number of

bits specified by the right

operand.

a >> 2 = 15

(means 0000 1111)

PYTHON PROGRAMMING UNIT-2

Page 2.10

Membership Operators

Python‟s membership operators test for membership in a sequence, such as strings,

lists, or tuples.

Operator Description Example

in
Evaluates to true if it finds a variable in

the specified sequence and false otherwise.

x in y, here in results in a 1 if

x is a member of sequence y.

not in

Evaluates to true if it does not finds a

variable in the specified sequence and

false otherwise.

x not in y, here not in results

in a 1 if x is not a member of

sequence y.

Example:

a = 3

list = [1, 2, 3, 4, 5];

if (a in list):

print "available"

else:

Output:

print " not available"

available

Identity Operators

Identity operators compare the memory locations of two objects.

Operator Description Example

is

Evaluates to true if the variables on

either side of the operator point to the

same object and false otherwise.

x is y, here is results in 1 if

id(x) equals id(y).

is not

Evaluates to false if the variables on

either side of the operator point to the

same object and true otherwise.

x is not y, here is not results

in 1 if id(x) is not equal to

id(y).

Example:

a = 20

b = 20

if (a is b):

print "Line 1 - a and b have same identity"

else:

print "Line 1 - a and b do not have same identity"

if (id(a) == id(b)):

print "Line 2 - a and b have same identity"

else:

Output:

print "Line 2 - a and b do not have same identity"

Line 1 - a and b have same identity

Line 2 - a and b have same identity

PYTHON PROGRAMMING UNIT-2

Page 2.11

Python Operators Precedence

The following table lists all operators from highest precedence to lowest.

Operator Description

() Parenthesis

** Exponentiation (raise to the power)

~ x, +x, -x Complement, unary plus and minus

* / % // Multiply, divide, modulo and floor division

+ - Addition and subtraction

>> << Right and left bitwise shift

& Bitwise 'AND'

^ | Bitwise exclusive `OR' and regular `OR'

<= < > >= Comparison operators

<> == != Equality operators

= %= /= //= -= += *= **= Assignment operators

is is not Identity operators

in not in Membership operators

not or and Logical operators

Expression:
An expression is a combination of variables constants and operators written according

to the syntax of Python language. In Python every expression evaluates to a value i.e., every

expression results in some value of a certain type that can be assigned to a variable. Some

examples of Python expressions are shown in the table given below.

Algebraic Expression Python Expression

a x b – c a * b – c

(m + n) (x + y) (m + n) * (x + y)

(ab / c) a * b / c

3x2 +2x + 1 3*x*x+2*x+1

(x / y) + c x / y + c

Evaluation of Expressions

Expressions are evaluated using an assignment statement of the form

Variable = expression

Variable is any valid C variable name. When the statement is encountered, the

expression is evaluated first and then replaces the previous value of the variable on the left

hand side. All variables used in the expression must be assigned values before evaluation is

attempted.

Example:

a=10

b=22

c=34

PYTHON PROGRAMMING UNIT-2

Page 2.12

x=a*b+c

y=a-b*c

z=a+b+c*c-a

print "x=",x

print "y=",y

print "z=",z

Output:

x= 254

y= -738

z= 1178

Decision Making:
Decision making is anticipation of conditions occurring while execution of the

program and specifying actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce True or False as

outcome. You need to determine which action to take and which statements to execute if

outcome is True or False otherwise.

Following is the general form of a typical decision making structure found in most of

the programming languages:

Python programming language assumes any non-zero and non-null values as True,

and if it is either zero or null, then it is assumed as False value.

Statement Description

if statements if statement consists of a boolean expression followed by one or more
statements.

if...else statements if statement can be followed by an optional else statement, which
executes when the boolean expression is FALSE.

nested if statements You can use one if or else if statement inside another if or else if
statement(s).

PYTHON PROGRAMMING UNIT-2

Page 2.13

The if Statement

It is similar to that of other languages. The if statement contains a logical expression

using which data is compared and a decision is made based on the result of the comparison.

Syntax:

if condition:

statements

First, the condition is tested. If the condition is True, then the statements given after

colon (:) are executed. We can write one or more statements after colon (:).

Example:

Output:

B is big

B value is 15

The if ... else statement

An else statement can be combined with an if statement. An else statement contains

the block of code that executes if the conditional expression in the if statement resolves to 0

or a FALSE value.

The else statement is an optional statement and there could be at most only one else

statement following if.

Syntax:

a=10

b=15

if a < b:

print “B is big”

print “B value is”,b

if condition:

statement(s)

else:

statement(s)

PYTHON PROGRAMMING UNIT-2

Page 2.14

Example:

Output:

A is big

A value is 48

END

Q) Write a program for checking whether the given number is even or not.

Program:

a=input("Enter a value: ")

if a%2==0:

print "a is EVEN number"

else:

print "a is NOT EVEN Number"

Output-1: Output-2:

Enter a value: 56 Enter a value: 27

a is EVEN Number a is NOT EVEN Number

a=48

b=34

if a < b:

print “B is big”

print “B value is”, b

else:

print “A is big”

print “A value is”, a

print “END”

PYTHON PROGRAMMING UNIT-2

Page 2.15

The elif Statement

The elif statement allows you to check multiple expressions for True and execute a

block of code as soon as one of the conditions evaluates to True.

Similar to the else, the elif statement is optional. However, unlike else, for which

there can be at most one statement, there can be an arbitrary number of elif statements

following an if.

Syntax:

Example:

Output:

c is big

Decision Loops
In general, statements are executed sequentially: The first statement in a function is

executed first, followed by the second, and so on. There may be a situation when you need to

execute a block of code several number of times.

Programming languages provide various control structures that allow for more

complicated execution paths.

A loop statement allows us to execute a statement or group of statements multiple

times. The following diagram illustrates a loop statement:

a=20

b=10

c=30

if a >= b and a >= c:

print "a is big"

elif b >= a and b >= c:

print "b is big"

else:

print "c is big"

if condition1:

statement(s)

elif condition2:
statement(s)

else:

statement(s)

PYTHON PROGRAMMING UNIT-2

Page 2.16

Python programming language provides following types of loops to handle looping

requirements.

Loop Type Description

while loop
Repeats a statement or group of statements while a given condition is
TRUE. It tests the condition before executing the loop body.

for loop
Executes a sequence of statements multiple times and abbreviates the
code that manages the loop variable.

nested loops You can use one or more loop inside any another while, for loop.

The while Loop
A while loop statement in Python programming language repeatedly executes a target

statement as long as a given condition is True.

Syntax

The syntax of a while loop in Python programming language is:

while expression:

statement(s)

Here, statement(s) may be a single statement or a block of statements.

The condition may be any expression, and true is any non-zero value. The loop

iterates while the condition is true. When the condition becomes false, program control

passes to the line immediately following the loop.

In Python, all the statements indented by the same number of character spaces after a

programming construct are considered to be part of a single block of code. Python uses

indentation as its method of grouping statements.

PYTHON PROGRAMMING UNIT-2

Page 2.17

1

END

2

END

3

END

1

2

3

END

Example-1: Example-2:

Output-1: Output-2:

Q) Write a program to display factorial of a given number.

Program:

Output:

Enter the number: 5

Factorial is 120

The for loop:

The for loop is useful to iterate over the elements of a sequence. It means, the for loop

can be used to execute a group of statements repeatedly depending upon the number of

elements in the sequence. The for loop can work with sequence like string, list, tuple, range

etc.

The syntax of the for loop is given below:

for var in sequence:

statement (s)

The first element of the sequence is assigned to the variable written after „for‟ and

then the statements are executed. Next, the second element of the sequence is assigned to the

variable and then the statements are executed second time. In this way, for each element of

the sequence, the statements are executed once. So, the for loop is executed as many times as

there are number of elements in the sequence.

n=input("Enter the number: ")

f=1

while n>0:

f=f*n

n=n-1

print "Factorial is",f

i=1

while i < 4:

print i

i+=1

print “END”

i=1

while i < 4:

print i

i+=1

print “END”

PYTHON PROGRAMMING UNIT-2

Page 2.18

1

END

2

END

3

END

1

2

3

END

name= "python"

for letter in name:

print letter

for x in range(10,0,-1):

print x,

n=input("Enter the number: ")

f=1

for i in range(1,n+1):

f=f*i

print "Factorial is",f

Example-1: Example-2:

Output-1: Output-2:

Example-3: Example-4:

Output-3: Output-4:

Q) Write a program to display the factorial of given number.

Program:

Output:

Enter the number: 5

Factorial is 120

10 9 8 7 6 5 4 3 2 1 p

y

t

h

o

n

for i range(1,5):

print i

print “END”

for i range(1,5):

print i

print “END”

PYTHON PROGRAMMING UNIT-2

Page 2.19

for i in range(1,6):

for j in range(1,6):

if i==j:

print "*",

elif i==1 or j==1 or i==5 or j==5:

print "*",

else:

print " ",

print ""

Nested Loop:

It is possible to write one loop inside another loop. For example, we can write a for

loop inside a while loop or a for loop inside another for loop. Such loops are called “nested

loops”.

Example-1:

Example-2:

Example-3:

Example-4:

Example-5:

for i in range(1,6):

for j in range(1,6):

print j,

print ""

for i in range(1,6):

for j in range(1,6):

if i==1 or j==1 or i==5 or j==5:

print "*",

else:

print " ",

print ""

for i in range(1,6):

for j in range(1,6):

if i==j:

print "$",

elif i==1 or j==1 or i==5 or j==5:

print "*",

else:

print " ",

print ""

for i in range(1,6):

for j in range(1,6):

print "*",

print ""

PYTHON PROGRAMMING UNIT-2

Page 2.20

Example-6:

Example-7:

Example-8:

Example-9:

Example-10:

for i in range(1,6):

for j in range(1,i+1):

print j,

print ""

for i in range(1,6):

for j in range(1,4):

if i==1 or j==1 or i==3 or i==5:

print "*",

else:

print " ",

print ""

for i in range(1,6):

for j in range(1,4):

if i==2 and j==1:

print "*",

elif i==4 and j==3:

print "*",

elif i==1 or i==3 or i==5:

print "*",

else:

print " ",

print ""

for i in range(1,6):

for j in range(1,4):

if i==1 or j==1 or i==5:

print "*",

else:

print " ",

print ""

for i in range(1,6):

for c in range(i,6):

print "",

for j in range(1,i+1):

print "*",

print ""

PYTHON PROGRAMMING UNIT-2

Page 2.21

n=input("Enter the n value")

count=0

for i in range(2,n):

if n%i==0:

count=count+1

break

if count==0:

print "Prime Number"

else:

print "Not Prime Number"

Example-11:

1) Write a program for print given number is prime number or not using for loop.

Program:

Output:

2) Write a program print Fibonacci series and sum the even numbers. Fibonacci series

is 1,2,3,5,8,13,21,34,55

Output:

Enter n value 10

1 2 3 5 8 13 21 34 55 89

The sum of even fibonacci numbers is 44

a=1

for i in range(1,5):

for j in range(1,i+1):

print a,

a=a+1

print ""

Enter n value: 17

Prime Number

n=input("Enter n value ")

f0=1

f1=2

sum=f1

print f0,f1,

for i in range(1,n-1):

f2=f0+f1

print f2,

f0=f1

f1=f2

if f2%2==0:

sum+=f2

print "\nThe sum of even Fibonacci numbers is", sum

PYTHON PROGRAMMING UNIT-2

Page 2.22

3) Write a program to print n prime numbers and display the sum of prime numbers.

Program:

Output:

Enter the range: 21

1 2 3 5 7 11 13 17 19

Sum of prime numbers is 78

4) Using a for loop, write a program that prints out the decimal equivalents of 1/2, 1/3,

1/4, . . . ,1/10

Program:

for i in range(1,11):

print "Decimal Equivalent of 1/",i,"is",1/float(i)

Output:

Decimal Equivalent of 1/ 1 is 1.0

Decimal Equivalent of 1/ 2 is 0.5

Decimal Equivalent of 1/ 3 is 0.333333333333

Decimal Equivalent of 1/ 4 is 0.25

Decimal Equivalent of 1/ 5 is 0.2

Decimal Equivalent of 1/ 6 is 0.166666666667

Decimal Equivalent of 1/ 7 is 0.142857142857

Decimal Equivalent of 1/ 8 is 0.125

Decimal Equivalent of 1/ 9 is 0.111111111111

Decimal Equivalent of 1/ 10 is 0.1

n=input("Enter the range: ")

sum=0

for num in range(1,n+1):

for i in range(2,num):

if (num % i) == 0:

break

else:

print num,

sum += num

print "\nSum of prime numbers is",sum

PYTHON PROGRAMMING UNIT-2

Page 2.23

5) Write a program that takes input from the user until the user enters -1. After display

the sum of numbers.

Program:

Output:

Enter the number: 1

Enter the number: 5

Enter the number: 6

Enter the number: 7

Enter the number: 8

Enter the number: 1

Enter the number: 5

Enter the number: -1

The sum is 33

6) Write a program to display the following sequence.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Program:

7) Write a program to display the following sequence.

A

A B

A B C

A B C D

A B C D E

Program:

for i in range(1,6):

ch='A'

for j in range(1,i+1):

print ch,

ch=chr(ord(ch)+1)

print ""

ch='A'

for j in range(1,27):

print ch,

ch=chr(ord(ch)+1)

sum=0

while True:

n=input("Enter the number: ")

if n==-1:

break

else:

sum+=n

print "The sum is",sum

PYTHON PROGRAMMING UNIT-2

Page 2.24

8) Write a program to display the following sequence.

A

B C

D E F

G H I J

K L M N O

Program:

9) Write a program that takes input string user and display that string if string contains

at least one Uppercase character, one Lowercase character and one digit.

Program:

Output-1:

Enter the password:"Mothi556"

******Mothi556******

Output-2:

Enter the password:"mothilal"

Invalid Password

pwd=input("Enter the password:")

u=False

l=False

d=False

for i in range(0,len(pwd)):

if pwd[i].isupper():

u=True

elif pwd[i].islower():

l=True

elif pwd[i].isdigit():

d=True

if u==True and l==True and d==True:

print pwd.center(20,"*")

else:

print "Invalid Password"

ch='A'

for i in range(1,6):

for j in range(1,i+1):

print ch,

ch=chr(ord(ch)+1)

print ""

PYTHON PROGRAMMING UNIT-2

Page 2.25

10) Write a program to print sum of digits.

Program:

Output:

Enter the number: 123456789

sum is 45

11) Write a program to print given number is Armstrong or not.

Program:

Output:

Enter the number: 153

ARMSTRONG

12) Write a program to take input string from the user and print that string after

removing ovals.

Program:

Output:

Enter the string:"Welcome to you"

Wlcm t y

n=input("Enter the number: ")

sum=0

t=n

while n>0:

r=n%10

sum+=r*r*r

n=n/10

if sum==t:

print "ARMSTRONG"

else:

print "NOT ARMSTRONG"

st=input("Enter the string:")

st2=""

for i in st:

if i not in "aeiouAEIOU":

st2=st2+i

print st2

n=input("Enter the number: ")

sum=0

while n>0:

r=n%10

sum+=r

n=n/10

print "sum is",sum

PYTHON PROGRAMMING UNIT-2

Page 2.26

Arrays:

An array is an object that stores a group of elements of same datatype.

➢ Arrays can store only one type of data. It means, we can store only integer type elements

or only float type elements into an array. But we cannot store one integer, one float and

one character type element into the same array.

➢ Arrays can increase or decrease their size dynamically. It means, we need not declare the

size of the array. When the elements are added, it will increase its size and when the

elements are removed, it will automatically decrease its size in memory.

Advantages:

➢ Arrays are similar to lists. The main difference is that arrays can store only one type of

elements; whereas, lists can store different types of elements. When dealing with a huge

number of elements, arrays use less memory than lists and they offer faster execution than

lists.

➢ The size of the array is not fixed in python. Hence, we need not specify how many

elements we are going to store into an array in the beginning.

➢ Arrays can grow or shrink in memory dynamically (during runtime).

➢ Arrays are useful to handle a collection of elements like a group of numbers or characters.

➢ Methods that are useful to process the elements of any array are available in „array‟

module.

Creating an array:

Syntax:

arrayname = array(type code, [elements])

The type code „i‟ represents integer type array where we can store integer numbers. If

the type code is „f‟ then it represents float type array where we can store numbers with

decimal point.

Type code Description Minimum size in bytes

„b‟ Signed integer 1

„B‟ Unsigned integer 1

„i‟ Signed integer 2

„I‟ Unsigned integer 2

„l‟ Signed integer 4

„L‟ Unsigned integer 4

„f‟ Floating point 4

„d‟ Double precision floating point 8

„u‟ Unicode character 2

Example:

The type code character should be written in single quotes. After that the elements

should be written in inside the square braces [] as

a = array („i‟, [4,8,-7,1,2,5,9])

PYTHON PROGRAMMING UNIT-2

Page 2.27

Importing the Array Module:

There are two ways to import the array module into our program.

The first way is to import the entire array module using import statement as,

import array

when we import the array module, we are able to get the „array‟ class of that module that

helps us to create an array.

a = array.array(‘i’, [4,8,-7,1,2,5,9])

Here the first „array‟ represents the module name and the next „array‟ represents the class

name for which the object is created. We should understand that we are creating our array as

an object of array class.

The next way of importing the array module is to write:

from array import *

Observe the „*‟ symbol that represents „all‟. The meaning of this statement is this: import all

(classes, objects, variables, etc) from the array module into our program. That means

significantly importing the „array‟ class of „array‟ module. So, there is no need to mention the

module name before our array name while creating it. We can create array as:

a = array(‘i’, [4,8,-7,1,2,5,9])

Example:

from array import *

arr = array(„i‟, [4,8,-7,1,2,5,9])

for i in arr:

print i,

Output:

4 8 -7 1 2 5 9

Indexing and slicing of arrays:

An index represents the position number of an element in an array. For example, when

we creating following integer type array:

a = array(‘i’, [10,20,30,40,50])

Python interpreter allocates 5 blocks of memory, each of 2 bytes size and stores the

elements 10, 20, 30, 40 and 50 in these blocks.

10 20 30 40 50

a[0] a[1] a[2] a[3] a[4]

Example:

from array import *

a=array('i', [10,20,30,40,50,60,70])

print "length is",len(a)

print " 1st position character", a[1]

print "Characters from 2 to 4", a[2:5]

print "Characters from 2 to end", a[2:]

print "Characters from start to 4", a[:5]

print "Characters from start to end", a[:]

PYTHON PROGRAMMING UNIT-2

Page 2.28

a[3]=45

a[4]=55

print "Characters from start to end after modifications ",a[:]

Output:

length is 7

1st position character 20

Characters from 2 to 4 array('i', [30, 40, 50])

Characters from 2 to end array('i', [30, 40, 50, 60, 70])

Characters from start to 4 array('i', [10, 20, 30, 40, 50])

Characters from start to end array('i', [10, 20, 30, 40, 50, 60, 70])

Characters from start to end after modifications array('i', [10, 20, 30, 45, 55, 60, 70])

Array Methods:

Method Description
a.append(x) Adds an element x at the end of the existing array a.

a.count(x) Returns the number of occurrences of x in the array a.

a.extend(x) Appends x at the end of the array a. „x‟ can be another array or
iterable object.

a.fromfile(f,n) Reads n items from from the file object f and appends at the end of
the array a.

a.fromlist(l) Appends items from the l to the end of the array. l can be any list or

iterable object.

a.fromstring(s) Appends items from string s to end of the array a.

a.index(x) Returns the position number of the first occurrence of x in the array.
Raises „ValueError‟ if not found.

a.pop(x) Removes the item x from the array a and returns it.

a.pop() Removes last item from the array a

a.remove(x) Removes the first occurrence of x in the array. Raises „ValueError‟
if not found.

a.reverse() Reverses the order of elements in the array a.

a.tofile(f) Writes all elements to the file f.

a.tolist() Converts array „a‟ into a list.

a.tostring() Converts the array into a string.

PYTHON PROGRAMMING UNIT-2

Page 2.29

import sys

from array import *

a=array('i',[])

while True:

print "\n1.PUSH 2.POP 3.DISPLAY 4.EXIT"

ch=input("Enter Your Choice: ")

if ch==1:

ele=input("Enter element: ")

a.append(ele)

print "Inserted"

elif ch==2:

if len(a)==0:

print "\t STACK IS EMPTY"

else:

print "Deleted element is", a.pop()

elif ch==3:

if len(a)==0:

print "\t STACK IS EMPTY"

else:

print "\tThe Elements in Stack is",

for i in a:

print i,

elif ch==4:

sys.exit()

else:

print "\tINVALID CHOICE"

1) Write a program to perform stack operations using array.

Program:

Output:

1. PUSH 2.POP 3.DISPLAY 4.EXIT

Enter Your Choice: 1

Enter element: 15

Inserted

1.PUSH 2.POP 3.DISPLAY 4.EXIT

Enter Your Choice: 1

Enter element: 18

Inserted

1.PUSH 2.POP 3.DISPLAY 4.EXIT

Enter Your Choice: 3

The Elements in Stack is 15 18

1.PUSH 2.POP 3.DISPLAY 4.EXIT

Enter Your Choice: 2

Deleted element is 18

PYTHON PROGRAMMING UNIT-2

import sys

from array import *

a=array('i',[])

while True:

print "\n1.INSERT 2.DELETE 3.DISPLAY 4.EXIT"

ch=input("Enter Your Choice: ")

if ch==1:

ele=input("Enter element: ")

a.append(ele)

elif ch==2:

if len(a)==0:

print "\t QUEUE IS EMPTY"

else:

print "Deleted element is”, a[0]

a.remove(a[0])

elif ch==3:

if len(a)==0:

print "\t QUEUE IS EMPTY"

else:

print "\tThe Elements in Queue is",

for i in a:

print i,

elif ch==4:

sys.exit()

else:

print "\tINVALID CHOICE"

2) Write a program to perform queue operations using array.

Program:

Output:

1.INSERT 2.DELETE 3.DISPLAY 4.EXIT

Enter Your Choice: 1

Enter element: 12

1.INSERT 2.DELETE 3.DISPLAY 4.EXIT

Enter Your Choice: 1

Enter element: 13

1.INSERT 2.DELETE 3.DISPLAY 4.EXIT

Enter Your Choice: 1

Enter element: 14

1.INSERT 2.DELETE 3.DISPLAY 4.EXIT

Enter Your Choice: 3

The Elements in Queue is 12 13 14

1.INSERT 2.DELETE 3.DISPLAY 4.EXIT

Enter Your Choice: 2

Deleted element is 12

T.MOTHILAL, ASST.PROF Page 2.30

Copy protected with PDF-No-Copy.com

http://www.online-pdf-no-copy.com/

