
 

UNIT – I 

1. ABSTRACT DATA TYPE (ADT) 

An ADT refers to a set of data values and associated operations that are specified 

accurately. ADT consists of set of definitions that allow us to use the function while hiding the 

implementation (i.e.; ADT is independent of implementation) 

ADT model: The representation of the ADT model is shown below 

ADT consists of two different parts: 

1) Data Structures 

2) Functions 

 

• Data Structures and Functions don’t come 

within the scope of Application Program. 

• Data Structures are available to all of the 

ADT functions i.e. Data Structures and 

Functions are within the scope of each 

other. 

• The programming interface can only 

access public functions. 

• For each ADT operation, there is an 

algorithm that performs specific task. 

• Only operation name and parameters are 

available to application program but 
implementation is hidden. 

 

AN INTRODUCTION TO C++ CLASS 

C++ provides an explicit mechanism, the class, to support the distinction between specification 

and implementation and to hide the implementation of an ADT from its users. However, ti is the 

programmer’s responsibility to use the class mechanism judiciously so that it does, in fact, 

represent an ADT. The C++ class consists of four components: 

1) a class name: (e.g. Rectangle) 

2) Data members: the data that makes up the class (e.g. x1, y1, h and w). 

3) Member functions: the set of operations that may be applied to the objects of a class (e.g. 

GetHeight(), Getwidth() ). 

4) Levels of program access: these control the level of access to data members and member 

functions from program code that is outside the class. There are three levels of access to class 

members: public, protected and private. 

Any public data member (member function) can be accessed (invoked) from anywhere in the 

program. A private data member (member function) can only be accessed (invoked) from within 

its class or by a function or a class that is declared to be a friend. A protected data member 

(member function) can only be accessed (invoked) from within its class or from its subclasses or 

by a friend. 
 

Program 1: Definition of the C++ class Rectangle 



 

DATA ABSTRACTION AND ENCAPSULATION IN C++ 

DECLARING CLASS OBJECTS AND INVOKING MEMBER FUNCTIONS 

 



 

SPECIAL CLASS OPERATIONS 

 

Constructors and Destructors: The constructor and destructor are special member functions of 

a class. A constructor is a member function which initializes data members of an object. If a 

constructor is provided for a class, it is automatically executed when an object of that class is 

created. If a constructor is not defined for a class, memory is allocated for the data members of a 

class object, when it is created, but the data members are not initialized. The advantage of 

defining constructors for a class is that all class objects are well-defined as soon as they are 

created. This eliminates errors that result from accessing an undefined object. A destructor is a 

member function which deletes data members immediately before the object disappears. A 

constructor and destructor for class Rectangle are declared in program 2.1. 

A constructor must be declared as a public member function of its class; The name of a 

constructor must be identical to the name of the class to which it belongs; and a constructor must 

not specify a return type or return a value. Program 2.4 shows a constructor definition for class 

Rectangle. 
 

 

Constructors may be used to initialize Rectangle objects as follows: 

Rectangle r(1, 3, 6, 6); 

Rectangle *s=new Rectangle(0, 0, 3, 4); 

These create r, a square of side 6 whose bottom left corner is at (1,3); and s, a pointer to a 

Rectangle object of height 3 and width 4 whose bottom left corner is at the origin. 

Destructors are automatically invoked when a class object goes out of scope or when a class 

object is deleted. Like a constructor, a destructor must be declared as a public member of its 

class; its name must be identical to the name of its class prefixed with a tilde (~); a destructor 

must not specify a return type or return a value, and a destructor may not take arguments. If a 

destructor is not defined for a class, the deletion of an object of that class results in the freeing of 

memory associated with data members of the class. If a data member is a pointer to some other 

object, the space allocated to the pointer is returned, but the object that it was pointing to is not 

deleted. If we also wish to delete this object, we must define a destructor that explicitly does so. 
 



 

 

 
 

We can now use the operator == to determine whether two rectangles are identical. Our program 

first evaluates the expression “this== &s”. This expression checks to see if the two rectangles 

being compared are the same object. 

 

Program 2.7 overloads operator << so that Rectangle objects can be output by using cout. 

 

Notice that operator << accesses private data members of class Rectangle. Therefore, it must be 

made a friend of Rectangle. 

MISCELLANEOUS TOPICS 

ADTs and C++ CLASSES 

Note that there is one significant aspect in which the format of ADT differs from the C++ class; 

some operators in C++ such as operator <<, when overloaded for user-defined ADTs, do not 

exist as member functions of the corresponding class. Rather, these operators exist as ordinary 

C++ functions. Thus, these operations are declared outside the C++ class definition of the ADT 

even though they are actually part of the ADT. 



 

 

2. DATA STRUCTURE 

A data structure is a systematic way of organizing and accessing data. 

Data may be organized in many different ways. 

The logical or mathematical model of a particular organization of data is called a Data structure. 

 

A data structure tries to structure data 

▪ Usually more than one piece of data 

▪ Should define legal operations on the data 

▪ The data might be grouped together (e.g. in an linked list) 

 
Types of Data Structures: 

Data Structures are broadly classified into two types: 

1.   Linear Data Structure 2. Non Linear Data Structure 

 
1. Linear Data Structures 

Definition: A data structure is said to be linear if its elements form a sequence or a linear list. 

Examples: 

• Array 

• Linked List 

• Stacks 

• Queues 

 
2. Non-Linear Data Structures 

Examples: Trees, Graphs 

 
Operations on Linear and Non Linear Data Structures 

• Traversal : Visit every part of the data structure 

• Search : Traversal through the data structure for a given element 

• Insertion : Adding new elements to the data structure 

• Deletion: Removing an element from the data structure. 

• Sorting : Rearranging the elements in some type of order(e.g Increasing or Decreasing) 

• Merging : Combining two similar data structures into one 

 

3. Arrays 
The simplest type of data structure is an array. Array is a list of finite number of homogeneous 

data elements such that 

a) The elements of array are referred respectively by an index. 

b) The elements in an array are stored respectively in successive memory locations. 

c) Elements of an array „A‟ are denoted as A[0], A[1], A[2],……., A[n]. 

In the notation A[k] 

k is called a subscript 

A[k] is called variable or subscript value. 

 

Eg: Let „A‟ be a „6‟ element array of integers such that A[0]= 247, A[1]= 30, A[2]= 2, A[3]= 

200,A[4]=6, A[5]=8 

A→ 

0 1 2 

 
3 4 5 

 

 Arrays as ADT 

An array is a fundamental abstract data type. Each instance of an array is a set of pairs of the 

form <index, value>. No two pairs in this set have same index. 

Operations: Operations performed on the array are, 

1) Create an array: This operation creates and initializes an array. 

2) Get an element: Get’s the value of the pair that has a given index. 

3) Set an element: Adds a pair of the form<index, value> to the array and if a pair 

with the same index already exists it deletes the old pair. 

4) Insert an element: Adds a pair of the form<index, value> to the array and if a pair 

with the same index already exists, move all the elements to the next position 

(Last to the given index) and element is inserted in given index. 

 

5) Remove an element: Deletes an element at given index. 

6) Search an element: Find’s the given element by comparing all elements in an array 

and if element is found, it returns index of that element. Otherwise, it returns -1. 

7) Display elements: Displays all elements of an array. 

247 30 2 200 6 8 

 



 

ADT Array 

Set of <index, value> 

No two pairs have same index 

Data Structures 

Type *a; 

int size; 

Operations 

void create(s): This operation creates and initializes an array. 

 

void set(i, v): Adds a pair of the form<index, value> to the array and if a 

pair with the same index already exists it deletes the old pair. 

 

Type get(i): Get’s the value of the pair that has a given index. 

 

int search(v): Find’s the given element by comparing all elements in an 

array and if element is found, it returns index of that element. Otherwise, it 

returns -1. 

 

void display( ): Displays all elements of an array. 

End Array 

template<class T> 

class Array 
{ 

T *a; 

int size; 

public: 

void create(int s); 

void set(int i, T v); 

T get(int i); 

int search(T v); 

void display( ); 

}; 

template<class T> 

void Array<T> : : create(int s) 

{ 

a= new T[s]; 

size= s; 

} 

8) Attributes: Displays attributes of an array. 

9) Sort: Sorts all elements in an array. 

 

3.2. ADT Specification of an array 
 

 

 Implementation of an Array ADT using C++ 
 

 
 

i) Creating an array: This operation creates and initializes an array. 
 

 
In main, if we call 

a1. create(8) 



 

template<class T> 

void Array<T> : : set(int i, int v) 

{ 

if(i< size) 

a[i]= v; 

else 

cout<<”Array out of bound”; 

} 

template<class T> 

T Array<T>: : get(int i) 

{ 

return(a[i]); 

} 

template<class T> 

int array<T>: : search(T v) 

{ 

for( int i=0; i < size; i++) 

if(a[i]==v) 

{ 

return i ; 

} 

else 

return -1 

} 

a→ 
 

0 1 2 3 4  5 6 7 

size= 8 

 

ii) Set an element: Adds a pair of the form<index, value> to the array and if a pair with 

the same index already exists it deletes the old pair. 
 

In main, if we call 

a1. set(0, 18); 

a→ 

 

 

0 1 2 3 4 5 6 7 
 

a1. set(1, 25); 

a→ 
 

 

 

a1. set(2, 11); 

a→ 

0 1 2 3 4 5 6 7 

 

18 25 11      

 

0 1 2 3 4 5 6 7 
 

iii) Get an element: Get‟s the value of the pair that has a given index. 
 

 

In main, if we call, 

a1.get(1) ------------------ 25 is the value returned. 

 

iv) Search an element: Find‟s the given element by comparing all elements in an array 

and if element is found, it returns index of that element. Otherwise, it returns -1. 
 

        

 

18        

 

18 25       

 



 

    

template<class T> 

void array<T>: : display( ) 

{ 

for( int i=0; i< size; i++ ) 

cout<< a[i]<< end l ; 

} 

In main, if we call 

a1. search(18); 

a→ 
 

0 1 2 3 4 5 6 7 

v→ 18 

returns index 0 

 

v) Display an element: Displays all elements of an array. 
 

In main, if we call 
a1. display( ) 

a→ 
 

0 1 2   3 4 5 6 7 

Result is 18 

25 

11 
 

 

4. Polynomial 

Polynomial is a sum of terms, where each has a form a   

where “x” is a variable, 

“a” is the coefficient, 

“e” is the exponent. 
 

Ex: A(x)=3x^20+2x^5+4                

B(x)= x^4+10x^3+3x^2+1 

 
The largest exponent of a polynomial is called its degree. Polynomial can be generalized into 

f (x )= ∑ai xi  
 

Coefficient that are zero are not displayed. The terms with exponents equal to zero does not  

show the variable, since x0 = 1. 

 
 Polynomial Representation 

Polynomial may be represented using array (or) linked lists. 

 

Polynomial as Array Representation 
It is assumed that exponent of a expression are arranged from 0 to highest value(degree) 

which is represented by subscripts(index) of respective exponents are placed at appropriate  

index in the array. 

Ex: P(x) = 4x^3+6x^2+9               
 

P= 

 
 

REPRESENTATION-1: 
  P1(x )=8x^3+3x^2+2x+6                        

  P2(x )=2x^4+18x-3              

  P3(x )=16x^21-3x^5+2x+6                          
 

   P1=   6 2 3 8 

 0 1 2 3 

9 0 6 4 

0 1 2 3 

18 25 11      

 

18 25 11      

 



 

 

 P2 = 
 

 
 

   P3  6 2 0 0 0 -3 - - - - - - 16 

 0 1 2 3 4 5 21 
 

Advantages of Representation1 
 

1. Only good for non spare polynomials. 

2. Easy of storage and retrival. 

 

Disadvantages of Representaion1 
 

1. Have to allocate array size ahead of times. 

2. Huge array size is required for spares polynomials, waster of space. 

 

REPRESENTATION -2: 
We call this type of representation as double array representation. 

Ex: 
 
   
   P1=8x^9+18x^7-41x^6+163x^4-5x+3 

   
     

   
     

   
      

   
         

                  P2=4x^6+10x^4+12x+8 
                             

 

Advantages of Representation 2: 
 

1. This type of representation saves space. 

 

Disadvantages of Representation 2: 
 

1. Difficult to maintain. 

2. More code required for polynomial operations like addition, subtraction, etc., 

 

4.3 Operations performed on Polynomials 

i) Create a polynomial: This function creates dynamic array of coefficient and initializes it to 

zero. 

ii) Reading a polynomial: Creates an array dynamically and reads coefficient of all exponents 

in a polynomial. 

iii) Set a coefficient: It sets the coefficient in the polynomial at a given exponent (index). 

iv) Get a coefficient: Returns a coefficient at a given index (or) a exponent. 

v) Degree: Returns degree of the polynomial. 

vi) Evaluate: Evaluate the polynomial for a given value of “x”. 

vii) Add: Adds one polynomial to another polynomial. 

viii) Subtract: Subtracts one polynomial to another polynomial. 

ix) Multiply: Multiplies two polynomials. 

x) Multiply by constant: Multiply one polynomial by given constant. 

xi) Equals: Check equality of two polynomials. 

xii) Derivative: Computes derivate of a polynomial. 

xiii) Integrate: Compute integration of a polynomial. 

  

  

  

-3 18 0 

0 1 2 

0 2 

3 4 



 

ADT Polynomial 

Sum of < ai,ei>        
Where ai ,s are coefficients and ei,are exponents 

Data structures 

Type *coefficient; 

int deg; 

Operations 

void createpoly (int d): create dynamic array & construct zero polynomial. 

void readpoly (int d): creates dynamic array & reads coefficient from user. 

void setcoeff (Type coef , int ex): sets a coefficient at a given exponent (index). 

void getcoeff (int ex): Retrives coefficient at a given index. 

int degree ( ): retrieves degree of a polynomial. 

Type evaluate (int x): Evaluate a polynomial by given x. 

Polynomial addpoly(polynomial A, polynomial B): add two polynomials. 

Polynomial subpoly(polynomial A, polynomial B): subtract two polynomials 

Polynomial mulpoly(polynomial A, polynomial B): multiply two polynomials 

void displaypoly( ):displays polynomial such that zero coefficients aren‟t displayed. 

End polynomial. 

template <class t> 

Class Poly 

{ 

T *coef; 

int deg; 

public: 

void createpoly(int d); 

void readpoly(int d); 

void setcoeff(T c, int e); 

T getcoeff (int e); 

Poly addpoly(Poly A, Poly B); 

void display ( ); 

}; 

template <class T> 

void Poly <T>::createpoly (int d) 

{ 

coef=new T[d+1]; 

deg=d; 

for(int i=0;i<=deg; i++) 

coef[i]=0; 

} 

 Polynomial as ADT 
 

 

 Polynomial implementation using C++ 
 
 

 
i) Creating a polynomial: This function creates a dynamic array of coefficient of size 

degree +1 and creates zero polynomial. 
 

 
In main function; we call 

p.createpoly (4); 

coef 

 
 

deg=4 

ii) Reading a polynomial: This function reads a coefficient from user and place in the coef 

array. 
 

0 0 0 0 0 

0 1 2 3 4 



 

template <class T> 

void Poly <T>::display( ) 

{ 

for(int i=deg; i>=0; i--) 

{ 

if (coef [i] !=0) 

{ 

cout<<coef[i]<<”X^”<<i; 

if (i!=0) 

cout<<”+”; 

 

} 

} 

} 

 
 

In main 

p.readpoly( ); 

 
then, 

 

at i=0; enter coef for exponent 0 

5 

 

at i=1;  enter coef for exponent 1 

2 

 
 

at i=2; enter coef for exponent2 

0 

 
 

at i=3; enter coef for exponent 3 

0 

 
 

at i=4;  enter coef for exponent4 

3 
 

iii) Displaying a polynomial: This function displays the polynomial such that zero 

coefficient terms are not displayed. 

 

 

 

 

 

 

 

 

 

 

 

 
 

For above example, the output produced is as follows 

At i=4 ------ > 3 x ^4 + 
At i=3 ------ > 3 x ^4 + 

At i=2 ------ > 3 x ^4 + 

At i=1 ------ > 3 x ^4 + 2 x ^1+ 

At i=0 ------ > 3 x ^4 + 2 x ^1+ 5 

 

iv) Set a coefficient: This function sets coefficient of a given exponent value. 

template <class T> 

void Poly<T>::readpoly( ) 

{ 

for(int i=0; i<=deg; i++) 

{ 

cout <<”enter coef for exponent”<< i; 

cin >>coef[i]; 

} 

} 



 

template <classT> 

T poly<T>::getcoef(int e) 

{ 

return coef[e]; 

} 

template <class T> 

Poly Poly<T>::addpoly(Poly A, Poly B) 

{ 

if (A.deg>B.deg) 

deg=A.deg; 

else 

deg=B.deg; 

createpoly(deg); 

for(int i=0;i<=deg;i++) 

coef[i]=A.coef[i]+B.coef[i]; 

return *this; 

} 

 

 
 

In main, if we call 

 

p.set (11,1) 

 

then, coef[1] is set to 11; 

 
 

v) Get coefficient: This function retrives a coefficient at a given index (or) exponent. 
 

 

 
 

In main, if we call 

p.getcoef(4); 

 

then, 3 will be returned ( Since, coef [4] is 3) 
 

 

vi) Addition of two Polynomials: This function adds two polynomial and returns the 

sum of two polynomial. 
 

 
Let us consider two polynomial P & Q 

 

P=3x^4+2x+5 Q=2x^4+2x^3+4x+1  
 

P can be represented as 

 

 
 

Q can be represented as 
 
 

template <class T> 

void Poly<T>::setcoef(T c, int e) 

{ 

coef [e]=c; 

} 



 

In main function , if we call 

R.addploy(P,Q) then P,Q polynomials are copied to A&B, and the sum of two 

polynomials is as follows: 

 

Now, R.deg=max (P.degree, Q.degree)=4 
 

 
5. SPARSE MATRICES 

A sparse matrix is a matrix having relatively small number of non-zero elements. Sparse 

matrix is a 2D array in which most of the elements have null value or zero. It is wastage of 

memory and processing time if we store null value of matrix in array. 

A sparse matrix is matrix in which number of zero elements are more than number of 

non-zero elements. 

Ex: Diagonal Matrices, Lower triangular matrices etc., 

2 3 0 

0 0 0 

0 1 0 is sparse matrix. 

 

Sparse Matrix can be represented using Triplet and Linked List. 

 

 Representation using Triplet 

 

Triplet Representation 

In this representation, we consider only non-zero values along with their row and 

column index values. In this representation, the 0th row stores total rows, total 

columns and total non-zero values in the matrix. 

 

For example, consider a matrix of size 5 X 6 containing 6 number of non- zero values. 

This matrix can be represented as shown in the image... 

  

 

 

In above example matrix, there are only 6 non-zero elements ( those are 9, 8, 4, 2, 5 & 

2) and matrix size is 5 X 6. We represent this matrix as shown in the above image. 

Here the first row in the right side table is filled with values 5, 6 & 6 which 

indicates that it is a sparse matrix with 5 rows, 6 
columns & 6 non-zero values. Second row is filled with 0, 4, & 9 which 



 

ADT SparseMatrix 

A set of triples, <row, col, value>, where row and col are integers and form a unique 

combination. 

 

Data Structures 

Term t[10]; -Array of Terms where Term is <row, col, val> 

Operations 

void create(n): creates a SparseMatrix that can hold n non-zero elements 

information. 

SparseMatrix transpose(A): return the matrix produced by interchanging the row 

and column value of every triple. 

SparseMatrix add(A,B): if dimensions of a and b are the same return the 

matrix produced by corresponding items, namely 

those with identical row and column values else 

return error. 

 

SparseMatrix multiply(A,B): if number of columns in a equals number of rows in 

B return the matrix D produced by multiplying A by 

B according to the formula: D[i][j]= 

Ʃ(A[i][k]*B[k][j]) where D[i][j] is the (i,j) th 

element else return error. 

End SparseMatrix 

 

 
 

Let us consider another sparse matrix 

2 3 0 

0   0  0 

0  -5  0 

Sparse matrix can be represented using array of triples<row, col, value>. Scan non-zero elements 

of Sparse Matrix in row major order. Each non-zero element is represented by triple<row, col, 

value>. The following is the sparse matrix representation: 
 

 row col value 

 
t[0] 

 
3 

 
3 

 
3 

t[1] 0 0 2 

t[2] 0 1 3 
t[3] 2 1 -5 

 

Thus, t[0].row contains max no. of rows; t[0].col contains max. no. columns; t[0].value contains 

total no. of non-zero elements. Positions 1 to 3 store the triples representing non-zero entries.  

The row index is in the field row; the column index is in the field col; and the value is in the field 

value. 

 

class Term 

{ 

public: 

 

 

}; 

 

int row; 

int col; 

int value; 

class SparseMatrix 

{ 

Term t[20]; 

……… 

}; 

Here each term is a triple <row,col,value>. 

 Sparse Matrix ADT 

 

 Sparse Matrix Transpose 
To transpose a matrix we must interchange the rows and columns. 

 

Example: matrix A 

indicates the value in the matrix at 0th row, 4th column is 9. In the same 
way the remaining non-zero values also follows the similar pattern. 



 

template <class T> 

SparseMatrix SparseMatrix<T>::transpose(SparseMatrix A) 

{ 

t[0].row=A.t[0].row; 

t[0].col=A.t[0].col; 

t[0].value=A.t[0].value; 

 

n=t[0].value; 

k=1; 

if(n>0) 

{ 

for(i=0; i<A.t[0].col; i++) 

for(j=0; j<=n; j++) 

{ 

t[k].row=A.t[j].col; 

t[k].col=A.t[j].row; 

t[k].value=A.t[j].vlaue; 

k++; 

} 

} 

return *this; 

} 

 
 0 1 2 3 5 6  

0| 15 0 0 22 0 -15 

1| 0 11 3 0 0 0 

2| 0 0 0 -6 0 0 

3| 0 0 0 0 0 0 

4| 91 0 0 0 0 0 

5| 0 0 28 0 0 0 

 
row col value 

     
row col value 

A.t[0] 6 6 8     B.t[0] 6 6 8 
 [1] 0 0 15     [1] 0 0 15 
 [2] 0 3 22     [2] 0 4 91 
 [3] 0 5 -15     [3] 1 1 11 
 [4] 1 1 11     [4] 2 1 3 
 [5] 1 2 3     [5] 2 5 28 
 [6] 2 3 -6     [6] 3 0 22 
 [7] 4 0 91     [7] 3 2 -6 
 [8] 5 2 28     [8] 5 0 -15 

 
For instance, in the above example 
(0,0,15) which becomes (0,0,15) 

(0,3,22) which becomes (3,0,22) 
(0,5,-15) which becomes (5,0,-15) 

 

If we place these triples consecutively in the transpose matrix, then as we insert new 

triples, we must move elements to maintain the correct order. We can avoid this data 

movement by using the column indices to indices to determine the placement of elements in 

the transpose matrix. 

The algorithm indicates that we should “find all the elements in column 0 and store 

them in row 0 of the transpose matrix, find all the elements in column 1 and store them in 

row 1 etc.” 

 

Implementation of Transpose of Sparse Matrix 
 

Analysis of transpose: Determining the algorithm computing time of this algorithm is easy  

since the nested for loops are the decisive factor. We can see that the outer for loop is iterated 

A.t[0].col times(no. of columns in the original matrix). One iteration of the inner for loop 

requires A.t[0].value (no. of non-zero elements in the original matrix). Therefore, the total time 

for the nested for loops is columns * elements. Hence, the asymptotic time complexity is 

O(columns*elements).Much better algorithm can be created by using a little storage, in which  



 

 

we can transpose a matrix represented as a sequence of triples in O(columns + elements) time. 

 

Matrix multiplication 

Definition: 

Given A and B where A is mn and B is np, the product matrix D has dimension mp. Its <i, j> 

element is 
n−1 

dij  = aikbkj 

k =0 

for 0  i < m and 0  j < p. 
 

Example: 
 

Sparse Matrix Multiplication 

Definition: [D]m*p=[A]m*n* [B]n*p 

Procedure: Fix a row of A and find all elements in column j of B for j=0, 1, …, p-1. 

Alternative 1. 
Scan all of B to find all elements in j. 

Alternative 2. 
 

▪ Compute the transpose of B. (Put all column elements consecutively) 

▪ Once we have located the elements of row i of A and column j of B we just do a merge 

operation similar to that used in the polynomial addition 

 
General case: 

dij=ai0*b0j+ai1*b1j+…+ai(n-1)*b(n-1)j 

Array A is grouped by i, and after transpose, array B is also grouped by j. 
 

a
0* 

d b
*0 

a
1* 

e b
*1 

a
2* 

f b
*2 

g b
*3

 

 

The multiply operation generate entries: 

a*d , a*e , a*f , a*g , b*d , b*e , b*f , b*g , c*d , c*e , c*f , c*g 
 

The below program can obtain the product matrix D which multiplies matrices A and B. 

a 

b 

c 



 

 

 



 

REPRESENTATION OF ARRAYS 
 

 

 
 



 

 

 
 

 
 


