
PYTHON PROGRAMMING UNIT-1

Page 1.1

Definition:

Python is a high-level, interpreted, interactive and object-oriented scripting language.

Python is designed to be highly readable. It uses English keywords frequently where as other

languages use punctuation, and it has fewer syntactical constructions than other languages.

➢ Python is Interpreted: Python is processed at runtime by the interpreter. You do not

need to compile your program before executing it. This is similar to PERL and PHP.

➢ Python is Interactive: You can actually sit at a Python prompt and interact with the

interpreter directly to write your programs.

➢ Python is Object-Oriented: Python supports Object-Oriented style or technique of

programming that encapsulates code within objects.

➢ Python is a Beginner's Language: Python is a great language for the beginner-level

programmers and supports the development of a wide range of applications from simple

text processing to WWW browsers to games.

History of Python

➢ Python was developed by Guido van Rossum in the late eighties

and early nineties at the National Research Institute for

Mathematics and Computer Science in the Netherlands.

➢ Python is derived from many other languages, including ABC,

Modula-3, C, C++, Algol-68, SmallTalk, Unix shell, and other

scripting languages.

➢ At the time when he began implementing Python, Guido van Rossum was also reading

the published scripts from "Monty Python's Flying Circus" (a BBC comedy series from

the seventies, in the unlikely case you didn't know). It occurred to him that he needed a

name that was short, unique, and slightly mysterious, so he decided to call the language

Python.

➢ Python is now maintained by a core development team at the institute, although Guido

van Rossum still holds a vital role in directing its progress.

➢ Python 1.0 was released on 20 February, 1991.

➢ Python 2.0 was released on 16 October 2000 and had many major new features,

including a cycle detecting garbage collector and support for Unicode. With this release

the development process was changed and became more transparent and community-

backed.

➢ Python 3.0 (which early in its development was commonly referred to as Python 3000 or

py3k), a major, backwards-incompatible release, was released on 3 December 2008 after

a long period of testing. Many of its major features have been back ported to the

backwards-compatible Python 2.6.x and 2.7.x version series.

➢ In January 2017 Google announced work on a Python 2.7 to go transcompiler, which The

Register speculated was in response to Python 2.7's planned end-of-life.

PYTHON PROGRAMMING UNIT-1

Page 1.2

Python Features:

Python's features include:

➢ Easy-to-learn: Python has few keywords, simple structure, and a clearly defined syntax.

This allows the student to pick up the language quickly.

➢ Easy-to-read: Python code is more clearly defined and visible to the eyes.

➢ Easy-to-maintain: Python's source code is fairly easy-to-maintain.

➢ A broad standard library: Python's bulk of the library is very portable and cross-

platform compatible on UNIX, Windows, and Macintosh.

➢ Interactive Mode: Python has support for an interactive mode which allows interactive

testing and debugging of snippets of code.

➢ Portable: Python can run on a wide variety of hardware platforms and has the same

interface on all platforms.

➢ Extendable: You can add low-level modules to the Python interpreter. These modules

enable programmers to add to or customize their tools to be more efficient.

➢ Databases: Python provides interfaces to all major commercial databases.

➢ GUI Programming: Python supports GUI applications that can be created and ported to

many system calls, libraries, and windows systems, such as Windows MFC, Macintosh,

and the X Window system of UNIX.

➢ Scalable: Python provides a better structure and support for large programs than shell

scripting.

Need of Python Programming

➢ Software quality

Python code is designed to be readable, and hence reusable and maintainable—

much more so than traditional scripting languages. The uniformity of Python code makes

it easy to understand, even if you did not write it. In addition, Python has deep support

for more advanced software reuse mechanisms, such as object-oriented (OO) and

function programming.

➢ Developer productivity

Python boosts developer productivity many times beyond compiled or statically

typed languages such as C, C++, and Java. Python code is typically one-third to less to

debug, and less to maintain after the fact. Python programs also run immediately, without

the lengthy compile and link steps required by some other tools, further boosting

programmer speed. Program portability Most Python programs run unchanged on all

major computer platforms. Porting Python code between Linux and Windows, for

example, is usually just a matter of copying a script‘s code between machines.

➢ Support libraries

Python comes with a large collection of prebuilt and portable functionality,

known as the standard library. This library supports an array of application-level

programming tasks, from text pattern matching to network scripting. In addition, Python

can be extended with both home grown libraries and a vast collection of third-party

application support software. Python‘s third-party domain offers tools for website

construction, numeric programming, serial port access, game development, and much

more (see ahead for a sampling).

PYTHON PROGRAMMING UNIT-1

Page 1.3

➢ Component integration

Python scripts can easily communicate with other parts of an application, using a

variety of integration mechanisms. Such integrations allow Python to be used as a

product customization and extension tool. Today, Python code can invoke C and C++

libraries, can be called from C and C++ programs, can integrate with Java and .NET

components, can communicate over frameworks such as COM and Silverlight, can

interface with devices over serial ports, and can interact over networks with interfaces

like SOAP, XML-RPC, and CORBA. It is not a standalone tool.

➢ Enjoyment

Because of Python‘s ease of use and built-in toolset, it can make the act of

programming more pleasure than chore. Although this may be an intangible benefit, its

effect on productivity is an important asset. Of these factors, the first two (quality and

productivity) are probably the most compelling benefits to most Python users, and merit

a fuller description.

➢ It's Object-Oriented

Python is an object-oriented language, from the ground up. Its class model

supports advanced notions such as polymorphism, operator overloading, and multiple

inheritance; yet in the context of Python's dynamic typing, object-oriented programming

(OOP) is remarkably easy to apply. Python's OOP nature makes it ideal as a scripting

tool for object-oriented systems languages such as C++ and Java. For example, Python

programs can subclass (specialized) classes implemented in C++ or Java.

➢ It's Free

Python is freeware—something which has lately been come to be called open

source software. As with Tcl and Perl, you can get the entire system for free over the

Internet. There are no restrictions on copying it, embedding it in your systems, or

shipping it with your products. In fact, you can even sell Python, if you're so inclined.

But don't get the wrong idea: "free" doesn't mean "unsupported". On the contrary, the

Python online community responds to user queries with a speed that most commercial

software vendors would do well to notice.

➢ It's Portable

Python is written in portable ANSI C, and compiles and runs on virtually every

major platform in use today. For example, it runs on UNIX systems, Linux, MS-DOS,

MS-Windows (95, 98, NT), Macintosh, Amiga, Be-OS, OS/2, VMS, QNX, and more.

Further, Python programs are automatically compiled to portable bytecode, which runs

the same on any platform with a compatible version of Python installed (more on this in

the section "It's easy to use"). What that means is that Python programs that use the core

language run the same on UNIX, MS-Windows, and any other system with a Python

interpreter.

➢ It's Powerful

From a features perspective, Python is something of a hybrid. Its tool set places it

between traditional scripting languages (such as Tcl, Scheme, and Perl), and systems

languages (such as C, C++, and Java). Python provides all the simplicity and ease of use

of a scripting language, along with more advanced programming tools typically found in

systems development languages.

PYTHON PROGRAMMING UNIT-1

Page 1.4

➢ Automatic memory management

Python automatically allocates and reclaims ("garbage collects") objects when no

longer used, and most grow and shrink on demand; Python, not you, keeps track of low-

level memory details.

➢ Programming-in-the-large support

Finally, for building larger systems, Python includes tools such as modules,

classes, and exceptions; they allow you to organize systems into components, do OOP,

and handle events gracefully.

➢ It's Mixable

Python programs can be easily "glued" to components written in other languages.

In technical terms, by employing the Python/C integration APIs, Python programs can be

both extended by (called to) components written in C or C++, and embedded in (called

by) C or C++ programs. That means you can add functionality to the Python system as

needed and use Python programs within other environments or systems.

➢ It's Easy to Use

For many, Python's combination of rapid turnaround and language simplicity

make programming more fun than work. To run a Python program, you simply type it

and run it. There are no intermediate compile and link steps (as when using languages

such as C or C++). As with other interpreted languages, Python executes programs

immediately, which makes for both an interactive programming experience and rapid

turnaround after program changes. Strictly speaking, Python programs are compiled

(translated) to an intermediate form called bytecode, which is then run by the interpreter.

➢ It's Easy to Learn

This brings us to the topic of this book: compared to other programming

languages, the core Python language is amazingly easy to learn. In fact In fact, you can

expect to be coding significant Python programs in a matter of days (and perhaps in just

hours, if you're already an experienced programmer).

➢ Internet Scripting

Python comes with standard Internet utility modules that allow Python programs

to communicate over sockets, extract form information sent to a server-side CGI script,

parse HTML, transfer files by FTP, process XML files, and much more. There are also a

number of peripheral tools for doing Internet programming in Python. For instance, the

HTMLGen and pythondoc systems generate HTML files from Python class-based

descriptions, and the JPython system mentioned above provides for seamless

Python/Java integration.

➢ Database Programming

Python's standard pickle module provides a simple object-persistence system: it

allows programs to easily save and restore entire Python objects to files. For more

traditional database demands, there are Python interfaces to Sybase, Oracle, Informix,

ODBC, and more. There is even a portable SQL database API for Python that runs the

same on a variety of underlying database systems, and a system named gadfly that

implements an SQL database for Python programs.

PYTHON PROGRAMMING UNIT-1

Page 1.5

➢ Image Processing, AI, Distributed Objects, Etc.

Python is commonly applied in more domains than can be mentioned here. But in

general, many are just instances of Python's component integration role in action. By

adding Python as a frontend to libraries of components written in a compiled language

such as C, Python becomes useful for scripting in a variety of domains. For instance,

image processing for Python is implemented as a set of library components implemented

in a compiled language such as C, along with a Python frontend layer on top used to

configure and launch the compiled components.

Who Uses Python Today?

1. Google makes extensive use of Python in its web search systems.

2. The popular YouTube video sharing service is largely written in Python.

3. The Dropbox storage service codes both its server and desktop client software primarily

in Python.

4. The Raspberry Pi single-board computer promotes Python as its educational language.

5. The widespread BitTorrent peer-to-peer file sharing system began its life as a Python

program.

6. Google‘s App Engine web development framework uses Python as an application

language.

7. Maya, a powerful integrated 3D modeling and animation system, provides a Python

scripting API.

8. Intel, Cisco, Hewlett-Packard, Seagate, Qualcomm, and IBM use Python for hardware

testing.

9. NASA, Los Alamos, Fermilab, JPL, and others use Python for scientific programming

tasks.

Byte code Compilation:

Python first compiles your source code (the statements in your file) into a format

known as byte code. Compilation is simply a translation step, and byte code is a lower-

level, platform independent representation of your source code. Roughly, Python translates

each of your source statements into a group of byte code instructions by decomposing them

into individual steps. This byte code translation is performed to speed execution —byte code

can be run much more quickly than the original source code statements in your text file.

The Python Virtual Machine:

Once your program has been compiled to byte code (or the byte code has been loaded

from existing .pyc file), it is shipped off for execution to something generally known as the

python virtual machine (PVM).

PYTHON PROGRAMMING UNIT-1

Page 1.6

Applications of Python:

1. Systems Programming

2. GUIs

3. Internet Scripting

4. Component Integration

5. Database Programming

6. Rapid Prototyping

7. Numeric and Scientific Programming

What Are Python’s Technical Strengths?

1. It‘s Object-Oriented and Functional

2. It‘s Free

3. It‘s Portable

4. It‘s Powerful

5. It‘s Mixable

6. It‘s Relatively Easy to Use

7. It‘s Relatively Easy to Learn

Download and installation Python software:

Step 1: Go to website www.python.org and click downloads select version which you want.

Step 2: Click on Python 2.7.13 and download. After download open the file.

http://www.python.org/

PYTHON PROGRAMMING UNIT-1

Page 1.7

Step 3: Click on Next to continue.

Step 4: After installation location will be displayed. The Default location is C:\Python27.

Click on next to continue.

PYTHON PROGRAMMING UNIT-1

Page 1.8

Step 5: After the python interpreter and libraries are displayed for installation. Click on Next

to continue.

Step 6: The installation has been processed.

PYTHON PROGRAMMING UNIT-1

Page 1.9

Step 7: Click the Finish to complete the installation.

Setting up PATH to python:

➢ Programs and other executable files can be in many directories, so operating systems

provide a search path that lists the directories that the OS searches for executables.

➢ The path is stored in an environment variable, which is a named string maintained by the

operating system. This variable contains information available to the command shell and

other programs.

➢ Copy the Python installation location C:\Python27

PYTHON PROGRAMMING UNIT-1

Page 1.10

➢ Right-click the My Computer icon on your desktop and choose Properties. And then
select Advanced System properties.

➢ Goto Environment Variables and go to System Variables select Path and click on

Edit.

➢ Add semicolon (;) at end and copy the location C:\Python27 and give semicolon (;) and

click OK.

PYTHON PROGRAMMING UNIT-1

Page 1.11

Running Python:

a. Running Python Interpreter:

Python comes with an interactive interpreter. When you type python in your shell or

command prompt, the python interpreter becomes active with a >>> prompt and waits for

your commands.

Now you can type any valid python expression at the prompt. Python reads the typed

expression, evaluates it and prints the result.

b. Running Python Scripts in IDLE:

• Goto File menu click on New File (CTRL+N) and write the code and save add.py

a=input("Enter a value ")

b=input("Enter b value ")

c=a+b

print "The sum is",c

• And run the program by pressing F5 or Run→Run Module.

PYTHON PROGRAMMING UNIT-1

Page 1.12

c. Running python scripts in Command Prompt:

• Before going to run we have to check the PATH in environment variables.

• Open your text editor, type the following text and save it as hello.py.

print "hello"

• And run this program by calling python hello.py. Make sure you change to the directory

where you saved the file before doing it.

Variables:

Variables are nothing but reserved memory locations to store values. This means that

when you create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and decides

what can be stored in the reserved memory. Therefore, by assigning different data types to

variables, you can store integers, decimals or characters in these variables.

Assigning Values to Variables

Python variables do not need explicit declaration to reserve memory space. The

declaration happens automatically when you assign a value to a variable. The equal sign (=)

is used to assign values to variables.

The operand to the left of the = operator is the name of the variable and the operand to

the right of the = operator is the value stored in the variable. For example –

PYTHON PROGRAMMING UNIT-1

Page 1.13

Multiple Assignments to variables:

Python allows you to assign a single value to several variables simultaneously.

For example –

a = b = c = 1

Here, an integer object is created with the value 1, and all three variables are assigned

to the same memory location. You can also assign multiple objects to multiple variables.

For example –

a, b, c = 1, 2.5, ”mothi”

Here, two integer objects with values 1 and 2 are assigned to variables a and b

respectively, and one string object with the value "john" is assigned to the variable c.

KEYWORDS

The following list shows the Python keywords. These are reserved words and you

cannot use them as constant or variable or any other identifier names. All the Python

keywords contain lowercase letters only.

INPUT Function:

To get input from the user you can use the input function. When the input function is

called the program stops running the program, prompts the user to enter something at the

keyboard by printing a string called the prompt to the screen, and then waits for the user to

press the Enter key. The user types a string of characters and presses enter. Then the input

function returns that string and Python continues running the program by executing the next

statement after the input statement.

Python provides the function input(). input has an optional parameter, which is the

prompt string.

For example,

PYTHON PROGRAMMING UNIT-1

Page 1.14

OUTPUT function:

We use the print() function or print keyword to output data to the standard output

device (screen). This function prints the object/string written in function.

The actual syntax of the print() function is

print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

Here, objects is the value(s) to be printed.

The sep separator is used between the values. It defaults into a space character. After

all values are printed, end is printed. It defaults into a new line (\n).

Indentation

Code blocks are identified by indentation rather than using symbols like curly braces.

Without extra symbols, programs are easier to read. Also, indentation clearly identifies which

block of code a statement belongs to. Of course, code blocks can consist of single statements,

too. When one is new to Python, indentation may come as a surprise. Humans generally

prefer to avoid change, so perhaps after many years of coding with brace delimitation, the

first impression of using pure indentation may not be completely positive. However, recall

that two of Python's features are that it is simplistic in nature and easy to read.

Python does not support braces to indicate blocks of code for class and function

definitions or flow control. Blocks of code are denoted by line indentation. All the continuous

lines indented with same number of spaces would form a block. Python strictly follow

indentation rules to indicate the blocks.

PYTHON PROGRAMMING UNIT-1

T.MOTHILAL, ASST.PROF Page 1.15

Copy protected with PDF-No-Copy.com

http://www.online-pdf-no-copy.com/

