
UNIT-6

1

UNIT-6

PYTHON

Python is a powerful modern computer programming language. It bears some similarities to
Fortran, one of the earliest programming languages, but it is much more powerful than Fortran.
Python allows you to use variables without declaring them (i.e., it determines types implicitly),
and it relies on indentation as a control structure. You are not forced to define classes in Python
(unlike Java) but you are free to do so when convenient. Python was developed by Guido van
Rossum, and it is free software. Free as in “free beer,” in that you can obtain Python without
spending any money. But Python is also free in other important ways, for example you are free to
copy it as many times as you like, and free to study the source code, and make changes to it.
There is a worldwide movement behind the idea of free software, initiated in 1983 by Richard
Stallman.1
This document focuses on learning Python for the purpose of doing mathematical calculations.
We assume the reader has some knowledge of basic mathematics, but we try not to assume any
previous exposure to computer programming, although some such exposure would certainly be
helpful. Python is a good choice for mathematical calculations, since we can write code quickly,
test it easily, and its syntax is similar to the way mathematical ideas are expressed in the
mathematical literature. By learning Python you will also be learning a major tool used by many
web developers. Installation and documentation If you use Mac OS X or Linux, then Python
should already be installed on your computer by default. If not, you can download the latest
version by visiting the Python home page, at http://www.python.org
where you will also find loads of documentation and other useful information. Windows users
can also download Python at this website. Don’t forget this website; it is your first point of
reference for all things Python.
 You will find there, for example, reference [1], the excellent Python Tutorial by Guido van
Rossum. You may find it useful to read along in the Tutorial as a supplement to this document.
2 Running Python as a calculator

The easiest way to get started is to run Python as an interpreter, which behaves similar to the way
one would use a calculator. In the interpreter, you type a command, and Python produces the
answer. Then you type another command, which again produces an answer, and so on.In OS X or
Linux, to start the Python interpreter is as simple as typing the command python on the command
line in a terminal shell.
In Windows, assuming that Python has already been installed, you need to find Python in the
appropriate menu. Windows users may choose to run Python in a command shell (i.e., a DOS
window) where it will behave very similarly to Linux or OS X. For all three operating systems
(Linux, OS X, Windows) there is also an integrated development environment for Python named
IDLE.
Once Python starts running in interpreter mode, using IDLE or a command shell, it produces a
prompt, which waits for your input. For example, this is what I get when I start Python in a
command shell on my Linux box:
doty@ brauer:~ python
Python 2.5.2 (r252 :60911 , Apr 21 2008 , 11 :12 :42)
[GCC 4.2.3 (Ubuntu 4.2.3 -2 ubuntu 7)] on linux2
Type " help", " copyright", " credits" or " license" for more information.

>>> where the three symbols >>> indicates the prompt awaiting my input.
So experiment, using the Python interpreter as a calculator. Be assured that you cannot harm
anything, so play with Python as much as you like. For example:
>>> 2*1024 2048

http://www.python.org

UNIT-6

2

>>> 3+ 4+ 9
16
>>> 2**100 1267650600228229401496703205376 L
In the above, we first asked for the product of 2 and 1024, then we asked for the sum of 3, 4, and
9 and finally we asked for the value of 2100. Note that multiplication in Python is represented by
∗, addition by +, and exponents by **; you will need to remember this syntax. The L appended to
the last answer is there to indicate that this is a long integer; more on this later. It is also worth
noting that Python does arbitrary precision integer arithmetic, by default
>>> 2 ** 1000 1071508607186267320948425049060001810561404811705533607443750
3883703510511249361224931983788156958581275946729175531468251
8714528569231404359845775746985748039345677748242309854210746

0506237114187795418215304647498358194126739876755916554394607

7062914571196477686542167660429831652624386837205668069376L
Here is another example, where we print a table of perfect squares:
>>> for n in [1 ,2 ,3 ,4 ,5 ,6]:
... print n**2
... 1
4
9
16
25
36
2.Both Python and IDLE should be already preinstalled on all Loyola Windows computers. This
illustrates several points. First, the expression [1,2,3,4,5,6] is a list, and we print the values of n2
for n varying over the list. If we prefer, we can print horizontally instead of vertically:
>>> for n in [1 ,2 ,3 ,4 ,5 ,6]:
... print n**2 ,
...
1 4 9 16 25 36
Simply by adding a comma at the end of the print command, which tells Python not to move to a
new line before the next print. These last two examples are examples of a compound command,
where the command is divided over two lines (or more). That is why you see ... on the second line
instead of the usual >>>,which is the interpreter’s way of telling us it awaits the rest of the
command. On the third line we entered nothing, in order to tell the interpreter that the command
was complete at the second line. Also notice the colon at the end of the first line, and the
indentation in the second line. Both are required in compound Python commands.
Quitting the interpreter: In a terminal you can quit a Python session by CTRL-D. (Hold down the
CTRL key while pressing the D key.) In IDLE you can also quit from the menu. If the
interpretergets stuck in an infinite loop, you can quit the current execution by CTRL-C. Loading
commands from the library Python has a very extensive library of commands, documented in the
Python Library Reference Manual [2]. These commands are organized into modules. One of the
available modules is especially useful for us: the math module. Let’s see how it may be used.
>>> from math import sqrt , exp
>>> exp(-1)
0 .36787944117144233
>>> sqrt(2)
1 .4142135623730951
We first import the sqrt and exp functions from the math module, then use them to compute
e−1 = 1/e and √2.

UNIT-6

3

Once we have loaded a function from a module, it is available for the rest of that session. When
we start a new session, we have to reload the function if we need it. Note that we could have
loaded both functions sqrt and exp by using a wildcard *:>>> from math import * which tells
Python to import all the functions in the math module. What would have happened if we forgot to
import a needed function? After starting a new session, if we type
>>> sqrt(2)
Traceback (most recent call last): File "< stdin >", line 1 , in < module > N am eError: name ’
sqrt’ is not defined we see an example of an error message, telling us that Python does not
recognize sqrt.
Defining functions
It is possible, and very useful, to define our own functions in Python. Generally speaking, if you
need to do a calculation only once, then use the interpreter. But when you or others have need to
perform a certain type of calculation many times, then define a function. For a simple example,
the compound command
>>> def f(x):
... return x* x
...

defines the squaring function f (x) = x2, a popular example used in elementary math courses. In
the definition, the first line is the function header where the name, f, of the function is specified.
Subsequent lines give the body of the function, where the output value is calculated. Note that the
final step is to return the answer; without it we would never see any results. Continuing the
example, we can use the function to calculate the square of any given input:
>>> f(2) 4
>>> f(2.5)
6.25
The name of a function is purely arbitrary. We could have defined the same function as above,
but with the name square instead of f; then to use it we use the new function name instead of the
old:
>>> def square(x):
... return x* x
...
>>> square (3)
9
>>> square (2.5)
6.25
Actually, a function name is not completely arbitrary, since we are not allowed to use a reserved
word as a function name. Python’s reserved words are: and, def, del, for, is, raise, assert, elif,
from, lambda, return, break, else, global, not, try, class, except, if, or, while, continue, exec,
import, pass, yield.
By the way, Python also allows us to define functions using a format similar to the Lambda
Calculus in mathematical logic. For instance, the above function could alternatively be defined in
the following way:
>>> square = lambda x: x* x
Here lambda x: x*x is known as a lambda expression. Lambda expressions are useful when you
need to define a function in just one line; they are also useful in situations where you need a
function but don’t want to name it.
Usually function definitions will be stored in a module (file) for later use. These are
indistinguishable from Python’s Library modules from the user’s perspective.
Files
Python allows us to store our code in files (also called modules). This is very useful for more
serious programming, where we do not want to retype a long function definition from the very

UNIT-6

4

beginning just to change one mistake. In doing this, we are essentially defining our own modules,
just like the modules defined already in the Python library. For example, to store our squaring
function example in a file, we can use any text editor3 to type the code into a file, such as
def square(x): return x* x
Notice that we omit the prompt symbols >>>, ... when typing the code into a file, but the
indentation is still important. Let’s save this file under the name “SquaringFunction.py” and then
open a terminal in order to run it:
doty@ brauer:~ python
Python 2.5.2 (r252 :60911 , Apr 21 2008 , 11 :12 :42)
[GCC 4.2.3 (Ubuntu 4.2.3 -2 ubuntu 7)] on linux2 Type " help", " copyright", " credits" or "
license" for more inform ation.
>>> from Squaring Function import square
>>> square (1.5)
2.25
Notice that I had to import the function from the file before I could use it. Importing a command
from a file works exactly the same as for library modules. (In fact, some people refer to Python
files as “modules” because of this analogy.) Also notice that the file’s extension (.py) is omitted
in the import command.
Testing code
As indicated above, code is usually developed in a file using an editor. To test the code, import
itinto a Python session and try to run it. Usually there is an error, so you go back to the file, make
a correction, and test again. This process is repeated until you are satisfied that the code works.
The entire process is known as the development cycle. There are two types of errors that you will
encounter. Syntax errors occur when the form of some command is invalid. This happens when
you make typing errors such as misspellings, or call something by the wrong name, and for many
other reasons. Python will always give an error message for a syntax error.
Scripts
If you use Mac OS X or some other variant of Unix (such as Linux) then you may be interested in
running Python commands as a script. Here’s an example. Use an editor to create a file name
SayHi containing the following lines
#! / usr/ bin/ python
print " Hello World!"
print "- From your friendly Python program"
3.Most developers rely on emacs for editing code. Other possible choices are Notepad for
Windows, gedit for Linux/Gnome, and TextEdit for OS X. IDLE comes with its own editor, by the
way.The first line tells Python that this is a script. After saving the file, make it executable by
typing chmod 755 SayHi in the terminal. To run the script, type ./SayHi in the terminal. Note that
if you move the script someplace in your search path, then you can run it simply by typing SayHi.
Type echo $PATH to see what folders are in your search path, and type which python to see
where your python program is — this should match the first line in your script. As far as I know,
it is impossible to run Python scripts in a similar way on a Windows machine.

Python commands
Comments
In a Python command, anything after a # symbol is a comment. For example: print " Hello world"
this is silly Comments are not part of the command, but rather intended as documentation for
anyone reading the code. Multiline comments are also possible, and are enclosed by triple
double-quote symbols:""" This is an example of a long comment that goes on and on and on."""
Numbers and other data types
Python recognizes several different types of data. For instance, 23 and −75 are integers, while 5.0
and −23.09 are floats or floating point numbers. The type float is (roughly) the same as a real

UNIT-6

5

number in mathematics. The number 12345678901 is a long integer ; Python prints it with an “L”
appended to the end. Usually the type of a piece of data is determined implicitly.
The type function
To see the type of some data, use Python’s built-in type function:
>>> type(-75)
< type ’ int’ >
>>> type(5.0)
< type ’ float’ >
>>> type (12345678901)
< type ’ long’ >
Another useful data type is complex, used for complex numbers. For example:
>>> 2 j
2 j
>>> 2j-1 (-1+2 j)
>>> com plex(2 ,3)
(2+ 3 j)
>>> type(-1+2 j)
< type ’ com plex’ >
Notice that Python uses j for the complex unit (such that j2 = −1) just as physicists do, instead of
the letter i preferred by mathematicians.

Strings
Other useful data types are strings (short for “character strings”); for example "Hello World!".
Strings are sequences of characters enclosed in single or double quotes
>>> " This is a string " ’ This is a string ’
>>> ’ This is a string , too’ ’ This is a string , too’
>>> type(" This is a string ")
< type ’ str’ >
Strings are an example of a sequence type.
Lists and Tuples
Other important sequence types used in Python include lists and tuples. A sequence type is
formed by putting together some other types in a sequence. Here is how we form lists and tuples:
>>> [1 ,3 ,4 ,1 ,6]
[1 , 3 , 4 , 1 , 6]
>>> type([1 ,3 ,4 ,1 ,6])
< type ’ list’ >
>>> (1 ,3 ,2)
(1 , 3 , 2)
>>> type((1 ,3 ,2))
< type ’ tuple’ >
Notice that lists are enclosed in square brackets while tuples are enclosed in parentheses. Also
note that lists and tuples do not need to be homogeneous; that is, the components can be of
different types:
>>> [1 ,2 ," Hello" ,(1 ,2)]
[1 , 2 , ’ Hello ’ , (1 , 2)]
Here we created a list containing four components: two integers, a string, and a tuple. Note that
components of lists may be other lists, and so on:
>>> [1 , 2 , [1 ,2], [1 ,[1 ,2]], 5]
[1 , 2 , [1 , 2], [1 , [1 , 2]], 5]
By nesting lists within lists in this way, we can build up complicated structures.

UNIT-6

6

Sequence types such as lists, tuples, and strings are always ordered, as opposed to a set in
mathematics, which is always unordered. Also, repetition is allowed in a sequence, but not in a
set.
Range function
The range function is often used to create lists of integers. It has three forms. In the simplest
form, range(n) produces a list of all numbers 0, 1, 2, . . . , n − 1 starting with 0 and ending with n
− 1. For instance,
>>> range (17)
[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16]
You can also specify an optional starting point and an increment, which may be negative. For
instance, we have
>> range(1 ,10)
[1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9]
>>> range(-6 ,0)
[-6 , -5 , -4 , -3 , -2 , -1]
>>> range (1 ,10 ,2)
[1 , 3 , 5 , 7 , 9]
>>> range(10 ,0 ,-2)
[10 , 8 , 6 , 4 , 2]
Note the use of a negative increment in the last example.
Boolean values
Finally, we should mention the Boolean type. This is a value which is either True or False.
>>> True True
>>> type(True)
< type ’ bool’ >
>>> False False
>>> type(False)
< type ’ bool’ >
Boolean types are used in making decisions.

Expressions
Python expressions are not commands, but rather form part of a command. An expression is
anything which produces a value. Examples of expressions are: 2+2, 2**100, f((x-1)/(x+1)). Note
that in order for Python to make sense of the last one, the variable x must have a value assigned
and f should be a previously defined function. Expressions are formed from variables, constants,
function evaluations, and operators. Parentheses are used to indicate order of operations and
grouping, as usual.
Operators
The common binary operators for arithmetic are + for addition, - for subtraction, * for multi-
plication, and / for division. As already mentioned, Python uses ** for exponentiation. Integer
division is performed so that the result is always another integer (the integer quotient):
>>> 25/3 8
>>> 5/2
2
This is a wrinkle that you will always have to keep in mind when working with Python. To get a
more accurate answer, use the float type:
>>> 25.0/3 8 3333333333333339
>>> 5/2.0 2.5
If just one of the operands is of type float, then the result will be of type float. Here is another
example of this pitfall:

UNIT-6

7

>>> 2 **(1 /2) 1
>>> 2**0.5 1 .4142135623730951
Another useful operator is , which is read as ”mod”. This gives the remainder of an integer
division, as in
>>> 5 2
1
>>> 25 3
1

which shows that 5 mod 2 = 1, and 25 mod 3 = 1. This operator is useful in number theory and
cryptography. Besides the arithmetic operators we need comparison operators: <, >, <=, >=, ==,
!=, <>. In order these are read as: is less than, is greater than, is less than or equal to, is greater
than or equal to, is equal to, is not equal to, is not equal to. The result of a comparison is always a
Boolean value
True or False.
>>> 2 < 3
True
>>> 3 <2
False
>>> 3 <= 2
False
Note that != and <> are synonymous; either one means not equal to. Also, the operator == means
is
e
q
u
al
to
.
>
>
>
2

<
>

3

True
>
>
>
2

!
=

3

True
>
>
>
0

!
=

0

False

UNIT-6

8

lost.
>>> x = 380.5
>>> print x 380.5
>>> y = 2* x
>>> print y 761.0
Remember: A single = is used for assignment, the double == is used to test for equality. In
mathematics the equation x = x + 1 is nonsense; it has no solution. In computer science, the
statement x = x + 1 is useful. Its purpose is to add 1 to x, and reassign the result to x. In short, x is
incremented by 1.
>>> x = 10
>>> x = x + 1
>>> print x 11
>>> x = x + 1
>>> print x 12
Variable names may be any contiguous sequence of letters, numbers, and the underscore (_) char-
acter. The first character must not be a number, and you may not use a reserved word as a
variable name. Case is important; for instance Sum is a different name than sum. Other examples
of legal variable names are: a, v1, v_1, abc, Bucket, monthly_total, pi , TotalAssets.
Decisions
The if–else is used to make choices in Python code. This is a compound statement. The simplest
form is
if c o n d i t i o n :
a c t i o n −1

else:
a c t i o n −2
The indentation is required. Note that the else and its action are optional. The actions action-1 and
action-2 may consist of many statements; they must all be indented the same amount. The
condition is an expression which evaluates to True or False.
Of course, if the condition evaluates to True then action-1 is executed, otherwise action-2 is
executed. In either case execution continues with the statement after the if-else. For example, the
code
x = 1
if x > 0:
print " Friday is wonderful" else:
print " Monday sucks"
print " Have a good weekend"
results in the output
Friday is wonderful Have a good weekend
Note that the last print statement is not part of the if-else statement (because it isn’t indented), so
if we change the first line to say x = 0 then the output would be
Monday sucks
Have a good weekend
More complex decisions may have several alternatives depending on several conditions. For these
the elif is used. It means “else if” and one can have any number of elif clauses between the if and
the else. The usage of elif is best illustrated by an example:
if x >= 0 and x < 10: digits = 1
elif x >= 10 and x < 100: digits = 2
elif x >= 100 and x < 1000:digits = 3
elif x >= 1000 and x < 10000: digits = 4

UNIT-6

9

else:

digits = 0# more than 4
In the above, the number of digits in x is computed, so long as the number is 4 or less. If x is
negative or greater than 10000, then digits will be set to zero.
Loops
Python provides two looping commands: for and while. These are compound commands.
for loop
The syntax of a for loop is
for i te m in l i s t :
a c t i o n
As usual, the action consists of one or more statements, all at the same indentation level. These
statements are also known as the body of the loop. The item is a variable name, and list is a list.
Execution of the for loop works by setting the variable successively to each item in the list, and
then executing the body each time. Here is a simple example (the comma at the end of the print
makes all printing occur on the same line):
for i in [2 , 4 , 6 , 0]: print i,
This produces the output
2 4 6 0
while loop
The syntax of the while loop is
while c o n d i t i o n :
a c t i o n
Of course, the action may consist of one or more statements all at the same indentation level. The
statements in the action are known as the body of the loop. Execution of the loop works as
follows. First the condition is evaluated. If True, the body is executed and the condition evaluated
again, and this repeats until the condition evaluates to False. Here is a simple example:
n = 0
while n < 10:

print n,
n = n + 3
This produces the following output
0 3 6 9
Note that the body of a while loop is never executed if the condition evaluates to False the first
time. Also, if the body does not change the subsequent evaluations of the condition, an infinite
loop may occur. For example
while True: print " Hello",
will print Hellos endlessly. To interrupt the execution of an infinite loop, use CTRL-C.else in
loopsA loop may have an optional else which is executed when the loop finishes. For example,
the loop
for n in [10 ,9 ,8 ,7 ,6 ,5 ,4 ,3 ,2 ,1]:
print n, else:
print " blastoff"
results in the output
10 9 8 7 6 5 4 3 2 1 blastoff
and the loop
n= 10
while n > 0: print n,
n = n - 1
else:
print " blastoff"

UNIT-6

10

has the same effect (it produces identical output).
Break, Continue, And Pass
The break statement, like in C, breaks out of the smallest enclosing for or while loop. The
continue statement, also borrowed from C, continues with the next iteration of the loop. The pass
statement does nothing. It can be used when a statement is required syntactically but the program
requires no action.
Here is an example of the use of a break statement and an else clause in a loop.
for n in range(2 , 10): for x in range(2 , n):
if n x == 0:
print n, ’ equals ’ , x, ’*’ , n/x break
else:
loop fell through without finding a factor
print n, ’ is a prime number ’
The above code searches for prime numbers between 2 and 10, and produces the following
output.
2 is a prime number

3 is a prime number

4 equals 2 * 2

5 is a prime number

6 equals 2 * 3

7 is a prime number

8 equals 2 * 4

9 equals 3 * 3

Lists:As already mentioned, a list is a finite sequence of items, and one could use the range
function to create lists of integers. In Python, lists are not required to be homogeneous, i.e., the
items could be of different types. For example,
a = [2 , " Jack", 45 , " 23 W entw orth Ave"]
is a perfectly valid list consisting of two integers and two strings. One can refer to the entire list
using the identifier a or to the i-th item in the list using a[i].
>>> a = [2 , " Jack", 45 , " 23 W entw orth Ave"]
>>> a
[2 , ’ Jack’ , 45 , ’ 23 W entw orth Ave’]
>>> a[0] 2

>>> a[1]
’ Jack’
>>> a[2] 45
>>> a[3]
’ 23 W entw orth Ave’
Note that the numbering of list items always begins at 0 in Python. So the four items in the above
list are indexed by the numbers 0, 1, 2, 3.List items may be assigned a new value; this of course
changes the list. For example, with a as above:
>>> a
[2 , ’ Jack’ , 45 , ’ 23 W entw orth Ave’]

UNIT-6

11

>>> a[0] = 2002
>>> a
[2002 , ’ Jack’ , 45 , ’ 23 W entw orth Ave’]
Of course, the entire list may be assigned a new value, which does not have to be a list. When this
happens, the previous value is lost:
>>> a
[2002 , ’ Jack’ , 45 , ’ 23 W entw orth Ave’]
>>> a = ’ gobbletygook’
>>> a
’ gobbletygook’
Length of a list; empty list
Every list has a length, the number of items in the list, obtained using the len function:
>>> x = [9 , 4 , 900 , -45]
>>> len(x) 4
Of special importance is the empty list of length 0. This is created as follows:
>>> x = []
>>> len(x) 0
Sublists (slicing)
Sublists are obtained by slicing, which works analogously to the range function discussed before.
If x is an existing list, then x[start:end] is the sub list consisting of all items in the original list at
index positions i such that
start ≤ i < end.
Of course, we must remember that indexing items always starts at 0 in Python. For example,
>>> x= range(0 ,20 ,2)
>>> x
[0 , 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18]
>>> x[2:5]
[4 , 6 , 8]
>>> x[0:5]
[0 , 2 , 4 , 6 , 8]
When taking a slice, either parameter start or end may be omitted: if start is omitted then the slice
consists of all items up to, but not including, the one at index position end, similarly, if end is
omitted the slice consists of all items starting with the one at position start. For instance, with the
list x as defined above we have
>>> x[:5]
[0 , 2 , 4 , 6 , 8]
>>> x[2:]
[4 , 6 , 8 , 10 , 12 , 14 , 16 , 18]
In this case, x[:5] is equivalent to x[0:5] and x[2:] is equivalent to x[2:len(x)].
There is an optional third parameter in a slice, which if present represents an increment, just as in
the range function. For example,
>>> list = range (20)
>>> list
[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17]
>>> list [0 :16 :2]
[0 , 2 , 4 , 6 , 8 , 10 , 12 , 14]
>>> list [0 :15 :2]
[0 , 2 , 4 , 6 , 8 , 10 , 12 , 14]
Notice that one may cleverly use a negative increment to effectively reverse a list, as in
>>> list[18::-1]

UNIT-6

12

[17 , 16 , 15 , 14 , 13 , 12 , 11 , 10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0]
In general, the slice x[len(x)::-1] reverses any existing list x. Joining two lists Two existing lists
may be concatenated together to make a longer list, using the + operator
>>> [2 ,3 ,6 ,10] + [4 ,0 ,0 ,5 ,0]
[2 , 3 , 6 , 10 , 4 , 0 , 0 , 5 , 0]
List methods
If x is the name of an existing list, we can append an item to the end of the list using x. append(
item)
For example,
>>> x = [3 , 6 , 8 , 9]
>>> x. append (999)
>>> x
[3 , 6 , 8 , 9 , 999]
A similar method is called insert, which allows an element to be inserted in the list at a specified
position:
>>> x = [’ a’ , ’ c’ , ’ 3 ’ , ’ d’ , ’ 7 ’]
>>> x. insert (0 ,100)
>>> x
[100 , ’ a’ , ’ c’ , ’ 3 ’ , ’ d’ , ’ 7 ’]
>>> x. insert(3 ,’ junk’)
>>> x
[100 , ’ a’ , ’ c’ , ’ junk’ , ’ 3 ’ , ’ d’ , ’ 7 ’]
One can also delete the first occurrence of some item in the list (if possible) using remove as
follows:
>>> x. remove(’ a’)
>>> x
[100 , ’ c’ , ’ junk’ , ’ 3 ’ , ’ d’ , ’ 7 ’]
To delete the item at index position i use x.pop(i), as in:

>>> x. pop(0) 100
>>> x
[’ c’ , ’ junk’ , ’ 3 ’ , ’ d’ , ’ 7 ’]
Notice that pop not only changes the list, but it also returns the item that was deleted. Also, by
default x.pop() pops off the last item:
>>> x. pop() ’ 7 ’
>>> x
[’ c’ , ’ junk’ , ’ 3 ’ , ’ d’]
Many more methods exist for manipulating lists; consult the Python Tutorial [1] or Python
Library Reference [2] for more details.
Strings
A string in Python is a sequence of characters. In some sense strings are similar to lists, however,
there are important differences. One major difference is that Python strings are immutable, mean-
ing that we are not allowed to change individual parts of them as we could for a list. So if x is an
existing string, then x[i] gets the character at position i, but we are not allowed to reassign that
character, as in x[5] = ’s’.
>>> x = ’ gobbletygook’
>>> x[2]
’ b’
>>> x[5]
’ e’

UNIT-6

13

>>> x[5] = ’ s’
Traceback (most recent call last): File "< stdin >", line 1 , in < module >
TypeError: ’ str’ object does not support item assignment Just as for lists, string items are
indexed starting at 0. Slicing for strings works exactly the same as for lists. The length function
len is the same as for lists, and concatenation is the same too. But the list methods append,
insert, delete, and pop are not available for strings, because strings are immutable. If you need
to change an existing string, you must make a new, changed, one.There are many string
methods for manipulating strings, documented in the Python Library Reference Manual [2]. For
example, you

can capitalize an existing string x using x.capitalize(); this returns a new copy of the string in
which the first character has been capitalized.
>>> a = ’ gobbletygook is refreshing’
>>> a. capitalize()
’ G obbletygook is refreshing’
Other useful methods are find and index, which are used to find the first occurrence of a
substring in a given string. See the manuals for details.

