
UNIT-3

PHP Basics

PHP Features:

Every user has specific reasons for using PHP to implement a mission-critical application,
although one could argue that such motives tend to fall into four key categories: practicality,
power, possibility, and price.
i) Practicality
From the very start, the PHP language was created with practicality in mind. After all, Lerdorf’s
original intention was not to design an entirely new language, but to resolve a problem that had
no readily available solution. Furthermore, much of PHP’s early evolution was not the result of
the explicit intention to improve the language itself, but rather to increase its utility to the user.
The result is a language that allows the user to build powerful applications even with a
minimum of knowledge.
PHP is a loosely typed language, meaning there is no need to explicitly create, typecast, or
destroy a variable, although you are not prevented from doing so. PHP handles such matters
internally, creating variables on the fly as they are called in a script, and employing a best-guess
formula for automatically typecasting variables. For instance, PHP considers the following set of
statements to be perfectly valid:
<?php
$number = "5"; // $number is a string
$sum = 15 + $number; // Add an integer and string to produce integer
$sum = "twenty"; // Overwrite $sum with a string.
?>
PHP will also automatically destroy variables and return resources to the system when the
script completes.

Power
PHP developers have almost 200 native libraries containing well over 1,000 functions, in
addition to thousands of third-party extensions. Although you’re likely aware of PHP’s ability to
interface with databases, manipulate form information, and create pages dynamically, you
might not know that PHP can also do the following:
• Create and manipulate Adobe Flash and Portable Document Format (PDF) files.
• Evaluate a password for guessability by comparing it to language dictionaries and easily
broken patterns.
• Parse even the most complex of strings using the POSIX and Perl-based regular expression
libraries.
• Authenticate users against login credentials stored in flat files, databases, and even
Microsoft’s Active Directory.
• Communicate with a wide variety of protocols, including LDAP, IMAP, POP3, NNTP, and DNS,
among others.

• Tightly integrate with a wide array of credit-card processing solutions.

Possibility
PHP developers are rarely bound to any single implementation solution. On the contrary, a user
is typically fraught with choices offered by the language. For example, consider PHP’s array of
database support options. Native support is offered for more than 25 database products,
including Adabas D,dBase, Empress, FilePro, FrontBase, Hyperwave, IBM DB2, Informix, Ingres,
InterBase, mSQL, Microsoft SQL Server, MySQL, Oracle, Ovrimos, PostgreSQL, Solid, Sybase,
Unix dbm, and Velocis.
PHP’s flexible string-parsing capabilities offer users of differing skill sets the opportunity to not
only immediately begin performing complex string operations but also to quickly port programs
of similar functionality (such as Perl and Python) over to PHP.

Price
PHP is available free of charge! Since its inception, PHP has been without usage, modification,
and redistribution restrictions. In recent years, software meeting such open licensing
qualifications has been referred to as open source software. Open source software and the
Internet go together like bread and butter. Open source projects such as Sendmail, Bind, Linux,
and Apache all play enormous roles in the ongoing operations of the Internet at large. Although
open source software’s free availability has been the point most promoted by the media,
several other characteristics are equally important:
Free of licensing restrictions imposed by most commercial products: Open source software
users are freed of the vast majority of licensing restrictions one would expect of commercial
counterparts. Although some discrepancies do exist among license variants, users are largely
free to modify, redistribute, and integrate the software into other products.
Open development and auditing process: Although not without incidents, open source
software has long enjoyed a stellar security record. Such high-quality standards are a result of
the open development and auditing process. Because the source code is freely available for
anyone to examine, security holes and potential problems are rapidly found and fixed. This
advantage was perhaps best summarized by open source advocate Eric S. Raymond, who wrote
“Given enough eyeballs, all bugs are shallow.”
Participation is encouraged: Development teams are not limited to a particular organization.
Anyone who has the interest and the ability is free to join the project. The absence of member
restrictions greatly enhances the talent pool for a given project, ultimately contributing to a
higher-quality product.

Embedding PHP Code in Your Web Pages
One of PHP’s advantages is that you can embed PHP code directly alongside HTML. The engine
needs some means to immediately determine which areas of the page are PHP-enabled. This is
logically accomplished by delimiting the PHP code. There are four delimitation variants.

Default Syntax
The default delimiter syntax opens with <?php and concludes with ?>, like this:
<h3>Welcome!</h3>

<?php
echo "<p>Some dynamic output here</p>";
?>
<p>Some static output here</p>

Expected output:

Short-Tags
For less motivated typists, an even shorter delimiter syntax is available. Known as short-tags,
this syntax forgoes the php reference required in the default syntax. However, to use this
feature, you need to enable PHP’s short_open_tag directive. An example follows:

<?
print "This is another PHP example.";
?>

When short-tags syntax is enabled and you want to quickly escape to and from PHP to output a
bitof dynamic text, you can omit these statements using an output variation known as short-
circuit syntax:

<?="This is another PHP example.";?>
This is functionally equivalent to both of the following variations:
<? echo "This is another PHP example."; ?>
<?php echo "This is another PHP example.";?>

Script
Certain editors have historically had problems dealing with PHP’s more commonly used escape
syntax variants. Therefore, support for another mainstream delimiter variant, <script>, is
offered:

<script language="php">
print "This is another PHP example.";
</script>

ASP Style
Microsoft ASP pages employ a delimiting strategy similar to that used by PHP, delimiting static
from dynamic syntax by using a predefined character pattern: opening dynamic syntax with <%,
and concluding with %>. If you’re coming from an ASP background and prefer to continue using
this escape syntax, PHP supports it. Here’s an example:
<%
print "This is another PHP example.";
%>

Embedding Multiple Code Blocks
You can escape to and from PHP as many times as required within a given page. For instance,
the following example is perfectly acceptable:
<html>
<head>
<title><?php echo "Welcome to my web site!";?></title>
</head>
<body>
<?php
$date = "July 26, 2010";
?>
<p>Today's date is <?=$date;?></p>
</body>
</html>

Outputting Data to the Browser

a. The print() Statement

The print() statement outputs data passed to it . Its prototype looks like this:
int print(argument)
All of the following are plausible print() statements:

<?php
print("<p>I love the summertime.</p>");
?>

<?php
$season = "summertime";
print "<p>I love the $season.</p>";
?>

<?php
print "<p>I love the
summertime.</p>";
?>
All these statements produce identical output:

I love the summertime.

b. The echo() Statement
Alternatively, you could use the echo() statement for the same purposes as print().echo()’s
prototype looks like this:
void echo(string argument1 [, ...string argumentN])

To use echo(), just provide it with an argument just as was done with print():

echo "I love the summertime.";

As you can see from the prototype, echo() is capable of outputting multiple strings. Here’s an
example:

<?php
$heavyweight = "Lennox Lewis";
$lightweight = "Floyd Mayweather";
echo $heavyweight, " and ", $lightweight, " are great fighters.";
?>

This code produces the following:
Lennox Lewis and Floyd Mayweather are great fighters.

c. The printf() Statement
The printf() statement is ideal when you want to output a blend of static text and dynamic
information stored within one or several variables. It’s ideal for two reasons.

 First, it neatly separates the static and dynamic data into two distinct sections, allowing
for easy maintenance.

 Second, printf() allows you to wield considerable control over how the dynamic
information is rendered to the screen in terms of its type, precision, alignment, and
position.

Its prototype looks like this:
integer printf(string format [, mixed args])
For example, suppose you wanted to insert a single dynamic integer value into an otherwise
static string:

printf("Bar inventory: %d bottles of tonic water.", 100);

Executing this command produces the following:
Bar inventory: 100 bottles of tonic water.

Commonly Used Type Specifiers
%b Argument considered an integer; presented as a binary number
%c Argument considered an integer; presented as a character corresponding to that ASCII
value
%d Argument considered an integer; presented as a signed decimal number
%f Argument considered a floating-point number; presented as a floating-point number
%o Argument considered an integer; presented as an octal number
%s Argument considered a string; presented as a string
%u Argument considered an integer; presented as an unsigned decimal number
%x Argument considered an integer; presented as a lowercase hexadecimal number
%X Argument considered an integer; presented as an uppercase hexadecimal number

d. The sprintf() Statement
The sprintf() statement is functionally identical to printf() except that the output is assigned to a
string rather than rendered to the browser. The prototype follows:
string sprintf(string format [, mixed arguments])

An example follows:
$cost = sprintf("$%.2f", 43.2); // $cost = $43.20

PHP’s Supported Data Types
A datatype is the generic name assigned to any data sharing a common set of characteristics.
Common data types include Boolean, integer, float, string, and array.

Scalar Data Types
Scalar data types are used to represent a single value. Several data types fall under this
category, including Boolean, integer, float, and string.

Boolean
The Boolean datatype is named after George Boole (1815–1864), a mathematician who is
considered to be one of the founding fathers of information theory. The Boolean data type
represents truth, supporting only two values: TRUE and FALSE (case insensitive). Alternatively,
you can use zero to represent FALSE, and any nonzero value to represent TRUE.
A few examples follow:

$alive = false; // $alive is false.
$alive = 1; // $alive is true.
$alive = -1; // $alive is true.
$alive = 5; // $alive is true.
$alive = 0; // $alive is false.

Integer
An integer is representative of any whole number or, in other words, a number that does not
contain fractional parts. PHP supports integer values represented in base 10 (decimal), base 8
(octal), and base 16 (hexadecimal) numbering systems. Several examples follow:
42 // decimal
-678900 // decimal
0755 // octal
0xC4E // hexadecimal
The maximum supported integer size is platform-dependent, although this is typically positive
or negative 2^31 for PHP version 5 and earlier. PHP 6 introduced a 64-bit integer value,
meaning PHP will support integer values up to positive or negative 2^63 in size.

Float
Floating-point numbers, also referred to as floats, doubles, or real numbers, allow you to
specify numbers that contain fractional parts. Floats are used to represent monetary values,
weights, distances, and a whole host of other representations in which a simple integer value
won’t suffice. PHP’s floats can be specified in a variety of ways, several of which are
demonstrated here:
4.5678
4.0
8.7e4
1.23E+11

String
Simply put, a string is a sequence of characters treated as a contiguous group. Strings are
delimited by single or double quotes. The following are all examples of valid strings:
"PHP is a great language"
"whoop-de-do"
'*9subway\n'
"123$%^789"

For example, consider the following string:
$color = "maroon";
You could retrieve a particular character of the string by treating the string as an array, like this:
$parser = $color[2]; // Assigns 'r' to $parser

Compound Data Types
Compound data types allow for multiple items of the same type to be aggregated under a single
representative entity. The array and the object fall into this category.
Array
It’s often useful to aggregate a series of similar items together, arranging and referencing them
in some specific way. This data structure, known as an array, is formally defined as an indexed
collection of data values. Each member of the array index (also known as the key) references a

corresponding value and can be a simple numerical reference to the value’s position in the
series, or it could have some direct correlation to the value.

For example, if you were interested in creating a list of U.S. states, you could use a numerically
indexed array, like so:
$state[0] = "Alabama";
$state[1] = "Alaska";
$state[2] = "Arizona";
...
$state[49] = "Wyoming";

But what if the project required correlating U.S. states to their capitals? Rather than base the
keys on a numerical index, you might instead use an associative index, like this:

$state["Alabama"] = "Montgomery";
$state["Alaska"] = "Juneau";
$state["Arizona"] = "Phoenix";
...
$state["Wyoming"] = "Cheyenne";

Object
The other compound datatype supported by PHP is the object. The object is a central concept
of the object-oriented programming paradigm. Unlike the other data types contained in the
PHP language, an object must be explicitly declared. This declaration of an object’s
characteristics and behavior takes place within something called a class.

Here’s a general example of a class definition and subsequent invocation:
class Appliance {
private $_power;
function setPower($status) {
$this->_power = $status;
}
}
...
$blender = new Appliance;
A class definition creates several attributes and functions pertinent to a data structure, in this
case a data structure named Appliance. There is only one attribute, power, which can be
modified by using the method setPower().
Remember, however, that a class definition is a template and cannot itself be manipulated.
Instead, objects are created based on this template. This is accomplished via the new keyword.
Therefore, in the last line of the previous listing, an object of class Appliance named blender is
created.
The blender object’s power attribute can then be set by making use of the method setPower():
$blender->setPower("on");

Converting Between Data Types Using Type Casting
Converting values from one datatype to another is known as type casting. A variable can be
evaluated once as a different type by casting it to another. This is accomplished by placing the
intended type in front of the variable to be cast.

Cast Operators Conversion

(array) Array

(bool) or (boolean) Boolean

(int) or (integer) Integer

(object) Object

(real) or (double) or (float) Float

(string) String

 Let’s consider several examples. Suppose you’d like to cast an integer as a double:
$score = (double) 13; // $score = 13.0

Type casting a double to an integer will result in the integer value being rounded down,
regardless of the decimal value. Here’s an example:
$score = (int) 14.8; // $score = 14

What happens if you cast a string datatype to that of an integer? Let’s find out:
$sentence = "This is a sentence";
echo (int) $sentence; // returns 0
While likely not the expected outcome, it’s doubtful you’ll want to cast a string like this anyway.
You can also cast a datatype to be a member of an array. The value being cast simply becomes
the first element of the array:
$score = 1114;
$scoreboard = (array) $score;
echo $scoreboard[0]; // Outputs 1114

One final example: any datatype can be cast as an object. The result is that the variable
becomes an attribute of the object, the attribute having the name scalar:
$model = "Toyota";
$obj = (object) $model;
The value can then be referenced as follows:
print $obj->scalar; // returns "Toyota"

Adapting Data Types with Type Juggling
Because of PHP’s lax attitude toward type definitions, variables are sometimes automatically
cast to best fit the circumstances in which they are referenced. Consider the following snippet:
<?php
$total = 5; // an integer
$count = "15"; // a string
$total += $count; // $total = 20 (an integer)
?>

The outcome is the expected one; $total is assigned 20, converting the $count variable from a
string to an integer in the process. Here’s another example demonstrating PHP’s type-juggling
capabilities:
<?php
$total = "45 fire engines";
$incoming = 10;
$total = $incoming + $total; // $total = 55
?>
The integer value at the beginning of the original $total string is used in the calculation.
However, if it begins with anything other than a numerical representation, the value is 0.

Consider another example:
<?php
$total = "1.0";
if ($total) echo "We're in positive territory!";
?>
In this example, a string is converted to Boolean type in order to evaluate the if statement.
Consider one last particularly interesting example. If a string used in a mathematical calculation
includes ., e, or E (representing scientific notation), it will be evaluated as a float:
<?php
$val1 = "1.2e3"; // 1,200
$val2 = 2;
echo $val1 * $val2; // outputs 2400
?>
Type-Related Functions
A few functions are available for both verifying and converting data types.
Retrieving Types
The gettype() function returns the type of the provided variable. In total, eight possible return
values are available: array, boolean, double, integer, object, resource, string, and unknown
type. Its prototype follows:
string gettype(mixed var)

Converting Types
The settype() function converts a variable to the type specified by type. Seven possible type
values are available: array, boolean, float, integer, null, object, and string. If the conversion is
successful, TRUE is returned; otherwise, FALSE is returned. Its prototype follows:
boolean settype(mixed var, string type)

Type Identifier Functions
A number of functions are available for determining a variable’s type, including is_array(),
is_bool(),is_float(), is_integer(), is_null(), is_numeric(), is_object(), is_resource(), is_scalar(),
and is_string(). Because all of these functions follow the same naming convention, arguments,
and return values, their introduction is consolidated into a single example. The generalized
prototype follows:

boolean is_name(mixed var)

All of these functions are grouped in this section because each ultimately accomplishes the
same task. Each determines whether a variable, specified by var, satisfies a particular condition
specified by the function name. If var is indeed of the type tested by the function name, TRUE is
returned; otherwise, FALSE is returned. An example follows:
<?php
$item = 43;
printf("The variable \$item is of type array: %d
", is_array($item));
printf("The variable \$item is of type integer: %d
", is_integer($item));
printf("The variable \$item is numeric: %d
", is_numeric($item));
?>
This code returns the following:
The variable $item is of type array: 0
The variable $item is of type integer: 1
The variable $item is numeric: 1

Identifiers
Identifier is a general term applied to variables, functions, and various other user-defined
objects. There are several properties that PHP identifiers must abide by:
An identifier can consist of one or more characters and must begin with a letter or
an underscore. Furthermore, identifiers can consist of only letters, numbers,
underscore characters, and other ASCII characters from 127 through 255.

Valid Invalid

my_function This&that

Size !counter

_someword 4ward

 Identifiers are case sensitive. Therefore, a variable named $recipe is different from
a variable named $Recipe, $rEciPe, or $recipE.

 Identifiers can be any length. This is advantageous because it enables a programmer to
accurately describe the identifier’s purpose via the identifier name.

 An identifier name can’t be identical to any of PHP’s predefined keywords.

Variables
A variable is a symbol that can store different values at different times. For example, suppose you create a web-based
calculator capable of performing mathematical tasks.

Variable Declaration
A variable always begins with a dollar sign, $, which is then followed by the variable name. Variable names follow the same
naming rules as identifiers. That is, a variable name can begin with either a letter or an underscore and can consist of letters,
underscores, numbers, or other ASCII characters rangingfrom 127 through 255. The following are all valid variables:

 $color

 $operating_system

 $_some_variable

 $model
Note that variables are case sensitive. For instance, the following variables bear no relation to one
another:

 $color

 $Color

 $COLOR

Value Assignment
Assignment by value simply involves copying the value of the assigned expression to the variable assignee. This is the most
common type of assignment. A few examples follow:
$color = "red";
$number = 12;
$age = 12;
$sum = 12 + "15"; // $sum = 27
.

Reference Assignment
PHP 4 introduced the ability to assign variables by reference, which essentially means that you can create a variable that refers
to the same content as another variable does. Therefore, a change to any variable referencing a particular item of variable
content will be reflected among all other variables referencing that same content. You can assign variables by reference by
appending an ampersand (&) to the equal sign. Let’s consider an example:

<?php
$value1 = "Hello";
$value2 =& $value1; // $value1 and $value2 both equal "Hello"
$value2 = "Goodbye"; // $value1 and $value2 both equal "Goodbye"
?>
An alternative reference-assignment syntax is also supported, which involves appending the
ampersand to the front of the variable being referenced. The following example adheres to this new
syntax:
<?php
$value1 = "Hello";
$value2 = &$value1; // $value1 and $value2 both equal "Hello"
$value2 = "Goodbye"; // $value1 and $value2 both equal "Goodbye"
?>

Variable Scope

Scope can be defined as the range of availability a variable has to the program in which it is
declared. PHP variables can be one of four scope types −

 Local variables
 Function parameters
 Global variables
 Static variables

Local Variables

A variable declared in a function is considered local; that is, it can be referenced solely in that
function. Any assignment outside of that function will be considered to be an entirely different
variable from the one contained in the function −

http://www.tutorialspoint.com/php/php_local_variables.htm
http://www.tutorialspoint.com/php/php_function_parameters.htm
http://www.tutorialspoint.com/php/php_global_variables.htm
http://www.tutorialspoint.com/php/php_static_variables.htm

<?php
 $x = 4;

 function assignx () {
 $x = 0;
 print "\$x inside function is $x.
";
 }

 assignx();
 print "\$x outside of function is $x.
";
?>

This will produce the following result −

$x inside function is 0.

$x outside of function is 4.

Function Parameters

Function parameters are declared after the function name and inside parentheses. They are
declared much like a typical variable would be −

<?php
 // multiply a value by 10 and return it to the caller
 function multiply ($value) {
 $value = $value * 10;
 return $value;
 }

 $retval = multiply (10);
 Print "Return value is $retval\n";
?>

This will produce the following result −

Return value is 100

Global Variables

In contrast to local variables, a global variable can be accessed in any part of the program.
However, in order to be modified, a global variable must be explicitly declared to be global in
the function in which it is to be modified. This is accomplished, conveniently enough, by placing
the keyword GLOBAL in front of the variable that should be recognized as global. Placing this
keyword in front of an already existing variable tells PHP to use the variable having that name.
Consider an example −

<?php
 $somevar = 15;

 function addit() {
 GLOBAL $somevar;
 $somevar++;

 print "Somevar is $somevar";
 }

 addit();
?>

This will produce the following result −

Somevar is 16

Static Variables

The final type of variable scoping that I discuss is known as static. In contrast to the variables
declared as function parameters, which are destroyed on the function's exit, a static variable
will not lose its value when the function exits and will still hold that value should the function
be called again.

You can declare a variable to be static simply by placing the keyword STATIC in front of the
variable name.

<?php
 function keep_track() {
 STATIC $count = 0;
 $count++;
 print $count;
 print "
";
 }

 keep_track();
 keep_track();
 keep_track();
?>

This will produce the following result –

1

2

3

PHP’s Superglobal Variables

PHP offers a number of useful predefined variables that are accessible from anywhere within
the executing script and provide you with a substantial amount of environment-specific
information. You can sift through these variables to retrieve details about the current user
session, the user’s operating environment, the local operating environment, and more. PHP
creates some of the variables, while the availability and value of many of the other variables are
specific to the operating system and web server.
Therefore, rather than attempt to assemble a comprehensive list of all possible predefined
variables and their possible values, the following code will output all predefined variables
pertinent to any given web server and the script’s execution environment:

foreach ($_SERVER as $var => $value) {
echo "$var => $value
";
}

Sr.No Variable & Description

1
$_GLOBALS: Contains a reference to every variable which is currently available within
the global scope of the script. The keys of this array are the names of the global
variables.

2

$_SERVER: This is an array containing information such as headers, paths, and script
locations. The entries in this array are created by the web server. There is no
guarantee that every web server will provide any of these. See next section for a
complete list of all the SERVER variables.

3
$_GET: An associative array of variables passed to the current script via the HTTP GET
method.

4
$_POST: An associative array of variables passed to the current script via the HTTP
POST method.

5
$_FILES: An associative array of items uploaded to the current script via the HTTP
POST method.

6
$_REQUEST: An associative array consisting of the contents of $_GET, $_POST, and
$_COOKIE.

7
$_COOKIE: An associative array of variables passed to the current script via HTTP
cookies.

8
$_SESSION: An associative array containing session variables available to the current
script.

9 $_PHP_SELF: A string containing PHP script file name in which it is called.

10
$php_errormsg: $php_errormsg is a variable containing the text of the last error
message generated by PHP.

Variable Variables

On occasion, you may want to use a variable whose content can be treated dynamically as a
variable in itself. Consider this typical variable assignment:

$recipe = "spaghetti";

Interestingly, you can treat the value spaghetti as a variable by placing a second dollar sign in
front of the original variable name and again assigning another value:

$$recipe = "& meatballs";

This in effect assigns & meatballs to a variable named spaghetti. Therefore, the following two
snippets of code produce the same result:

echo $recipe $spaghetti;
echo $recipe ${$recipe};

The result of both is the string spaghetti & meatballs.

Constants
A constant is a value that cannot be modified throughout the execution of a program.
Constants are particularly useful when working with values that definitely will not require
modification, such as Pi (3.141592) or the number of feet in a mile (5,280). Once a constant has
been defined, it cannot be changed (or redefined) at any other point of the program. Constants
are defined using the define() function.

Defining a Constant
The define() function defines a constant by assigning a value to a name. Its prototype follows:

boolean define(string name, mixed value [, bool case_insensitive])

If the optional parameter case_insensitive is included and assigned TRUE, subsequent
references to the constant will be case insensitive. Consider the following example in which the
mathematical constant Pi is defined:

define("PI", 3.141592);

The constant is subsequently used in the following listing:
printf("The value of Pi is %f", PI);
$pi2 = 2 * PI;
printf("Pi doubled equals %f", $pi2);

This code produces the following results:

The value of pi is 3.141592.
Pi doubled equals 6.283184.

Expressions
An expression is a phrase representing a particular action in a program. All expressions consist
of at least one operand and one or more operators.
A few examples follow:
$a = 5; // assign integer value 5 to the variable $a
$a = "5"; // assign string value "5" to the variable $a
$sum = 50 + $some_int; // assign sum of 50 + $some_int to $sum
$wine = "Zinfandel"; // assign "Zinfandel" to the variable $wine
$inventory++; // increment the variable $inventory by 1

Operands
Operands are the inputs of an expression. You might already be familiar with the manipulation
and use of operands not only through everyday mathematical calculations, but also through
prior programming experience. Some examples of operands follow:

$a++; // $a is the operand
$sum = $val1 + val2; // $sum, $val1 and $val2 are operands

Operators
An operator is a symbol that specifies a particular action in an expression. Many operators may
be familiar to you. Regardless, you should remember that PHP’s automatic type conversion will
convert types based on the type of operator placed between the two operands, which is not
always the case in other programming languages.
The precedence and associativity of operators are significant characteristics of a programming
language.

Operator Precedence, Associativity, and Purpose

Operator Associativity Purpose

new NA Object instantiation

() NA Expression subgrouping

[] Right Index enclosure

! ~ ++ -- Right Boolean NOT, bitwise NOT, increment, decrement

@ Right Error suppression

/ * % Left
Division, multiplication, modulus

+ - . Left Addition, subtraction, concatenation

<< >> Left Shift left, shift right (bitwise)

< <= > >= NA Less than, less than or equal to, greater than, greater than or equal to

== != === <> NA Is equal to, is not equal to, is identical to, is not equal to

& ^ | Left Bitwise AND, bitwise XOR, bitwise OR

&& || Left Boolean AND, Boolean OR

?: Right Ternary operator

= += *= /= .= %=&=
|= ^= <<= >>=

Right Assignment operators

AND XOR OR Left Boolean AND, Boolean XOR, Boolean OR

, Left Expression separation

Operator Precedence
Operator precedence is a characteristic of operators that determines the order in which they
evaluate the operands surrounding them. PHP follows the standard precedence rules used in
elementary school math class. Consider a few examples:
$total_cost = $cost + $cost * 0.06;

This is the same as writing
$total_cost = $cost + ($cost * 0.06);
Because the multiplication operator has higher precedence than the addition operator.

Operator Associativity
The associativity characteristic of an operator specifies how operations of the same precedence
are evaluated as they are executed. Associativity can be performed in two directions, left-to-
right or right-to-left. Left-to-right associativity means that the various operations making up the
expression are evaluated from left to right.
Consider the following example:
$value = 3 * 4 * 5 * 7 * 2;
The preceding example is the same as the following:
$value = ((((3 * 4) * 5) * 7) * 2);

Arithmetic Operators

There are following arithmetic operators supported by PHP language −

Assume variable A holds 10 and variable B holds 20 then −

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiply both operands A * B will give 200

/ Divide numerator by de-numerator B / A will give 2

%
Modulus Operator and remainder of
after an integer division

B % A will give 0

++
Increment operator, increases integer
value by one

A++ will give 11

--
Decrement operator, decreases integer
value by one

A-- will give 9

Assignment Operators

There are following assignment operators supported by PHP language −

Operator Description Example

=
Simple assignment operator, Assigns
values from right side operands to
left side operand

C = A + B will assign value of A + B into C

+=

Add AND assignment operator, It
adds right operand to the left
operand and assign the result to left
operand

C += A is equivalent to C = C + A

-=

Subtract AND assignment operator,
It subtracts right operand from the
left operand and assign the result to
left operand

C -= A is equivalent to C = C - A

*=

Multiply AND assignment operator,
It multiplies right operand with the
left operand and assign the result to
left operand

C *= A is equivalent to C = C * A

/=

Divide AND assignment operator, It
divides left operand with the right
operand and assign the result to left
operand

C /= A is equivalent to C = C / A

%=
Modulus AND assignment operator,
It takes modulus using two operands
and assign the result to left operand

C %= A is equivalent to C = C % A

String Operators

PHP’s string operators provide a convenient way in which to concatenate strings together. There are two such operators,
including the concatenation operator (.) and the concatenation assignment operator (.=).

Example Label Outcome

$a = "abc"."def"; Concatenation $a is assigned the string "abcdef"

$a .= "ghijkl"; Concatenation-assignment $a equals its current value concatenated with "ghijkl"

Increment and Decrement Operators
The increment (++) and decrement (--) operators present a minor convenience in terms of code clarity, providing shortened
means by which you can add 1 to or subtract 1 from the current value of a variable.

Example Label Outcome

++$a, $a++ Increment Increment $a by 1

--$a, $a-- Decrement Decrement $a by 1

Logical Operators

There are following logical operators supported by PHP language

Assume variable A holds 10 and variable B holds 20 then −

Operator Description Example

and
Called Logical AND operator. If both the
operands are true then condition
becomes true.

(A and B) is true.

or
Called Logical OR Operator. If any of the
two operands are non zero then
condition becomes true.

(A or B) is true.

&&
Called Logical AND operator. If both the
operands are non zero then condition
becomes true.

(A && B) is true.

||
Called Logical OR Operator. If any of the
two operands are non zero then
condition becomes true.

(A || B) is true.

!

Called Logical NOT Operator. Use to
reverses the logical state of its operand.
If a condition is true then Logical NOT
operator will make false.

!(A && B) is false.

Equality Operators
Equality operators are used to compare two values, testing for equivalence.

Example Label Outcome

$a == $b Is equal to True if $a and $b are equivalent

$a != $b Is not equal to True if $a is not equal to $b

$a === $b Is identical to True if $a and $b are equivalent and $a and $b have the same type

Comparison Operators

There are following comparison operators supported by PHP language

Assume variable A holds 10 and variable B holds 20 then −

Operator Description Example

==
Checks if the value of two operands are
equal or not, if yes then condition
becomes true.

(A == B) is not true.

!=
Checks if the value of two operands are
equal or not, if values are not equal then
condition becomes true.

(A != B) is true.

>
Checks if the value of left operand is
greater than the value of right operand, if
yes then condition becomes true.

(A > B) is not true.

<
Checks if the value of left operand is less
than the value of right operand, if yes
then condition becomes true.

(A < B) is true.

>=

Checks if the value of left operand is
greater than or equal to the value of right
operand, if yes then condition becomes
true.

(A >= B) is not true.

<=

Checks if the value of left operand is less
than or equal to the value of right
operand, if yes then condition becomes
true.

(A <= B) is true.

Bitwise Operators
Bitwise operators examine and manipulate integer values on the level of individual bits that
make up the

integer value (thus the name).

Example Label Outcome

$a & $b AND And together each bit contained in $a and $b

$a | $b OR Or together each bit contained in $a and $b

$a ^ $b XOR Exclusive—or together each bit contained in $a and $b

~ $b NOT Negate each bit in $b

$a << $b Shift left $a will receive the value of $b shifted left two bits

$a >> $b Shift right $a will receive the value of $b shifted right two bits

String Interpolation
To offer developers the maximum flexibility when working with string values, PHP offers a
means for both literal and figurative interpretation. For example, consider the following string:

The $animal jumped over the wall.\n

You might assume that $animal is a variable and that \n is a newline character, and therefore
both should be interpreted accordingly. However, what if you want to output the string exactly
as it is written, or perhaps you want the newline to be rendered but want the variable to
display in its literal form ($animal), or vice versa? All of these variations are possible in PHP,
depending on how the strings are enclosed and whether certain key characters are escaped
through a predefined sequence.

Double Quotes
Strings enclosed in double quotes are the most commonly used in PHP scripts because they
offer the most flexibility. This is because both variables and escape sequences will be parsed
accordingly.

Consider the following example:
<?php
$sport = "boxing";
echo "Jason's favorite sport is $sport.";
?>

This example returns the following:
Jason's favorite sport is boxing.

Escape Sequences

Escape sequences are also parsed. Consider this example:
<?php
$output = "This is one line.\nAnd this is another line.";
echo $output;
?>

This returns the following (as viewed from within the browser source):
This is one line.
And this is another line.

Single Quotes
Enclosing a string within single quotes is useful when the string should be interpreted exactly as
stated. This means that both variables and escape sequences will not be interpreted when the
string is parsed.

For example, consider the following single-quoted string:
print 'This string will $print exactly as it\'s \n declared.';

This produces the following:
This string will $print exactly as it's \n declared.

Curly Braces
While PHP is perfectly capable of interpolating variables representing scalar data types, you’ll
find that variables representing complex data types such as arrays or objects cannot be so
easily parsed when embedded in an echo() or print() string. You can solve this issue by
delimiting the variable in curly braces, like this:

echo "The capital of Ohio is {$capitals['ohio']}.";

Heredoc
Heredoc syntax offers a convenient means for outputting large amounts of text. Rather than
delimiting strings with double or single quotes, two identical identifiers are employed. An
example follows:
<?php
$website = "http://www.romatermini.it";
echo <<<EXCERPT
<p>Rome's central train station, known as Roma Termini,
was built in 1867. Because it had fallen into severe disrepair in the late 20th
century, the government knew that considerable resources were required to
rehabilitate the station prior to the 50-year <i>Giubileo</i>.</p>
EXCERPT;
?>

Several points are worth noting regarding this example:

• The opening and closing identifiers (in the case of this example, EXCERPT) must be identical.
• The opening identifier must be preceded with three left-angle brackets (<<<).
• Heredoc syntax follows the same parsing rules as strings enclosed in double quotes. That is,
both variables and escape sequences are parsed. The only difference is that double quotes do
not need to be escaped.
• The closing identifier must begin at the very beginning of a line. It cannot be preceded with
spaces or any other extraneous character.

Nowdoc
Introduced in PHP 5.3, nowdoc syntax operates identically to heredoc syntax, except that none
of the text delimited within a nowdoc is parsed. If you would like to display, for instance, a
snippet of code in the browser, you could embed it within a nowdoc statement; when
subsequently outputting the nowdoc variable, you can be sure that PHP will not attempt to
interpolate any of the string as code.

Control Structures
Control structures determine the flow of code within an application, defining execution
characteristics such as whether and how many times a particular code statement will execute,
as well as when a code block will relinquish execution control.

Conditional Statements
Conditional statements make it possible for your computer program to respond accordingly to a
wide variety of inputs, using logic to discern between various conditions based on input value.

You can use conditional statements in your code to make your decisions. PHP supports
following three decision making statements −

 if...else statement − use this statement if you want to execute a set of code when a
condition is true and another if the condition is not true

 elseif statement − is used with the if...else statement to execute a set of code if one of
the several condition is true

 switch statement − is used if you want to select one of many blocks of code to be
executed, use the Switch statement. The switch statement is used to avoid long blocks
of if..elseif..else code.

The If...Else Statement

If you want to execute some code if a condition is true and another code if a condition is false,
use the if....else statement.

Syntax

if (condition)
 code to be executed if condition is true;
else
 code to be executed if condition is false;

Example

The following example will output "Have a nice weekend!" if the current day is Friday,
Otherwise, it will output "Have a nice day!":

<html>
 <body>

 <?php
 $d = date("D");

 if ($d == "Fri")
 echo "Have a nice weekend!";

 else
 echo "Have a nice day!";
 ?>

 </body>
</html>

It will produce the following result −

Have a nice day!

The ElseIf Statement

If you want to execute some code if one of the several conditions are true use the elseif
statement

Syntax

if (condition)
 code to be executed if condition is true;
elseif (condition)
 code to be executed if condition is true;
else
 code to be executed if condition is false;

Example

The following example will output "Have a nice weekend!" if the current day is Friday, and
"Have a nice Sunday!" if the current day is Sunday. Otherwise, it will output "Have a nice day!"
−

<html>
 <body>

 <?php
 $d = date("D");

 if ($d == "Fri")
 echo "Have a nice weekend!";

 elseif ($d == "Sun")
 echo "Have a nice Sunday!";

 else
 echo "Have a nice day!";
 ?>

 </body>
</html>

It will produce the following result −

Have a nice day!

The Switch Statement

If you want to select one of many blocks of code to be executed, use the Switch statement.

The switch statement is used to avoid long blocks of if..elseif..else code.

Syntax

switch (expression){
 case label1:
 code to be executed if expression = label1;
 break;

 case label2:
 code to be executed if expression = label2;
 break;
 default:

 code to be executed
 if expression is different
 from both label1 and label2;
}

Example

The switch statement works in an unusual way. First it evaluates given expression then seeks a
lable to match the resulting value. If a matching value is found then the code associated with
the matching label will be executed or if none of the lable matches then statement will execute
any specified default code.

<html>
 <body>

 <?php
 $d = date("D");

 switch ($d){
 case "Mon":
 echo "Today is Monday";
 break;

 case "Tue":
 echo "Today is Tuesday";
 break;

 case "Wed":
 echo "Today is Wednesday";
 break;

 case "Thu":
 echo "Today is Thursday";

 break;

 case "Fri":
 echo "Today is Friday";
 break;

 case "Sat":
 echo "Today is Saturday";
 break;

 case "Sun":
 echo "Today is Sunday";
 break;

 default:
 echo "Wonder which day is this ?";
 }
 ?>

 </body>
</html>

It will produce the following result −

Today is Wednesday

Looping Statements

Loops in PHP are used to execute the same block of code a specified number of times. PHP
supports following four loop types.

 for − loops through a block of code a specified number of times.
 while − loops through a block of code if and as long as a specified condition is true.
 do...while − loops through a block of code once, and then repeats the loop as long as a

special condition is true.
 foreach − loops through a block of code for each element in an array.

The for loop statement

 The for statement is used when you know how many times you want to execute a
statement or a block of statements.

Syntax

for (initialization; condition; increment){
 code to be executed;
}

The initializer is used to set the start value for the counter of the number of loop iterations. A variable

may be declared here for this purpose and it is traditional to name it $i.

Example

The following example makes five iterations and changes the assigned value of two variables on
each pass of the loop −

<html>
 <body>

 <?php
 $a = 0;
 $b = 0;

 for($i = 0; $i<5; $i++) {
 $a += 10;
 $b += 5;
 }

 echo ("At the end of the loop a = $a and b = $b");
 ?>

 </body>
</html>

This will produce the following result –

At the end of the loop a = 50 and b = 25

The while loop statement

The while statement will execute a block of code if and as long as the test expression is true.

If the test expression is true then the code block will be executed. After the code has executed
the test expression will again be evaluated and the loop will continue until the test expression is
found to be false.

Syntax

while (condition) {
 code to be executed;
}

Example

This example decrements a variable value on each iteration of the loop and the counter
increments until it reaches 10 when the evaluation is false and the loop ends.

<html>
 <body>

 <?php
 $i = 0;
 $num = 50;

 while($i < 10) {
 $num--;
 $i++;
 }

 echo ("Loop stopped at i = $i and num = $num");
 ?>

 </body>
</html>

This will produce the following result –

Loop stopped at i = 10 and num = 40

The do...while loop statement

The do...while statement will execute a block of code at least once - it then will repeat the loop
as long as a condition is true.

Syntax

do {
 code to be executed;
}
while (condition);

Example

The following example will increment the value of i at least once, and it will continue
incrementing the variable i as long as it has a value of less than 10 −

<html>
 <body>

 <?php
 $i = 0;
 $num = 0;

 do {
 $i++;
 }

 while($i < 10);
 echo ("Loop stopped at i = $i");
 ?>

 </body>
</html>

This will produce the following result −

Loop stopped at i = 10

The foreach loop statement

The foreach statement is used to loop through arrays. For each pass the value of the current
array element is assigned to $value and the array pointer is moved by one and in the next pass
next element will be processed.

Syntax

foreach (array as value) {
 code to be executed;
}

Example

Try out following example to list out the values of an array.

<html>
 <body>

 <?php
 $array = array(1, 2, 3, 4, 5);

 foreach($array as $value) {
 echo "Value is $value
";
 }
 ?>

 </body>
</html>

This will produce the following result –

Value is 1
Value is 2
Value is 3
Value is 4
Value is 5

The break statement

The PHP break keyword is used to terminate the execution of a loop prematurely.

The break statement is situated inside the statement block. If gives you full control and
whenever you want to exit from the loop you can come out. After coming out of a loop
immediate statement to the loop will be executed.

Example

In the following example condition test becomes true when the counter value reaches 3 and
loop terminates.

<html>
 <body>

 <?php
 $i = 0;

 while($i < 10) {
 $i++;
 if($i == 3)break;
 }
 echo ("Loop stopped at i = $i");
 ?>

 </body>
</html>

This will produce the following result –

Loop stopped at i = 3

The continue statement

The PHP continue keyword is used to halt the current iteration of a loop but it does not
terminate the loop.

Just like the break statement the continue statement is situated inside the statement block
containing the code that the loop executes, preceded by a conditional test. For the pass
encountering continue statement, rest of the loop code is skipped and next pass starts.

Example

In the following example loop prints the value of array but for which condition becomes true it
just skip the code and next value is printed.

<html>
 <body>

 <?php
 $array = array(1, 2, 3, 4, 5);

 foreach($array as $value) {
 if($value == 3)continue;
 echo "Value is $value
";
 }
 ?>

 </body>
</html>

This will produce the following result –

Value is 1
Value is 2
Value is 4

Value is 5

3. File Inclusion statements

You can include the content of a PHP file into another PHP file before the server executes it.
There are two PHP functions which can be used to included one PHP file into another PHP file.

 The include() Function
 The require() Function

This is a strong point of PHP which helps in creating functions, headers, footers, or elements
that can be reused on multiple pages. This will help developers to make it easy to change the
layout of complete website with minimal effort. If there is any change required then instead of
changing thousand of files just change included file.

a.The include() Function

The include() function takes all the text in a specified file and copies it into the file that uses the
include function. If there is any problem in loading a file then the include() function generates a
warning but the script will continue execution.

Assume you want to create a common menu for your website. Then create a file menu.php
with the following content.

Home -
ebXML -
AJAX -
PERL

Now create as many pages as you like and include this file to create header. For example now
your test.php file can have following content.

<html>
 <body>

 <?php include("menu.php"); ?>
 <p>This is an example to show how to include PHP file!</p>

 </body>
</html>

It will produce the following result –

Home -

ebXML -

AJAX -

PERL

http://www.tutorialspoint.com/index.htm
http://www.tutorialspoint.com/ebxml
http://www.tutorialspoint.com/ajax
http://www.tutorialspoint.com/perl

b. Ensuring a File is included only once:

The include_once() function verified whether the file has already been included.

include_once(filename);

If a file has already been included; include_once will not execute. Otherwise, it will inluce the
file as necessary.

c. The require() Function

The require() function takes all the text in a specified file and copies it into the file that uses the
include function. If there is any problem in loading a file then the require() function generates a
fatal error and halt the execution of the script.

So there is no difference in require() and include() except they handle error conditions. It is
recommended to use the require() function instead of include(), because scripts should not
continue executing if files are missing or misnamed.

You can try using above example with require() function and it will generate same result. But if
you will try following two examples where file does not exist then you will get different results.

<html>
 <body>

 <?php include("xxmenu.php"); ?>
 <p>This is an example to show how to include wrong PHP file!</p>

 </body>
</html>

This will produce the following result −

This is an example to show how to include wrong PHP file!
<html>
 <body>

 <?php require("xxmenu.php"); ?>
 <p>This is an example to show how to include wrong PHP file!</p>

 </body>

</html>

Ensuring a File Is Required Only Once
As your site grows, you may find yourself redundantly including certain files. Although this
might not always be a problem, sometimes you will not want modified variables in the included
file to be overwritten by a later inclusion of the same file. Another problem that arises is the

clashing of function names should they exist in the inclusion file. You can solve these problems
with the require_once() function. Its prototype follows:
require_once (filename)

The require_once() function ensures that the inclusion file is included only once in your script.
After require_once() is encountered, any subsequent attempts to include the same file will be
ignored.

Functions:
Creating a Function
Although PHP’s vast assortment of function libraries is a tremendous benefit to anybody
seeking to avoid reinventing the programmatic wheel, sooner or later you’ll need to go beyond
what is offered in the standard distribution, which means you’ll need to create custom
functions or even entire function libraries. To do so, you’ll need to define a function using PHP’s
supported syntax, which when written in pseudocode looks like this:

function functionName(parameters)
{
function-body
}

For example, consider the following function, generateFooter(), which outputs a page footer:

function generateFooter()
{
echo "Department of Computer Science and Engineering";
}

Once defined, you can call this function like so:
<?php
generateFooter();
?>

This yields the following result:
Department of Computer Science and Engineering

Passing Arguments by Value
You‘ll often find it useful to pass data into a function. As an example, let’s create a function that
calculates an item’s total cost by determining its sales tax and then adding that amount to the
price:
function calcSalesTax($price, $tax)
{
$total = $price + ($price * $tax);
echo "Total cost: $total";

}
This function accepts two parameters, aptly named $price and $tax, which are used in the
calculation. Although these parameters are intended to be floating points, because of PHP’s
weak typing, nothing prevents you from passing in variables of any datatype, but the outcome
might not be what you expect. In addition, you’re allowed to define as few or as many
parameters as you deem necessary; there are no language-imposed constraints in this
regard.Once defined, you can then invoke the function as demonstrated

calcSalesTax() function would be called like so:
calcSalesTax(15.00, .075);

Passing Arguments by Reference
On occasion, you may want any changes made to an argument within a function to be reflected
outside of the function’s scope. Passing the argument by reference accomplishes this. Passing
an argument by reference is done by appending an ampersand to the front of the argument.
Here’s an example:
<?php
$cost = 20.99;
$tax = 0.0575;
function calculateCost(&$cost, $tax)
{
// Modify the $cost variable
$cost = $cost + ($cost * $tax);
// Perform some random change to the $tax variable.
$tax += 4;
}
calculateCost($cost, $tax);
printf("Tax is %01.2f%% ", $tax*100);
printf("Cost is: $%01.2f", $cost);
?>
Here’s the result:
Tax is 5.75%
Cost is $22.20

Default Argument Values
Default values can be assigned to input arguments, which will be automatically assigned to the
argument if no other value is provided. You could then assign $tax the default value of 6.75
percent, like this:
function calcSalesTax($price, $tax=.0675)
{
$total = $price + ($price * $tax);
echo "Total cost: $total";
}
You can still pass $tax another taxation rate; 6.75 percent will be used only if calcSalesTax() is

invoked without the second parameter like this:

$price = 15.47;
calcSalesTax($price);

Using Type Hinting
PHP 5 introduced a new feature known as type hinting, which gives you the ability to force
parameters to be objects of a certain class or to be arrays. Unfortunately, type hinting using
scalar data types such as integers and strings is not supported. If the provided parameter is not
of the desired type, a fatal error will occur.

Returning Values from a Function
Often, simply relying on a function to do something is insufficient; a script’s outcome might
depend on a function’s outcome or on changes in data resulting from its execution. Yet variable
scoping prevents information from easily being passed from a function body back to its caller,
so how can we accomplish this? You can pass data back to the caller by way of the return()
statement.

The return Statement
The return() statement returns any ensuing value back to the function caller, returning program
control back to the caller’s scope in the process. If return() is called from within the global
scope, the script execution is terminated.

function calcSalesTax($price, $tax=.0675)
{
$total = $price + ($price * $tax);
return $total;
}

Returning Multiple Values
It’s often convenient to return multiple values from a function. For example, suppose that you’d
like to create a function that retrieves user data from a database (say the user’s name, e-mail
address, and phone number) and returns it to the caller. Accomplishing this is much easier than
you might think, with the help of a very useful language construct, list(). The list() construct
offers a convenient means for retrieving values from an array, like so:
<?php
function retrieveUserProfile()
{
$user[] = "Arifa Tehseen";
$user[] = "arifa@jbiet.edu.in";
$user[] = "English";
return $user;
}
list($name, $email, $language) = retrieveUserProfile();

echo "Name: $name, email: $email, language: $language";
?>

Executing this script returns the following:
Name: Arifa Tehseen, email:arifa@jbiet.edu.in, language: English

Recursive Functions
Recursive functions, or functions that call themselves, offer considerable practical value to the
programmer and are used to divide an otherwise complex problem into a simple case,
reiterating that case until the problem is resolved

Function Libraries
Great programmers are lazy, and lazy programmers think in terms of reusability. Functions offer
a great way to reuse code and are often collectively assembled into libraries and subsequently
repeatedly reused within similar applications. PHP libraries are created via the simple
aggregation of function definitions in a single file, like this:
<?php
function localTax($grossIncome, $taxRate) {
// function body here
}
function stateTax($grossIncome, $taxRate, $age) {
// function body here
}
function medicare($grossIncome, $medicareRate) {
// function body here
}
?>

Arrays
What Is an Array?
PHP takes this definition a step further, forgoing the requirement that the items share the same
data type. For example, an array could quite possibly contain items such as state names, ZIP
codes, exam scores, or playing card suits.
Each item consists of two components: the aforementioned key and a value. The key serves as
the lookup facility for retrieving its counterpart, the value. Keys can be numerical or associative.
Numerical keys bear no real relation to the value other than the value’s position in the array.

$states = array(0 => "Alabama", 1 => "Alaska"...49 => "Wyoming");
$states = array("OH" => "Ohio", "PA" => "Pennsylvania", "NY" => "New York")
Creating an Array
Unlike other languages, PHP doesn’t require that you assign a size to an array at creation time.
In fact, because it’s a loosely typed language, PHP doesn’t even require that you declare the
array before using it.

$state[0] = "Delaware";

Interestingly, if you intend for the index value to be numerical and ascending, you can omit the
index value at creation time:
$state[] = "Pennsylvania";
$state[] = "New Jersey";
...
$state[] = "Hawaii";

Creating Arrays with array()
The array() construct takes as its input zero or more items and returns an array consisting of
these input elements. Its prototype looks like this:
array array([item1 [,item2 ... [,itemN]]])

Extracting Arrays with list()
The list() construct is similar to array(), though it’s used to make simultaneous variable
assignments from values extracted from an array in just one operation. Its prototype looks like
this:
void list(mixed...)

This construct can be particularly useful when you’re extracting information from a database or
file.

Populating Arrays with a Predefined Value Range
The range() function provides an easy way to quickly create and fill an array consisting of a
range of low and high integer values. An array containing all integer values in this range is
returned. Its prototype looks like this:
array range(int low, int high [, int step])

For example, suppose you need an array consisting of all possible face values of a die:
$die = range(1, 6);
// Same as specifying $die = array(1, 2, 3, 4, 5, 6)

Testing for an Array
When you incorporate arrays into your application, you’ll sometimes need to know whether a
particular variable is an array. A built-in function, is_array(), is available for accomplishing this
task. Its prototype follows:
boolean is_array(mixed variable)

The is_array() function determines whether variable is an array, returning TRUE if it is and
FALSE otherwise.
An example follows:
$states = array("Florida");
$state = "Ohio";
printf("\$states is an array: %s
", (is_array($states) ? "TRUE" : "FALSE"));

printf("\$state is an array: %s
", (is_array($state) ? "TRUE" : "FALSE"));

Executing this example produces the following:
$states is an array: TRUE
$state is an array: FALSE

Outputting an Array
The most common way to output an array’s contents is by iterating over each key and echoing
the corresponding value. For instance, a foreach statement does the trick nicely:
$states = array("Ohio", "Florida", "Texas");
foreach ($states AS $state) {
echo "{$state}
";
}

Printing Arrays for Testing Purposes
The array contents in most of the previous examples have been displayed using comments.
While this works great for instructional purposes, in the real world you’ll need to know how to
easily output their contents to the screen for testing purposes. This is most commonly done
with the print_r() function. Its prototype follows:
boolean print_r(mixed variable [, boolean return])

The print_r() function accepts a variable and sends its contents to standard output, returning
TRUE on success and FALSE otherwise.

Adding and Removing Array Elements
PHP provides a number of functions for both growing and shrinking an array. Some of these
functions are provided as a convenience to programmers who wish to mimic various queue
implementations (FIFO, LIFO, etc.), as reflected by their names (push, pop, shift, and unshift).

Adding a Value to the Front of an Array
The array_unshift() function adds elements to the front of the array. All preexisting numerical
keys are modified to reflect their new position in the array, but associative keys aren’t affected.
Its prototype follows:
int array_unshift(array array, mixed variable [, mixed variable...])

The following example adds two states to the front of the $states array:
$states = array("Ohio", "New York");
array_unshift($states, "California", "Texas");
// $states = array("California", "Texas", "Ohio", "New York");

Adding a Value to the End of an Array
The array_push() function adds a value to the end of an array, returning the total count of
elements in the array after the new value has been added. You can push multiple variables onto

the array simultaneously by passing these variables into the function as input parameters. Its
prototype follows:
int array_push(array array, mixed variable [, mixed variable...])

The following example adds two more states onto the $states array:
$states = array("Ohio", "New York");
array_push($states, "California", "Texas");
// $states = array("Ohio", "New York", "California", "Texas");

Removing a Value from the Front of an Array
The array_shift() function removes and returns the first item found in an array. If numerical
keys are used, all corresponding values will be shifted down, whereas arrays using associative
keys will not be affected. Its prototype follows:
mixed array_shift(array array)
The following example removes the first state from the $states array:
$states = array("Ohio", "New York", "California", "Texas");
$state = array_shift($states);
// $states = array("New York", "California", "Texas")
// $state = "Ohio"

Removing a Value from the End of an Array
The array_pop() function removes and returns the last element from an array. Its prototype
follows:
mixed array_pop(array array)
The following example removes the last state from the $states array:
$states = array("Ohio", "New York", "California", "Texas");
$state = array_pop($states);
// $states = array("Ohio", "New York", "California"
// $state = "Texas"

Locating Array Elements
The ability to efficiently sift through data is absolutely crucial in today’s information-driven
society.
Searching an Array

The in_array() function searches an array for a specific value, returning TRUE if the value is found and
FALSE otherwise. Its prototype follows:
boolean in_array(mixed needle, array haystack [, boolean strict])

Searching
Associative Array
Keys

The function array_key_exists() returns TRUE if a specified key is found in an array and FALSE otherwise.
Its prototype follows:
boolean array_key_exists(mixed key, array array)

Searching
Associative Array
Values

The array_search() function searches an array for a specified value, returning its key if located and FALSE
otherwise. Its prototype follows:
mixed array_search(mixed needle, array haystack [, boolean strict])

Retrieving Array
Keys

The array_keys() function returns an array consisting of all keys located in an array. Its prototype follows:
array array_keys(array array [, mixed search_value [, boolean preserve_keys]])

Retrieving Array
Values

The array_values() function returns all values located in an array, automatically providing numeric
indexes for the returned array. Its prototype follows:
array array_values(array array)

Traversing Arrays
The need to travel across an array and retrieve various keys, values, or both is common, so it’s
not a surprise that PHP offers numerous functions suited to this need. Many of these functions
do double duty: retrieving the key or value residing at the current pointer location, and moving
the pointer to the next appropriate location.

Retrieving the Current Array
Key

The key() function returns the key located at the current pointer position of the provided array.
Its prototype follows:
mixed key(array array)

Retrieving the Current Array
Value

The current() function returns the array value residing at the current pointer position of the
array. Its prototype follows:
mixed current(array array)

Retrieving the Current Array
Key and Value

The each() function returns the current key/value pair from the array and advances the pointer
one position. Its prototype follows:
array each(array array)

Moving the Array Pointer

Several functions are available for moving the array pointer.

Moving the Pointer to
the Next Array Position

The next() function returns the array value residing at the position immediately following that of
the current array pointer. Its prototype follows:
mixed next(array array)

Moving the Pointer to
the Previous Array
Position

The prev() function returns the array value residing at the location preceding the current pointer
location, or FALSE if the pointer resides at the first position in the array. Its prototype follows:
mixed prev(array array)

Moving the Pointer to
the First Array Position

The reset() function serves to set an array pointer back to the beginning of the array. Its prototype
follows:
mixed reset(array array)

Moving the Pointer to
the Last Array Position

The end() function moves the pointer to the last position of an array, returning the last element. Its
prototype follows:
mixed end(array array)

Passing Array Values to a Function
The array_walk() function will pass each element of an array to the user-defined function. This
is useful when you need to perform a particular action based on each array element. If you

intend to actually modify the array key/value pairs, you’ll need to pass each key/value to the
function as a reference. Its prototype follows:
boolean array_walk(array &array, callback function [, mixed userdata])

Determining Array Size and Uniqueness
A few functions are available for determining the number of total and unique array values.
Determining the
Size of an Array

The count() function returns the total number of values found in an array. Its prototype follows:
integer count(array array [, int mode])

Counting Array
Value Frequency

The array_count_values() function returns an array consisting of associative key/value pairs. Its
prototype follows:
array array_count_values(array array)

Determining Unique
Array Values

The array_unique() function removes all duplicate values found in an array, returning an array consisting
of solely unique values. Its prototype follows:
array array_unique(array array [, int sort_flags = SORT_STRING])

Sorting Arrays
Reversing Array
Element Order

The array_reverse() function reverses an array’s element order. Its prototype follows:
array array_reverse(array array [, boolean preserve_keys])

Flipping Array Keys
and Values

The array_flip() function reverses the roles of the keys and their corresponding values in an array. Its
prototype follows:
array array_flip(array array)

Sorting an Array

The sort() function sorts an array, ordering elements from lowest to highest value. Its prototype
follows:
void sort(array array [, int sort_flags])

Sorting an Array While
Maintaining Key/Value
Pairs

The asort() function is identical to sort(), sorting an array in ascending order, except that the
key/value correspondence is maintained. Its prototype follows:
void asort(array array [, integer sort_flags])

Sorting an Array in
Reverse Order

The rsort() function is identical to sort(), except that it sorts array items in reverse (descending)
order.Its prototype follows:
void rsort(array array [, int sort_flags])

Sorting an Array in
Reverse Order While
Maintaining Key/Value
Pairs

Like asort(), arsort() maintains key/value correlation. However, it sorts the array in reverse order. Its
prototype follows:
void arsort(array array [, int sort_flags])

Sorting an Array
Naturally

The natsort() function is intended to offer a sorting mechanism comparable to the mechanisms that
people normally use. Its prototype follows:
void natsort(array array)

Case-Insensitive
Natural Sorting

The function natcasesort() is functionally identical to natsort(), except that it is case insensitive:
void natcasesort(array array)

Sorting an Array by
Key Values

The ksort() function sorts an array by its keys, returning TRUE on success and FALSE otherwise. Its
prototype follows:
integer ksort(array array [, int sort_flags])

Sorting Array Keys in
Reverse Order

The krsort() function operates identically to ksort(), sorting by key, except that it sorts in reverse
(descending) order. Its prototype follows:
integer krsort(array array [, int sort_flags])

Sorting According to
User-Defined Criteria

The usort() function offers a means for sorting an array by using a user-defined comparison
algorithm, embodied within a function. This is useful when you need to sort data in a fashion not
offered by one of PHP’s built-in sorting functions. Its prototype follows:
void usort(array array, callback function_name)

Merging, Slicing, Splicing, and Dissecting Arrays
Merging Arrays

The array_merge() function merges arrays together, returning a single, unified array. The resulting array will
begin with the first input array parameter, appending each subsequent array parameter in the order of
appearance. Its prototype follows:
array array_merge(array array1, array array2 [, array arrayN])

Recursively
Appending
Arrays

The array_merge_recursive() function operates identically to array_merge(), joining two or more arrays
together to form a single, unified array. The difference between the two functions lies in the way that this
function behaves when a string key located in one of the input arrays already exists within the resulting
array. Note that array_merge() will simply overwrite the preexisting key/value pair, replacing it with the
one found in the current input array, while array_merge_recursive() will instead merge the values
together, forming a new array with the preexisting key as its name. Its prototype follows:
array array_merge_recursive(array array1, array array2 [, array arrayN])

Combining Two
Arrays

The array_combine() function produces a new array consisting of a submitted set of keys and
corresponding values. Its prototype follows:
array array_combine(array keys, array values)
Both input arrays must be of equal size, and neither can be empty.

Slicing an Array

The array_slice() function returns a section of an array based on a starting and ending offset value. Its
prototype follows:
array array_slice(array array, int offset [, int length [, boolean preserve_keys]])

Splicing an
Array

The array_splice() function removes all elements of an array found within a specified range, returning
those removed elements in the form of an array. Its prototype follows:
array array_splice(array array, int offset [, int length [, array replacement]])

Calculating an
Array
Intersection

The array_intersect() function returns a key-preserved array consisting only of those values present in
the first array that are also present in each of the other input arrays. Its prototype follows:
array array_intersect(array array1, array array2 [, arrayN])

Calculating
Associative
Array
Intersections

The function array_intersect_assoc() operates identically to array_intersect(), except that it also considers
array keys in the comparison. Therefore, only key/value pairs located in the first array that arealso found in
all other input arrays will be returned in the resulting array. Its prototype follows:
array array_intersect_assoc(array array1, array array2 [, arrayN])

Calculating
Array
Differences

Essentially the opposite of array_intersect(), the function array_diff() returns those values located in
the first array that are not located in any of the subsequent arrays:
array array_diff(array array1, array array2 [, arrayN])

Calculating
Associative
Array
Differences

The function array_diff_assoc() operates identically to array_diff(), except that it also considers array
keys in the comparison. Therefore, only key/value pairs located in the first array but not appearing in
any of the other input arrays will be returned in the result array. Its prototype follows:
array array_diff_assoc(array array1, array array2 [, array arrayN])

Strings and Regular Expressions
PHP has long supported two regular expression implementations known as Perl and POSIX.

Regular Expressions
Regular expressions provide the foundation for describing or matching data according to defined syntax rules. A regular
expression is nothing more than a pattern of characters itself, matched against a certain parcel of text. This sequence may be a
pattern with which you are already familiar, such as the word dog, or it may be a pattern with specific meaning in the context of
the world of pattern matching, <(?)>.*<\ /.?>

Regular Expression Syntax (POSIX)
POSIX stands for Portable Operating System Interface for Unix and is representative of a set of standards originally
intended for Unix-based operating systems. POSIX regular expression syntax is an attempt to standardize how
regular expressions are implemented in many programming languages.

Brackets
Brackets ([]) are used to represent a list, or range, of characters to be matched. For instance, contrary to
the regular expression php, which will locate strings containing the explicit string php, the regular
expression [php] will find any string containing the character p or h. Several commonly used character
ranges follow:
[0-9] matches any decimal digit from 0 through 9.
• [a-z] matches any character from lowercase a through lowercase z.
• [A-Z] matches any character from uppercase A through uppercase Z.
• [A-Za-z] matches any character from uppercase A through lowercase z.

Quantifiers
Sometimes you might want to create regular expressions that look for characters based on their
frequency or position
• p+ matches any string containing at least one p.
• p* matches any string containing zero or more p’s.
• p? matches any string containing zero or one p.
• p{2} matches any string containing a sequence of two p’s.
• p{2,3} matches any string containing a sequence of two or three p’s.
• p{2,} matches any string containing a sequence of at least two p’s.
• p$ matches any string with p at the end of it.

Predefined Character Ranges (Character Classes)
For reasons of convenience, several predefined character ranges, also known as character classes, are
available. Character classes specify an entire range of characters—for example, the alphabet or an
integer set. Standard classes include the following:
[:alpha:]: Lowercase and uppercase alphabetical characters. This can also be
specified as [A-Za-z].
[:alnum:]: Lowercase and uppercase alphabetical characters and numerical digits.
This can also be specified as [A-Za-z0-9].
[:cntrl:]: Control characters such as tab, escape, or backspace.
[:digit:]: Numerical digits 0 through 9. This can also be specified as [0-9].
[:graph:]: Printable characters found in the range of ASCII 33 to 126.
[:lower:]: Lowercase alphabetical characters. This can also be specified as [a-z].
[:punct:]: Punctuation characters, including ~ ` ! @ # $ % ^ & * () - _ + = { } [] : ; '
< > , . ? and /.
[:upper:]: Uppercase alphabetical characters. This can also be specified as [A-Z].
[:space:]: Whitespace characters, including the space, horizontal tab, vertical tab,
new line, form feed, or carriage return.
[:xdigit:]: Hexadecimal characters. This can also be specified as [a-fA-F0-9].

PHP’s Regular Expression Functions (POSIX Extended)
PHP offers seven functions for searching strings using POSIX-style regular expressions: ereg(),ereg_replace(), eregi(),
eregi_replace(), split(), spliti(), and sql_regcase().

Performing a Case-
Sensitive Search

The ereg() function executes a case-sensitive search of a string for a defined pattern, returning the
length of the matched string if the pattern is found and FALSE otherwise. Its prototype follows:
int ereg(string pattern, string string [, array regs])

Performing a Case-
Insensitive Search

The eregi() function searches a string for a defined pattern in a case-insensitive fashion. Its
prototype
follows:
int eregi(string pattern, string string, [array regs])

This function can be useful when checking the validity of strings, such as passwords.

Replacing Text in a
Case-Sensitive Fashion

The ereg_replace() function operates much like ereg(), except that its power is extended to finding
and
replacing a pattern with a replacement string instead of simply locating it. Its prototype follows:
string ereg_replace(string pattern, string replacement, string string)

Replacing Text in a
Case-Insensitive Fashion

The eregi_replace() function operates exactly like ereg_replace(), except that the search for pattern
in
string is not case sensitive. Its prototype follows:
string eregi_replace(string pattern, string replacement, string string)

Splitting a String into
Various Elements Based
on a Case-Sensitive
Pattern

The split() function divides a string into various elements, with the boundaries of each element
based
on the occurrence of a defined pattern within the string. Its prototype follows:
array split(string pattern, string string [, int limit])

Splitting a String into
Various Elements Based
on a Case-Insensitive
Pattern

The spliti() function operates exactly in the same manner as its sibling, split(), except that its pattern
is treated in a case-insensitive fashion. Its prototype follows:
array spliti(string pattern, string string [, int limit])

Accommodating
Products Supporting
Solely Case-Sensitive
Regular Expressions

The sql_regcase() function converts each character in a string into a bracketed expression containing
two characters. If the character is alphabetical, the bracket will contain both forms; otherwise, the
original character will be left unchanged. Its prototype follows:
string sql_regcase(string string)

Regular Expression Syntax (Perl)
Modifiers
Often you’ll want to tweak the interpretation of a regular expression; for example, you may
want to tell the regular expression to execute a case-insensitive search or to ignore comments
embedded within its syntax. These tweaks are known as modifiers, and they go a long way
toward helping you to write short and concise expressions.
Ex:
I: Perform a case-insensitive search.
G: Find all occurrences (perform a global search).

Metacharacters

Perl regular expressions also employ meta characters to further filter their searches. A meta
character is simply an character or character sequence that symbolizes special meaning. A list
of useful meta characters follows:
\A: Matches only at the beginning of the string.
\b: Matches a word boundary.
\B: Matches anything but a word boundary.
\d: Matches a digit character. This is the same as [0-9].
\D: Matches a nondigit character.
\s: Matches a whitespace character.
\S: Matches a nonwhitespace character.
[]: Encloses a character class.
(): Encloses a character grouping or defines a back reference.
$: Matches the end of a line.
^: Matches the beginning of a line.
^: Matches any character except for the newline.
\: Quotes the next metacharacter.
\w: Matches any string containing solely underscore and alphanumeric characters.
This is the same as [a-zA-Z0-9_].
\W: Matches a string, omitting the underscore and alphanumeric characters.

PHP’s Regular Expression Functions (Perl Compatible)
PHP offers eight functions for searching and modifying strings using Perl-compatible regular
expressions: preg_filter(), preg_grep(), preg_match(), preg_match_all(), preg_quote(),
preg_replace(), preg_replace_callback(), and preg_split().

Searching an Array

The preg_grep() function searches all elements of an array, returning an array consisting of all
elements matching a certain pattern. Its prototype follows:
array preg_grep(string pattern, array input [, int flags])

Searching for a
Pattern

The preg_match() function searches a string for a specific pattern, returning TRUE if it exists and FALSE
otherwise. Its prototype follows:
int preg_match(string pattern, string string [, array matches] [, int flags [, int offset]]])

Matching All
Occurrences of a
Pattern

The preg_match_all() function matches all occurrences of a pattern in a string, assigning each
occurrence to an array in the order you specify via an optional input parameter. Its prototype follows:
int preg_match_all(string pattern, string string, array matches [, int flags] [, int offset]))

Delimiting Special
Regular Expression
Characters

The function preg_quote() inserts a backslash delimiter before every character of special significance
to
regular expression syntax. These special characters include $ ^ * () + = { } [] | \\ : < >. Its prototype
follows:
string preg_quote(string str [, string delimiter])

Replacing All
Occurrences of a
Pattern

The preg_replace() function replaces all occurrences of pattern with replacement, and returns the
modified result. Its prototype follows:
mixed preg_replace(mixed pattern, mixed replacement, mixed str [, int limit [, int count]])

Creating a Custom
Replacement
Function

Consider a situation where you want to scan some text for acronyms such as IRS and insert the
complete name directly following the acronym. To do so, you need to create a custom function and
then use the function

 preg_replace_callback() to temporarily tie it into the language. Its prototype follows:
mixed preg_replace_callback(mixed pattern, callback callback, mixed str
[, int limit [, int count]])

Splitting a String into
Various Elements
Based on a Case-
Insensitive Pattern

The preg_split() function operates exactly like split(), except that pattern can also be defined in terms
of a regular expression. Its prototype follows:
array preg_split(string pattern, string string [, int limit [, int flags]])

