

UNIT-VI

summarizes the three structures we will discuss.

A-7E Avionics System: A Case Study in Utilizing Architectural Structures

An object-oriented program's runtime structure often bears little resemblance to its code
structure. The code structure is frozen at compile-time; it consists of classes in fixed
inheritance relationships. A program's runtime structure consists of rapidly changing
networks of communicating objects. In fact, the two structures are largely independent.
Trying to [understand] one from the other is like trying to understand the dynamism of living
ecosystems from the static taxonomy of plants and animals, and vice versa.

software architecture describes elements of a system and the relations among them. We

architecture of a system. Each structure concentrates on one aspect of the architecture.

case study of an architecture designed by engineering and specifying three specific

architectural structures: module decomposition, uses, and process. We will see how these

structures complement each other to provide a complete picture of how the system works, and

we will see how certain qualities of the system are affected by each one. Table 3.1

Table 3.1. The A-7E's Architecural Structures

Structure
Relation among
Elements Has InfluenceOver

Is a submodule of;

shares a secret with

Ease of change

Procedures Requires the correct

presence of

Ability to field subsets and

develop incrementally

Process Processes; thread of

procedures

Synchronizes with;

shares CPU with;

excludes

Schedulability; achieving

performance goals through

parallelism

also emphasized that every system has many kinds of elements and that different

architectural structures are useful, even necessary, to present a complete picture of the

Elements

Module Modules

Decomposition (implementation

units)

Uses

UNIT-VI

We will discuss each in turn.

USES STRUCTURE

Architecture for the A-7E Avionics System

The architecture for the A-7E avionics system is centered around three architectural

structures

 Decomposition, a structure ofmodules

 Uses, a structure ofmodules

 Process, a structure of components andconnectors

DECOMPOSITION STRUCTURE

How the A-7E Module Decomposition Structure Achieves Quality Goals

Goal HowAchieved

Ease of change to: weapons,

platform, symbology, input

Understand anticipatedchanges Formal evaluation procedure to take advantageof

experience of domain experts

Modules structured as a hierarchy; each work team

assigned to a second-level module and all of its

descendants

Goal HowAchieved

How the A-7E Uses Structure Achieves Quality Goals

Information hiding

Assign work teams so that their

interactions were minimized

UNIT-VI

Where appropriate, define uses to be a relationship

among modules

Incrementally build and test system functions

How the A-7E Uses Structure Achieves Quality Goals

Goal HowAchieved

Design forplatform change Restrict number of procedures that use platform directly

Produce usage guidanceof
manageable size

The World Wide Web'A Case Study in Interoperability

Architectural Solution
The basic architectural approach used for the Web, first at CERN and later at the World Wide
Web Consortium (W3C), relied on clients and servers and a library (libWWW) that masks all
hardware, operating system, and protocol dependencies. Figure 13.3 shows how the content
producers and consumers interact through their respective servers and clients. The producer
places content that is described in HTML on a server machine. The server communicates with a
client using the HyperText Transfer Protocol (HTTP). The software on both the server and the
client is based on libWWW, so the details of the protocol and the dependencies on the platforms
are masked from it. One of the elements on the client side is a browser that knows how to display
HTML so that the content consumer is presented with an understandable image.

Content producers and consumers interact through clients and servers

consumers interact through clients and servers

UNIT-VI

ACHIEVING INITIAL QUALITY GOALS
describes how the Web achieved its initial quality goals of remote access, interoperability,
extensibility, and scalability.

MEETING THE ORIGINAL REQUIREMENTS: libWWW

As stated earlier, libWWW is a library of software for creating applications that run on either the

client or the server. It provides the generic functionality that is shared by most applications: the

ability to connect with remote hosts, the ability to understand streams of HTML data, and so

forth.

libWWW is a compact, portable library that can be built on to create Web-based applications

such as clients, servers, databases, and Web spiders. It is organized into five layers, as
Figure 13.4. A layered view of libWWW

How the WWW Achieved Its Initial Quality Goals

Goal HowAchieved TacticsUsed

UNIT-VI

How the WWW Achieved Its Initial Quality Goals

Goal HowAchieved TacticsUsed

RemoteAccess Build Web on topofInternet Adherenceto

definedprotocols

Interoperability Use libWWW to mask platform details Abstractcommon
services

Hide information

Extensibility of
Software

Isolate protocol and data type extensions
in libWWW; allow for plug-in
components (applets and servlets)

Abstract common
services

Hide information

Replace
components

Configuration files

Extensibility of
Data

Make each data item independent except
for references it controls

Limit possible
options

Scalability Use client-server architectureand

keep references to other data local to referring
data location

Introduce
concurrency

Reduce
computational
overhead

UNIT-VI

put into operation because of budgetary constraints, it was implemented and demonstrated

aircraft on the ground at an airport. Towers control aircraft flying within an

airport'sterminal control area, a cylindrical section of airspace centered at an airport.

Finally, en route centers divide the skies over the country into 22 large sections of

Air Traffic Control: A Case Study in Designing for High Availability

Air traffic control (ATC) is among the most demanding of all software applications. It is hard

real time, meaning that timing deadlines must be met absolutely; it is safety critical, meaning

that human lives may be lost if the system does not perform correctly; and it

ishighly distributed, requiring dozens of controllers to work cooperatively to guide aircraft

safe, reliable airways system requires enormous expenditures of public money. ATC is a

multibillion-dollar undertaking.

This chapter is a case study of one part of a once-planned, next-generation ATC system for the

United States. We will see how its architecture?in particular, a set of carefully chosen views (as

in Chapter 2) coupled with the right tactics (as in Chapter 5)?held the key to achieving its

demanding and wide-ranging requirements. Although this system was never

that the system could meet its quality goals.

In the United States, air traffic is controlled by the Federal Aviation Administration (FAA), a

government agency responsible for aviation safety in general. The FAA is the customer for the

system we will describe. As a flight progresses from its departure airport to its arrival airport, it

deals with several ATC entities that guide it safely through each portion of the airways (and

ground facilities) it is using. Ground control coordinates the movement of

responsibility.

Consider an airline flight from Key West, Florida, to Washington, D.C.'s Dulles Airport. The crew

through the airways system. In the United States, whose skies are filled with more

commercial, private, and military aircraft than any other part of the world, ATC is an area of

intense public scrutiny. Aside from the obvious safety issues, building and maintaining a

UNIT-VI

of the flight will communicate with Key West ground control to taxi from the gate to the end of the
runway, Key West tower during takeoff and climb-out, and then Miami Center (the en route center
whose airspace covers Key West) once it leaves the Key West terminal control area. From there
the flight will be handed off to Jacksonville Center, Atlanta Center, and so forth, until it enters the
airspace controlled by Washington Center. From Washington Center, it will be handed off to the
Dulles tower, which will guide its approach andlanding.

Flying from point A to point B in the U.S. air traffic control system.

Courtesy of Ian Worpole/ Scientific American , 1994.

UNIT-VI

When it leaves the runway, the flight will communicate with Dulles ground control for its taxi to

Figure 6.2.En route centers in the United States

the gate. This is an oversimplified view of ATC in the United States, but it suffices for our case

study. Figure 6.1 shows the hand-off process, and Figure 6.2 shows the 22 enroutecenters.

UNIT-VI

designs and elements where possible because the ISSS developer also intended to bid on

the other systems. After all, these different systems (en route center, tower, ground

control) share many elements: interfaces to radio systems, interfaces to flight plan

databases, interfaces to each other, interpreting radar data, requirements for reliability and

intended to be an upgraded hardware and software system for the 22 en route centers in the

United States. It was part of a much larger government procurement that would have, in stages,

installed similar upgraded systems in the towers and ground control facilities, as well as the

transoceanic ATC facilities.

The fact that ISSS was to be procured as only one of a set of strongly related systems had a

profound effect on its architecture. In particular, there was great incentive to adopt common

performance, and so on. Thus, the ISSS design was influenced broadly by the requirements for

all of the upgraded systems, not just the ISSS-specific ones. The complete set of upgraded

systems was to be called the Advanced Automation System (AAS).

Ultimately, the AAS program was canceled in favor of a less ambitious, less costly, more staged

upgrade plan. Nevertheless, ISSS is still an illuminating case study because, when the program

was canceled, the design and most of the code were actually already completed. Furthermore, the

architecture of the system (as well as most other aspects) was

The system we will study is called the Initial Sector Suite System (ISSS), which was

UNIT-VI

studied by an independent audit team and found to be well suited to its requirements. Finally,

the system that was deployed instead of ISSS borrowed heavily from the ISSS architecture. For

these reasons, we will present the ISSS architecture as an actual solution to an extremely

difficult problem.

How the ATC System Achieves Its Quality Goals

Goal HowAchieved

High Availability Hardware redundancy (both
processor and network);

software redundancy (layered

fault detection and recovery)

High

Performance

Distributed multiprocessors;

front-end schedulability

analysis, and network

modeling

Introduce concurrency

Openness Interface wrappingand

layering
Abstract common services; maintain

interface stability

Modifiability Templates and table-driven

adaptation data; careful

assignment of module

responsbilities; strict use of

specified interfaces

Abstract common services; semantic

coherence; maintain interface stability;

anticipate expected changes; generalize

the module; component replacement;

adherence to defined procotols;

configuration files

Ability to

Field Subsets

Appropriate separation of

concerns

Abstract common services

Interoperability Client-server divisionof functionality and message-

Tactic(s) Used

State resynchronization; shadowing;

active redundancy; removal from service;

limit exposure; ping/echo; heartbeat;

exception; spare

UNIT-VI

CelsiusTech: A Case Study in Product Line Development

This chapter relates the experience of CelsiusTech AB, a Swedish naval defense contractor that

successfully adopted a product line approach to building complex software-intensive systems.

Called Ship System 2000 (SS2000), their product line consists of shipboard command-and-

control systems for Scandinavian, Middle Eastern, and South Pacific navies.

This case study illustrates the entire Architecture Business Cycle (ABC), but especially

SS2000 Requirements and How the Architecture Achieved Them

Requirement HowAchieved RelatedTactic(s)

shows how a product line architecture led CelsiusTech to new business opportunities. Figure

15.1 shows the roles of the ABC stakeholders in the CelsiusTech experience.

Figure 15.1. The ABC as applied to CelsiusTech

UNIT-VI

SS2000 Requirements and How the Architecture Achieved Them

Requirement HowAchieved RelatedTactic(s)

Performance

Introduce

concurrency

Reduce demand

Multiple copies

Increase resources

Reliability,

Availability, and

Safety

Exceptions

Active redundancy

State

resynchronization

Transactions

Strict use of message-based communication

provides interface isolated from implementation

details; software written to be location

independent; layering provides portability across

platforms, network topologies, IPC protocols,

etc.; data producers and consumers unaware of

each other because of COOB; heavy use of Ada;

Strict network traffic protocols; software is

written as a set of processes to maximize

concurrency and written to be location

independent, allowing for relocation to tune

performance; COOB is by-passed for high-data-

volume transactions; otherwise, data sent only

when altered and distributed so response times

are short

Redundant LAN; fault-tolerant software;

standard Ada exception protocols; software

written to be location independent and hence

can be migrated in case of failure; strict

ownership of data prevents multi-writer race

conditions

Modifiability

(including ability to

produce new

members of the

SS2000 family)

UNIT-VI

Configuration files

Component

replacement

Adherence to

defined protocols

SS2000 Requirements and How the Architecture Achieved Them

Requirement HowAchieved RelatedTactic(s)

UNIT-VI

Testability

Interfaces using strongly typed messages push

a whole class of errors to compile time; strict

data ownership, semantic coherence of

elements, and strong interface definitions

simplify discovery of responsibility

