
SOFTWARE ARCHITECTURE AND DESIGN PATTERN

UNIT-V
Behavioralpattern

Insoftwareengineering,behavioraldesignpatternsaredesignpatternsthatidentifycommoncommunic

ation patterns between objects and realize these patterns. By doing so, these patterns increase

flexibility in carrying out thiscommunication.

Examples of this type of design pattern include:

 Chain of responsibility pattern: Command objects are handled or passed on to other

objects by logic- containing processing objects

 Command pattern: Command objects encapsulate an action and itsparameters

 "Externalize the Stack": Turn a recursive function into an iterative one that uses astack.[1]

 Interpreter pattern: Implement a specialized computer language to rapidly solve a specific set
ofproblems

 Iterator pattern: Iterators are used to access the elements of an aggregate object

sequentially without exposing its underlyingrepresentation

 Mediator pattern: Provides a unified interface to a set of interfaces in asubsystem

 Memento pattern: Provides the ability to restore an object to its previous state(rollback)

 Observer pattern: aka Publish/Subscribe or Event Listener. Objects register to observe an

event that may be raised by anotherobject

 Weak reference pattern: De-couple an observer from anobservable.[2]

 State pattern: A clean way for an object to partially change its type atruntime

 Strategy pattern: Algorithms can be selected on thefly

 Template method pattern: Describes the program skeleton of aprogram

 Visitor pattern: A way to separate an algorithm from anobject

InObjectOrientedDesign,thechain-of-responsibilitypatternisadesignpatternconsistingofa
sourceofcommandobjectsandaseriesofprocessingobjects.Eachprocessingobjectcontains logic
that defines the types of command objects that it can handle; the rest are passed to
thenextprocessing object in the chain. A mechanism also exists for adding new processing
objects to the end of this chain.In object-oriented programming, the command pattern is a
design pattern in which an object is used to represent and encapsulate all the information
needed to call a method at a later time. This information includes the method name, the object
that owns the method and values for the method parameters.

Incomputerprogramming,theinterpreterpatternisadesignpatternthatspecifieshowtoevaluate

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

sentences in a language. The basic idea is to have a class for each symbol (terminal or
nonterminal) in a specialized computer language. The syntax tree of a sentence in the language is
an instance of the composite pattern and is used to evaluate (interpret) thesentence.
Inobject-orientedprogramming,theiteratorpatternisadesignpatterninwhichaniteratorisused to
traverse a container and access the container's elements. The iteratorpattern
decouples algorithms from containers; in some cases, algorithms are necessarily container-
specific and thus cannot be decoupled.

Themediatorpatterndefinesanobjectthatencapsulateshowasetofobjectsinteract.Thispattern is
considered to be a behavioral patterndue to the way it can alter the program's runningbehavior.

Usually a program is made up of a (sometimes large) number of classes. So
the logicand computationis distributed among these classes. However, as more classes
are developed in a program, especially during maintenanceand/or refactoring, the
problem
of communicationbetween these classes may become more complex. This makes the program
harder to read and maintain. Furthermore, it can become difficult to change the program, since
any change may affect code in several other classes.

Withthemediatorpattern,communicationbetweenobjectsisencapsulatedwithamediatorobject.
Objects no longer communicate directly with each other, but instead communicate through the
mediator. This reduces the dependencies between communicating objects, therebylowering

the coupling

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

.

Themementopatternisasoftwaredesignpatternthatprovidestheabilitytorestoreanobjecttoits previous
state (undoviarollback).

The memento pattern is implemented with two objects: the originator and a caretaker. The
originator is some object that has an internal state. The caretaker is going to do something to the
originator, but wants to be able to undo the change. The caretaker first asks the originator for a
memento object. Then it does whatever operation (or sequence of operations) it was going to do.
To roll back to the state before the operations, it returns the memento object to the originator.
The memento object itself is anopaque object(one which the caretaker cannot, or should not,
change). When using this pattern, care should be taken if the originator may change other objects
or resources - the memento pattern operates on a singleobject.
Theobserverpatternisasoftwaredesignpatterninwhichanobject,calledthesubject,maintains a list
of its dependents, called observers, and notifies them automatically of any state changes,
usually by calling one of their methods. It is mainly used to implement distributedevent
handling systems. Observer is also a key part in the familiar MVCarchitectural pattern. In
fact the observer pattern was first implemented in Smalltalk's MVC based user interface
framework.The state pattern, which closely resembles Strategy Pattern, is a behavioral
software designpattern, also known as the objects for states pattern. This pattern is used
incomputerprogramming to represent the state of an object. This is a clean way for an object
to partially changeits type at runtime

In computer programming, the strategy pattern (also known as the policy pattern) is a
particular software design pattern, whereby algorithms can be selected at runtime. Formally
speaking, the strategy pattern defines a family of algorithms, encapsulates each one, and
makes them interchangeable. Strategy lets the algorithm vary independently from clients that
use it.

A template method defines the program skeletonof an algorithm. One or more of the algorithm
steps can be overridden by subclasses to allow differing behaviors while ensuring that the
overarching algorithm is still followed.

In object-oriented programming, first a class is created that provides the basic steps of an
algorithmdesign. These steps are implemented using abstract methods. Later on, subclasses
change the abstract methods to implement real actions. Thus the general algorithm is saved in
one place but the concrete steps may be changed by the subclasses.

separating an algorithmfrom an object structure on which it operates. A practical result of this
separation is the ability to add new operations to existing object structures without modifying
those structures. It is one way to easily follow the open/closed principle.

Inobject-orientedprogrammingandsoftwareengineering,thevisitordesignpatternisawayof

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

Behavioral patterns

Name

Description

In
DesignP
atterns

In Code

Complete[17]

Other

Blackboard

Generalized observer, which
allows multiple readers and
writers.
Communicates information
system- wide.

No

No

N/A

Chain of responsibility

Avoid coupling the sender of a
request to its receiver by giving
more than one object a chance to
handle the request. Chain the
receiving objects and pass the
request along the chain until an
object handles it.

Yes

No

N/A

Command

Encapsulate a request as an object,
thereby letting you parameterize

Yes

No

N/A

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

 clients with different requests,
queue or log requests, and
support undoableoperations.

Interpreter

Given a language, define a
representation for its grammar
along with an interpreter that uses
the representation to interpret
sentences in thelanguage.

Yes

No

N/
A

Iterator

Provide a way to access the
elements of an aggregateobject
sequentially without exposing
its underlying representation.

Yes

N/
A

Mediator

Define an object that encapsulates
how a set of objects interact.
Mediator promotes
loosecouplingby keeping
objects from
referring to each other explicitly,
and it lets you vary their
interaction independently.

Yes

Yes

No

N/
A

Memento

Without violating encapsulation,
capture and externalize an object's
internal state allowing the object
to be restored to this state later.

Yes

No

N/
A

Null object

Avoid null references by
providing a default

 object.

No

No

N/
A

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

ObserverorPublish/subscribe

Define a one-to-many dependency
between objects where a state
change in one object results in all
its
dependents being notified and

Yes

Yes

N/
A

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

 updated automatically.

Servant

Define common functionality
for a group of classes

No

No

N/
A

Specification

Recombinable business
logicin a Booleanfashion

No

No

N/
A

State

Allow an object to alter its
behavior when its internal state
changes. The object will appear to
change its class.

Yes

No

N/
A

Strategy

Define a family of algorithms,
encapsulate each one, and make
them interchangeable. Strategy
lets the algorithm vary
independently from clients that
use it.

Yes

Yes

N/
A

Template method

Define the skeleton of an
algorithm in an operation,
deferring some steps to subclasses.
Template method lets subclasses
redefine certain steps of an
algorithm without changing the
algorithm's structure.

Yes

Yes

N/
A

Visitor

Represent an operation to be
performed on the elements of
an object structure. Visitor lets
you define a new operation
without changing the classes of
the elements on which it

Yes

No

N/
A

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

operates.

Separate interface

from

implementation

