
SOFTWARE ARCHITECTURE AND DESIGN PATTERN

UNIT-IV

Structural pattern

Insoftwareengineering,structuraldesignpatternsaredesignpatternsthateasethedesignby
identifying a simple way to realize relationships betweenentities.

Examples of Structural Patterns include:

 Adapter pattern: 'adapts' one interface for a class into one that a clientexpects

 Retrofit Interface Pattern[1][2]: An adapter used as a new interface for multiple classes at

the sametime.

 Adapter pipeline: Use multiple adapters for debuggingpurposes.[3]
 Bridge pattern: decouple an abstraction from its implementation so that the two can

vary independently

 Tombstone: An intermediate "lookup" object contains the real location of anobject.[4]
 Composite pattern: a tree structure of objects where every object has the sameinterface
 Facade pattern: create a simplified interface of an existing interface to ease usage for

common tasks
 Flyweight pattern: a high quantity of objects share a common properties object to savespace
 Proxy pattern: a class functioning as an interface to anotherthing

Incomputerprogramming,theadapterpattern(oftenreferredtoasthewrapperpatternorsimply
awrapper)isadesignpatternthattranslatesoneinterfaceforaclassintoacompatibleinterface.
An adapter allows classes to work together that normally could not because of incompatible
interfaces, by providing its interface to clients while using the original interface. The adapter
translates calls to its interface into calls to the original interface, and the amount of code
necessary to do this is typically small. The adapter is also responsible for transforming data into
appropriate forms. For instance, if multiple boolean values are stored as a single integer (i.e.
flags) but your client requires a 'true'/'false', the adapter would be responsible for extracting the
appropriate values from the integer value. Another example is transforming the format of dates
(e.g. YYYYMMDD to MM/DD/YYYY or DD/MM/YYYY).

Thebridgepatternisadesignpatternusedinsoftwareengineeringwhichismeantto"decouple an
abstractionfrom its implementationso that the two canvary
independently".[1]The bridge uses encapsulation, aggregation, and can use inheritanceto
separate responsibilities into different classes.

When a class varies often, the features of object-oriented programmingbecome very useful

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

 wrap a poorly-designed collection of APIs with a single well-designed API (as per

Thefacadepatternisasoftwaredesignpatterncommonlyusedwithobject-
orientedprogramming. The name is by analogy to an architecturalfacade.

because changes to a program's codecan be made easily with minimal prior knowledge about the
program. The bridge pattern is useful when both the class as well as what it does vary often. The
class itself

can be thought of as the implementation and what the class can do as the abstraction. The
bridge pattern can also be thought of as two layers of abstraction.

In software engineering, the composite pattern is a partitioning design pattern. The composite
pattern describes that a group of objects are to be treated in the same way as a single instance of
an object. The intent of a composite is to "compose" objects into tree structures to represent part-
whole hierarchies. Implementing the composite pattern lets clients treat individual objects and
compositions uniformly.

A facade is an object that provides a simplified interface to a larger body of code, such as a
classlibrary. A facade can:

 make a software library easier to use, understand and test, since the facade has

convenient methods for commontasks;
 make the library more readable, for the samereason;
 reduce dependencies of outside code on the inner workings of a library, since most

codeuses the facade, thus allowing more flexibility in developing thesystem;

In computer programming, flyweight is a software design pattern. A flyweight is an objectthat
minimizes memoryuse by sharing as much data as possible with other similar objects; it is a way
to use objects in large numbers when a simple repeated representation would use an
unacceptable amount of memory. Often some parts of the object state can be shared, and it is
common practice to hold them in external data structuresand pass them to the flyweight objects
temporarily when they are used.

In computer programming, the proxy pattern is a software design pattern.

A proxy, in its most general form, is a class functioning as an interface to something else. The
proxy could interface to anything: a network connection, a large object in memory, a file, or some
other resource that is expensive or impossible to duplicate.A well-known example of the proxy
pattern is a reference counting pointerobject.

STRUCTURAL PATTERN

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

Name

Description

In
DesignPa
tterns

In Code

Complete[17]

Other

Adapteror
Wrapper
orTranslator.

Convert the interface of a class into another
interface clients expect. An adapter lets
classes work together that could not otherwise
because of incompatible interfaces. The
enterprise integration pattern equivalent is the
Translator.

Yes

Yes

N/A

Bridge

Decouple an abstraction from its
implementation allowing the two to
vary independently.

Yes

Yes

N/A

Composite

Compose objects into tree structures to
represent part-whole hierarchies.
Composite lets clients treat individual
objects and compositions of objects
uniformly.

Yes

Yes

N/A

Decorator

Attach additional responsibilities to an
object dynamically keeping the same
interface.
Decorators provide a flexible alternative
to subclassing for extending
functionality.

Yes

Yes

N/A

Facade

Provide a unified interface to a set of
interfaces in a subsystem. Facade defines a
higher-level interface that makes the
subsystem easier to use.

Yes

Yes

N/A

Front
Controller

The pattern relates to the design of web
applications. It provides a centralized entry
point for handling requests.

No

Yes

N/A

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

Flyweight

Use sharing to support large numbers of
similar

Yes

No

N/A

 objects efficiently.

Proxy

Provide a surrogate or placeholder for another
object to control access to it.

Yes

No

N/A

Module

Group several related elements, such as
classes, singletons, methods, globally used,
into a single conceptual entity.

No

No

N/A

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

