
SOFTWARE ARCHITECTURE AND DESIGN PATTERN

UNIT-III

PATTERN:
PATTERN DESCRIPTION

Software patterns are reusable solutions to recurring problems that occur during
software development.

In general, a pattern has four essential elements:

The pattern name is a handle we can use to describe a design problem, its
solutions,andconsequencesinawordortwo.Namingapatternimmediatelyincreasesour
designvocabulary.Itletsusdesignatahigherlevelofabstraction.Havingavocabularyfor patterns lets us talk
about them with our colleagues, in our documentation, and even to
ourselves.Itmakesiteasiertothinkaboutdesignsandtocommunicatethemandtheirtrade- offs to others. Finding
good names has been one of the hardest parts of developing our catalog.

Theproblem describes when to apply the pattern. It explains the problem and its context. It
mightdescribespecificdesignproblemssuchashowtorepresentalgorithmsasobjects.It
mightdescribeclassorobjectstructuresthataresymptomaticofaninflexibledesign.
Sometimestheproblemwillincludealistofconditionsthatmustbemetbeforeitmakes sensetoapplythepattern.

The solution describes the elements that make up the design, their relationships,
responsibilities,andcollaborations.Thesolutiondoesn'tdescribeaparticularconcretedesign
orimplementation,becauseapatternislikeatemplatethatcanbeappliedinmanydifferent
situations.Instead,thepatternprovidesanabstractdescriptionofadesignproblemandhow
ageneralarrangementofelements(classesandobjectsinourcase)solvesit.

The consequences are the results and trade-offs of applying the pattern .Though consequences are often
unvoiced when we describe design decisions ,theyare critical for
evaluatingdesignalternativesandforunderstandingthecostsandbenefitsofapplyingthe
pattern.Theconsequencesforsoftwareoftenconcernspaceandtimetrade-offs.Theymay
addresslanguageandimplementationissuesaswell.Sincereuseisoftenafactorinobject- oriented design, the
consequences of a pattern include its impact on a system's flexibility,
extensibility,orportability.Listingtheseconsequencesexplicitlyhelpsyouunderstandand evaluatethem.

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

Organizing the Catalog

Design patterns vary in their granularity and level of abstraction. Because there are many
designpatterns,weneedawaytoorganizethem.Thissectionclassifiesdesignpatternssothat we can refer to families
of related patterns. The classification helps you learn the patterns in
thecatalogfaster,anditcandirecteffortstofindnewpatternsaswell.

We classify design patterns by two criteria.

The first criterion, called purpose, reflects what a pattern does. Patterns can have either creational ,structural
, or behavioral purpose. Creational patterns concern the process of
objectcreation.Structuralpatternsdealwiththecompositionofclassesorobjects.Behavioral
patternscharacterizethewaysinwhichclassesorobjectsinteractanddistributeresponsibility.

The second criterion, called scope ,specifies whether the pattern applies primarily to classes or to
objects. Class patterns deal with relationships between classes and their subclasses. These relationships
are established through inheritance, so they are static -fixed at compile-time. Object patterns deal with object
relationships, which can be changed
atrun-timeandaremoredynamic.Almostallpatternsuseinheritancetosomeextent.So the only patterns labeled
"class patterns" are those that focus on class relationships. Note that mostpatternsareintheObjectscope.

Purpose

Creational Structural Behavioural

Object AbstractFactory Adapter Chain ofResponsibility
Builder Bridge Command
Prototype Composite Iterator
Singleton Decorator Mediator

Facade Memento
Flyweight Observer
Proxy State

Strategy
Visitor

Scope Class FactoryMethod Adapter Interpreter
Template Method

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

Object-orientedprogramsaremadeupofobjects.Anobjectpackagesbothdataandthe
proceduresthatoperateonthatdata.Theproceduresaretypicallycalledmethods
oroperations. An object performs an operation when it receives a request (or message)

How Design Patterns Solve Design Problems

Design patterns solve many of the day-to-day problems object-oriented designers
face,andinmanydifferentways.Hereareseveraloftheseproblemsand howdesign patternssolve them.

Finding Appropriate Objects

from a client.

Requests are the only way to get an object to execute an operation. Operations are the
onlywaytochangeanobject'sinternaldata.Becauseoftheserestrictions, theobject'sinternal
stateissaidtobeencapsulated;itcannotbeaccesseddirectly,anditsrepresentationisinvisible fromoutsidetheobject.

Determining Object Granularity
Objectscanvarytremendouslyinsizeandnumber.Theycanrepresenteverythingdowntothe
hardwareorallthewayuptoentireapplications.Howdowedecidewhatshouldbeanobject?

Design patterns address this issue as well. The Facade pattern describes how to represent complete subsystems

as objects, and the Flyweight pattern describes how to support huge numbers of objects at the finest
granularities .Other design patterns describe specific ways of decomposing an object into smaller

objects. Abstract Factory and Builder yield objects whose only responsibilities are creating other objects. Visitor
and Command yield objects whose only responsibilities are to implement a request on another objector group

of objects

Specifying Object Interfaces
Every operation declared by an object specifies the operation's name, the objects it takes as parameters, and

the operation's return value. This is known as the operation's
signature.Thesetofallsignaturesdefinedbyanobject'soperationsiscalledtheinterfacetothe

object.Anobject'sinterfacecharacterizesthecompletesetofrequeststhatcanbesenttothe
object.Anyrequestthatmatchesasignatureintheobject'sinterfacemaybesenttotheobject.

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

Specifying Object Implementations

Sofarwe'vesaidlittleabouthowweactuallydefineanobject.Anobject'simplementationis
definedbyitsclass.Theclassspecifiestheobject'sinternaldataandrepresentationanddefines

theoperationstheobjectcanperform.
.

HowtoSelectaDesignPattern

Withmorethan20designpatternsinthecatalogtochoosefrom,itmightbehardtopfindtheone
thataddressesaparticulardesignproblem,especiallyifthecatalogisnewandunfamiliarto you. Here are several

different approaches to finding the design pattern that's right for your problem:

1. Consider how design patterns solve design problems.
Designpatternshelpyoufindappropriateobjects,determineobjectgranularity,specify object interfaces,
and several other ways in which design patterns solve design problems.Referringtothese
discussionscanhelpguideyoursearchfortheright pattern.

2. ScanIntentsections.theIntentsectionsfromallthepatternsin

the catalog. Read through each pattern's intent to find one or more that sound
relevanttoyourproblem.Youcanusetheclassificationschemetonarrowyoursearch.

3. Study how patterns interrelate .Relationships betweendesign

patternsgraphically.Studyingtheserelationshipscanhelpdirectyoutotherightpattern orgroupofpatterns

4. Studypatternsoflikepurpose.Thecataloghasthreechapters,onefor creationalpatterns,anotherforstructural
patterns, and a third for behavioral patterns.
Eachchapterstartsoffwithintroductorycommentsonthepatternsandconcludeswitha section that compares
and contrasts them. These sections give yourinsight into the
similaritiesanddifferencesbetweenpatternsoflikepurpose.

5. Examineacauseofredesign.Lookatthecausesofredesignstartingto

seeifyourprobleminvolvesoneormoreofthem.Thenlookatthe patternsthat help you avoid the
causes ofredesign.

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

6. Considerwhatshouldbevariableinyourdesign.
Thisapproachistheoppositeoffocusingonthecausesofredesign.Insteadofconsidering what might force a

change to a design, consider what you want to be Able to change without redesign. The focus here is on
encapsulating the concept that varies ,atheme of many design patterns. Table 1.2 lists the design aspect(s) that
design patternsletyouvaryindependently,therebylettingyouchangethemwithoutredesign.

How to Use aDesign Pattern

Onceyou'vepickedadesignpattern,howdoyouuseit?Here'sastep-by-stepapproachto
applyingadesignpatterneffectively:

1. Readthepatternoncethroughforanoverview.Payparticular
attentiontotheApplicabilityandConsequencessectionstoensurethepatternisrightforyour problem.

2. Go back and study the Structure, Participants, and
Collaborationssections.Makesureyouunderstandtheclassesandobjects
inthepatternandhowtheyrelatetooneanother.

3. Look at the Sample Code section to see a concrete example
ofthepatternincode.Studyingthecodehelpsyoulearnhowtoimplementthe pattern.

4. Choose names for pattern participants that are meaningful in the application context .The names for
participants in design patterns are usually too abstract to appear directly in an application.
Nevertheless, it's useful to
incorporatetheparticipantnameintothenamethatappearsintheapplication.Thathelpsmake
thepatternmoreexplicitintheimplementation.Forexample,ifyouusetheStrategypatternfor a text compositing
algorithm ,thenyou might have classes Simple Layout Strategy or TeXtLayoutStrategy.

5. Define the classes.Declare their interfaces, establish their inheritance relationships, and define the
instance variables that represent data and object references.Identifyexistingclassesin your
applicationthat thepatternwillaffect,and modify themaccordingly.

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

There are many types of design patterns, like

6. Define application-specific names for operations in the pattern. Here again ,thenames generally depend on
the application. Use the
responsibilitiesandcollaborationsassociatedwitheachoperationasaguide.Also,beconsistent in your naming
conventions. For example, you might use the "Create-" prefix consistently to denote afactory method

7. Implement the operations to carry out the responsibilities and collaborations in the pattern .The
Implementation section offers
hintstoguideyouintheimplementation.TheexamplesintheSampleCodesectioncanhelpas well.

Software design pattern

In software engineering, a design pattern is a general reusable solution to a commonly occurring
problem within a given context in software design. A design pattern is not a finished design that
can be transformed directly into code. It is a description or template for how to solve a problem
that can be used in many different situations. So patterns are formalized best practices that you
must implement yourself in your application.[1]Object-oriented design patterns typically show
relationships and interactions betweenclassesor objects, without specifying the final application
classes or objects that are involved. Many patterns imply object-orientation or more generally
mutable state, and so may not be as applicable in functional programming languages, in which
data is immutable or treated assuch.

Design patterns reside in the domain of modules and interconnections. At a higher level there
arearchitectural patterns that are larger in scope, usually describing an overall pattern followed

by an entire system.[2]

 Algorithm strategy patterns addressing concerns related to high-level strategies describing

how to exploit application characteristics on a computingplatform.
 Computationaldesignpatternsaddressingconcernsrelatedtokeycomputationidentification.
 Executionpatternsthataddressconcernsrelatedtosupportingapplicationexecution,including

strategies in executing streams of tasks and building blocks to support tasksynchronization.
 Implementationstrategypatternsaddressingconcernsrelatedtoimplementingsourcecode tosupport

1. program organization,and

2. the common data structures specific to parallelprogramming.
 Structuraldesignpatternsaddressingconcernsrelatedtohigh-levelstructuresofapplications

beingdeveloped.

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

Design patternswere originally grouped into the categories:
creational patterns, structural patterns, and behavioral patterns, and described using the
concepts of delegation,aggregation, and consultation. For further background on object-
oriented design,
seecouplingand cohesion, inheritance, interface, and polymorphism. Another classification has
also introduced the notion of architectural design patternthat may be applied at the architecture
level of the software such as the Model–View–Controllerpattern.

Creational pattern

In software engineering, creational design patterns are design patterns that deal with
objectcreation mechanisms, trying to create objects in a manner suitable to the situation. The
basic form of object creation could result in design problems or added complexity to the design.
Creational design patterns solve this problem by somehow controlling this object creation.

Creational design patterns are composed of two dominant ideas. One is encapsulating
knowledge about which concrete classes the system use. Another is hiding how instances of
these concrete classes are created and combined.[1]

Creational design patterns are further categorized into Object-creational patterns and Class-
creational patterns, where Object-creational patterns deal with Object creation and Class-
creational patterns deal with Class-instantiation. In greater details, Object-creational patterns
defer part of its object creation to another object, while Class-creational patterns defer its
objection creation to subclasses.[2]

Five well-known design patterns that are parts creational patterns are:

 Abstract factory pattern, which provides an interface for creating related or dependent

objects without specifying the objects' concreteclasses.
 Factory method pattern, which allows a class to defer instantiation tosubclasses.
 Builder pattern, which separates the construction of a complex object from its

representation so that the same construction process can create differentrepresentation.
 Prototype pattern, which specifies the kind of object to create using a prototypical

instance,and creates new objects by cloning thisprototype.
 Singleton pattern. which ensures a class only has one instance, and provides a global point

of access toit.

The abstract factory pattern is a software design patternthat provides a way to encapsulate a
group of individual factoriesthat have a common theme. In normal usage, the client software
creates a concrete implementation of the abstract factory and then uses the generic interfacesto
create the concrete objectsthat are part of the theme. Theclientdoes not know (or care) which
concrete objects it gets from each of these internal factories, since it uses only the generic
interfaces of their products. This pattern separates the details of implementation of a set of
objects from their general usage.

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

The factory method pattern is an object-oriented design patternto implement the concept
offactories. Like othercreational patterns, it deals with the problem of creating
objects(products) without specifying the exact classof object that will be created. The essence
of the Factory method Pattern is to "Define an interface for creating an object, but let the
classes that implement the interface decide which class to instantiate. The Factory method lets a
class defer instantiation to subclasses.

Thebuilderpatternisanobjectcreationsoftwaredesignpattern.Theintentionistoabstractsteps of
construction of objects so that different implementations of these steps can construct different
representations of objects. Often, the builder pattern is used to build products in accordance
with the compositepattern.
Theprototypepatternisacreationaldesignpatternusedinsoftwaredevelopmentwhenthetype of
objects to create is determined by a prototypical instance, which is cloned to produce new
objects. This pattern is usedto:

 avoidsubclasses of an object creator in the client application, like the abstract

factory patterndoes.
 avoid the inherent cost of creating a new object in the standard way (e.g., using the

'new' keyword) when it is prohibitively expensive for a givenapplication.

Insoftwareengineering,thesingletonpatternisadesignpatternthatrestrictstheinstantiationofa class
to one object. This is useful when exactly one object is needed to coordinate actions across the
system. The concept is sometimes generalized to systems that operate more efficiently when
only one object exists, or that restrict the instantiation to a certain number of objects. Theterms

Creational patterns

Name

Description

In
DesignPa
tterns

In Code

Complete[17]

Other

Abstract
factory

Provide an interface for creating families
of related or dependent objects without
specifying their concrete classes.

Yes

Yes

N/A

Builder

Separate the construction of a complex
object from its representation allowing
the
same construction process to create
various

Yes

No

N/A

comes from the mathematical concept of asingleton.

SOFTWARE ARCHITECTURE AND DESIGN PATTERN

 representations.

Factory
method

Define an interface for creating an
object, but let subclasses decide which
class to instantiate. Factory Method lets
a class defer instantiation to subclasses
(dependency injection[18]).

Yes

Yes

N/A

Lazyinitial
ization

Tactic of delaying the creation of an
object, the calculation of a value, or some
other expensive process until the first
time it is needed.

No

No

PoEAA[19

]

Multiton

Ensure a class has only named instances,
and provide global point of access to
them.

No

No

N/A

Object pool

Avoid expensive acquisition and release
of resources by recycling objects that are
no longer in use. Can be considered a
generalisation of connection
pooland thread poolpatterns.

No

No

N/A

Prototype

Specify the kinds of objects to create
using a prototypical instance, and create
new objects by copying this prototype.

Yes

No

N/A

Resourceac
quisition
isinitializati
on

Ensure that resources are properly released
by tying them to the lifespan of suitable
objects.

No

No

N/A

Singleton

Ensure a class has only one instance, and
provide a global point of access to it.

Yes

Yes

N/A

