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Introduction:

In our study of static fields so far, we have observed that static electric fields are produced by
electric charges, static magnetic fields are produced by charges in motion or by steady current.
Further, static electric field is a conservative field and has no curl, the static magnetic field is
continuous and its divergence is zero. The fundamental relationships for static electric fields

among the field quantities can be summarized as:
VxE=10 (1)

VD=8 (g

For a linear and isotropic medium,

—

D=¢ck (3)
Similarly for the magnetostatic case

V.E=0 (4)

It can be seen that for static case, the electric field vectors £and Z'and magnetic field

vectors and & form separate pairs.

In this chapter we will consider the time varying scenario. In the time varying case we
will observe that a changing magnetic field will produce a changing electric field and vice versa.

We begin our discussion with Faraday's Law of electromagnetic induction and then
present the Maxwell's equations which form the foundation for the electromagnetic theory.
Faraday's Law of electromagnetic Induction

Michael Faraday, in 1831 discovered experimentally that a current was induced in a
conducting loop when the magnetic flux linking the loop changed. In terms of fields, we can say
that a time varying magnetic field produces an electromotive force (emf) which causes a current
in a closed circuit. The quantitative relation between the induced emf (the voltage that arises
from conductors moving in a magnetic field or from changing magnetic fields) and the rate of

change of flux linkage developed based on experimental observation is known as Faraday's law.
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d

Mathematically, the induced emf can be written as Emf = @ Volts
(7)
where ¥ is the flux linkage over the closed path.
d

A non zero dr may result due to any of the following:

(a) time changing flux linkage a stationary closed path.

(b) relative motion between a steady flux a closed path.

(c) a combination of the above two cases.

The negative sign in equation (7) was introduced by Lenz in order to comply with the
polarity of the induced emf. The negative sign implies that the induced emf will cause a current
flow in the closed loop in such a direction so as to oppose the change in the linking magnetic
flux which produces it. (It may be noted that as far as the induced emf is concerned, the closed
path forming a loop does not necessarily have to be conductive).

If the closed path is in the form of N tightly wound turns of a coil, the change in the
magnetic flux linking the coil induces an emf in each turn of the coil and total emf is the sum of

the induced emfs of the individual turns, i.e.,

_w4¢
Emf = dr Volts (8)
By defining the total flux linkage as
A=HNg 9)
The emf can be written as
_dA
Emf= dt (10)

Continuing with equation (3), over a closed contour 'C' we can write

c]a Edi
Emf= Jo (11)

where £ is the induced electric field on the conductor to sustain the current.

Further, total flux enclosed by the contour 'C " is given by
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&= F..:fE
(12)
Where S is the surface for which 'C' is the contour.

From (11) and using (12) in (3) we can write

T8 -
(PCE..:;EE— aﬁ(ﬁﬁ’.ds 13)

By applying stokes theorem

I‘?KE&E= f 95 i:
5 5 35 (14)
Therefore, we can write
THE = —ﬁ
i (15)
which is the Faraday's law in the point form
ag

We have said that non zero @ can be produced in a several ways. One particular case is when a
time varying flux linking a stationary closed path induces an emf. The emf induced in a
stationary closed path by a time varying magnetic field is called a transformer emf .

Motional EMF:

Let us consider a conductor moving in a steady magnetic field as shown in the fig 2.

=1 Os

++

Fig 2
If a charge Q moves in a magnetic field B , It experiences a force

F =03 5)
This force will cause the electrons in the conductor to drift towards one end and leave the other

end positively charged, thus creating a field and charge separation continuous until electric and
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magnetic forces balance and an equilibrium is reached very quickly, the net force on the moving
conductor is zero.

=yx £

L e

can be interpreted as an induced electric field which is called the motional electric
field

Em =% B (17)

If the moving conductor is a part of the closed circuit C, the generated emf around the circuit is
$ vxBdl _ . _ .
¢ . This emf is called the motional emf.
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Inconsistency of amperes law

Ampere's circuit law states that the line infegral of tangential component
ol I arourd a closed path is same as the net current Tene enclosed by the
path.

e
j Hadl=1
By applying stoke’s theorem,
[H di becomes [J ds
o Therelore, .*".‘H H=J0 _ i3.14)

This is true in case of static EM fields.
But in case of time-varying ficlds, the above Ampere’s law shows same
inconsistency,

The inconsistency of ampere law for time varying fields is shown in two cases:

. Forstatic EM ficlds, we have

Am =
Applying divergence on both sides, we get,

AfA=H)=AS

But divergence of curl of a vector field is always zero.

Therefiore,
AlA=HI =0=A

The continuity of current eguation 1s given by

W
et
Where o= Current density
e = Charge density
For static fields, no current is produced, therefore, & =0 = AJS=10
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Implics eq. 3.15 is satisfied but for time varying fields, current is produced
and therefore,

— e,

alt

AT iy (3.16)

Eg. (3.15) and eq. (3.16) are contradicting each other.

This 15 an inconsistency of ampere’s law and the Ampere's law must be
modilied lor time varying fields.

-

2. Conasider the typical example of where the surface passes between the
capacitor plates.

The Agure 15 shown below.

Fig 1.2 a) Twosprimees of indegrarian which explain ihe Ingonsisiency ol Ampere's law

In fig 3.3(a),

Based on Ampere’s circuit law we get figure

(Frdl = [Tde=F =T (3.17)
1 | -
L z
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In fig 3.3(b), bazed the ampere’s circult law, we get,

(H .l = [Jds=1_ =0 (3.18)
{Hdl = [1ds=1,

Because no conduction current flows through 3,

Le. IO

n koth {a) and (b), same closed path is used, but equations 3.17 and 3,18
are different,

This iz an inconsistency of Ampere’s cireuit law,

This meonsistency of Ampere’s cirenit law in both cases (1) and (2) can
he resolved by including displacement current in Ampere's circuit law,

Substituting in (3,19, we get,

P (3.21)
dalt

This 15 the Maxwell equation {based cn ampere’s circuit Law) lor tiem
varying fields.

In equation (3.21),
J; = Displacement current density
J = Conduction current density,

The conduction current density J involves low of charges. The
displacement current density S, doees not involve flow of charges.
Dizplacement current,

di

I, = |J.ds = 'Fg.m- (3.22)
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Displacement Current Density:
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The equation

Aw H = F For statie EM fields i3 modified to Modified to

AxH=I+J,

To make the Ampere’s law compatible for varying fields.

Now, applying divergence, we get

AMA=HI=0=AT+ .-"'n..-r:_l

Ad, ==p T =

e
o

From Gauss Law, we have

e =50

Therefore,

A, n"I:ﬂ.. { }:I
dr

= J, “ﬂ
l o

J
A

1
[av

(3.20)
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Concept of displacementcurrent

4
— -S| Iy
— = )
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- i
E

Figure 3.4; circuit for determing displacement current

Consider the circuit of fig 3.4 in which a battery is connected to a slide
wire on which iz a shdmg contact o

Paintg o and ¢ are connected through ammeters 4 and A, 0 a capacitance
¢ with dielectric of permittivity E.

With the capacitance ¢, no current actually flows between the plates,
although the clectric field between the plates is increasing

The actual phenomena that 15 bappening i3 that the diclectric between the
capacitor plates are exactly the same, if a current 1, called by Maxwell, the
displacement current were really flowing between the plates.

Hence the displacement current 18 seemed to flow, only when the electric
field in the diglectric is changing.

The dizplacement current is really intended every time the current through
a capacitance ¢ is given by
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Assume ¢ 15 a parallel-plate capacitor,

Es

{=—

e

Farads where 5 = surface arca

Edv
S ddr

d [,
£2(o/)s

i
E%_S Where £ 15 electric field
t

— I!:-"r = E.S

Sd

ey
Io=—% Am
! at ¥

Therelore,

. i
Displacement current i d—..‘:’-‘ Amp
¥

Dizplacement current in parallel-plate capacitor iz same as conduction
current i the connccting wires.

Proofis given below:

Let the emf of a parallel plate capacitor along closed path 1s,
e, = Vasin ax

Let us consider negligible resistance in loop,

= I = woFo cosan
The comnduction current,

T wiEN

Va cos ax

Mo,
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D=FKFE
i Fa )
= E| —ain an |
o i
oo Displacement cuwrrent {, is given by

ro— alh &

- af

» I, = u'ﬂ Fo cos ax
e

Therefore, displacement current equals the comduction current.

Maxwell's Equation
Equation (5.1) and (5.2) gives the relationship among the field quantities in the static field. For

time varying case, the relationship among the field vectors written as

VE=10 (4)
In addition, from the principle of conservation of charges we get the equation of continuity

vi--9°

di
The equation must be consistent with equation of continuity
We observe that
VVxH=0=YJ (5

—

Since ¥-¥*4 s zero for any vector 4 .
o 0
Thus ¥ *H =J applies only for the static case i.e., for the scenario when £

A classic example for this is given below .
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Suppose we are in the process of charging up a capacitor as shown in fig 3.

A hi[n;.-H:li [.ul,lp

e

Balloon shaped

surinee

Fig 3
Let us apply the Ampere's Law for the Amperian loop shown in fig 3. lenc = I is the total current
passing through the loop. But if we draw a baloon shaped surface as in fig 5.3, no current passes
through this surface and hence lenc = 0. But for non steady currents such as this one, the concept
of current enclosed by a loop is ill-defined since it depends on what surface you use. In fact
Ampere's Law should also hold true for time varying case as well, then comes the idea of
displacement current which will be introduced in the next few slides.

We can write for time varying case,

v(vx§j=o=v3+§5

at
= 3
=VJ+—V.D
8 (1)
~ 3D
o B
3t
................ )
vxE-F+22
L 3)

The equation (3) is valid for static as well as for time varying case.Equation (3) indicates that a
a0
time varying electric field will give rise to a magnetic field even in the absence of The term A
has a dimension of current densities (ﬂfmj) and is called the displacement current density.
a0
Introduction of ] in VxH equation is one of the major contributions of Jame's Clerk

Maxwell. The modified set of equations
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is known as the Maxwell's equation and this set of equations apply in the time varying scenario,

=
—_— [:I
static fields are being a particular case (aﬁ .
In the integral form

Gai--1 28 45
$ I

S& (9
— - any - an -
cRH..:ﬁ=L[J+E .dS=f+ISE.dS
............ 9)
[,7-Ddv =4, DdS - [ odv (10
PBdT -0 1)

The modification of Ampere's law by Maxwell has led to the development of a unified
electromagnetic field theory. By introducing the displacement current term, Maxwell could

predict the propagation of EM waves. Existence of EM waves was later demonstrated by Hertz
experimentally which led to the new era of radio communication.
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Boundary Conditions for Electromagnetic fields

The differential forms of Maxwell's equations are used to solve for the field vectors provided the
field quantities are single valued, bounded and continuous. At the media boundaries, the field
vectors are discontinuous and their behaviors across the boundaries are governed by boundary
conditions. The integral equations(eqn 5.26) are assumed to hold for regions containing
discontinuous media.Boundary conditions can be derived by applying the Maxwell's equations in
the integral form to small regions at the interface of the two media. The procedure is similar to
those used for obtaining boundary conditions for static electric fields (chapter 2) and static
magnetic fields (chapter 4). The boundary conditions are summarized as follows

With reference to fig 5.3

(5B 5270
L (BD)e Sl
BB 570
1, (BB 5210

Roghon 2

Fig 5.4
We can says that tangential component of electric field is continuous across the interface while
from 5.27 (c) we note that tangential component of the magnetic field is discontinuous by an

amount equal to the surface current density. Similarly 5 states that normal component of electric

flux density vector I'is discontinuous across the interface by an amount equal to the surface
current density while normal component of the magnetic flux density is continuous.

If one side of the interface, as shown in fig 5.4, is a perfect electric conductor, say region 2, a
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surface current can exist even though £ is zero as@ =<,

Thus egn 5 reduces to

Questions:ﬁ;;XE:U (528(5))

(a) Starting from Maxwell’s equations, Jerive the wave equations for an e.m wave
in free space. 8]

(b) A uniform plane wave is incic’ normally on a plane surface separating two
loss less dielectric medis  1iscuss quantitatively the phenomena that takes
place. 8]

(a) In a perfect dielectric medium, the EM wave has maximum valne for E of 10
V/m with g, = 1 and ¢, = 4. Find “he velocity of the wave, peak poynting
vector, average povnting vector, imp~dance of the medium and peak value of
the magnetic field. (6]

(b) What is the inconsistency iu ' ~.pere’s Law? How it is rectified by Maxwell?

[5]

(e) Show that the total . Diacement current between the condenser plates con-
nected to an alte: ~avmg voltage sources is exactly the same as the value of
charging current | “ouduction current). [5]

(a) Show that E and H are Perpendicular to each oth-r, in phase and the ratio
of their magnitudes is a contant for a uniform nlane wave.

(b

g

In a material for which ¢ = 5 siemen/m aud =, = 1, the electric field intensity

E = 250 sin 10"t V/m. Calculate the ~onduction and displacement current

densities and the frequency at whic, they have equal magnitudes.

(a) From the Maxwell's Curl’'s equations, derive the wave equations for a plane
wave traveling in the Positive X-direcon m a medium with constants p =
M. £ = 2q and @ £ (.

(b) If distilled water has constants .. — .,£, = 81 and Power factor = (.05 at

1GHz, Caleulate the Depth of penetration.
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(a) State the boundary conditicn: <atisfied by electromagnetic fields E and H at
the interface of air and a | ertect dielectrie. If the dieleetrie material is replaced
by a perfect conducter. ow do the boundary conditions get modified?

(b) In a medium of g, = 2, find E.B and displacement current density if H = 25
Sin (2 x 10% + 6.7 y mA /m.

(a) In a perfect dielectric medium, the °M wave has maximum value for E of 10
V/m with i, 1 and =, = 4. 1.7 tu2 velocity of the wave, peak poynting
vector, average povnting vecter, inpedance of the medium and peak value of
the magnetic field.

(b) What is the inconsisten v 1 Ampere’s Law? How it is rectified by Maxowell?

(¢) Show that the tot=] J=placement current between the condenser plates con-
nected to an alie nadng voltage sources is exactly the same as the value of
charging cure e ‘conduction current ).

Bits:

1. 1 Afield can exist if it satisfies all Maxwell’s equations
wp
2. Displacement current density is [

3. 1f 0 020mhdm £-14 gv/jm, the conduction current density is 20.0A/m?
D

B

The electric field in free space is [

iA/M’

If E=2VV/m of a wave in free space, (H) is 6@l

If E is a vector, then 0000 Z€ero
The Maxwell equation 0.B 00 s due to non-existence of a mono pole
9. The electric field for time varying potentials EQoov

© N oo

10.The intrinsic impedence of the medium whose 0a 0,|:|, 09, - O 1is 407]

11. The electric field just about a a conductor is always normal to the surface
12. The normal component of D are_continuous ay dielectric boundary
D
| N poHp2
13 The first Maxwell,s equation in free space is (X

14.Maxwell,s equations gives relation b/w different fields

15.The boundary condition on H is a,-(H,0H,) 00

16.1f 0 U 20mho/m, E=10.0V/m, the conduction current density is 20.0A/m?

17.The boundary condition on E is a,[(E,0E,) 00

The electric intensity, E at a point (1,2,2) due to (1/9)nC located at (0,0,0)is 0.33V/m
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18.The wave length of a wave with propagation constant is 0100j0.20 19m
19.The normal component of D are Continuous across a dielectric boundary

20.If Je=1mA/m? in a medium whose conductivity is 0 01@Mho/m E s 0.1v/m
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