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UNIT-II
MAGNETOSTATICS

Biot-savart law, Ampere’s circuital law & applications
Magnetic flux density

Maxwell’s equations

Magnetic potential(vector & scalar)

Forces due to magnetic fields & Ampere’s force law

Inductance & magnetic energy

Prepared by
Mr. Gajjala Ashok,
Asst. Prof, Research & Development, Dept. of ECE, SMGG.



UNIT-II EMTL

Introduction :

In previous chapters we have seen that an electrostatic field is produced by static or stationary
charges. The relationship of the steady magnetic field to its sources is much more complicated.
The source of steady magnetic field may be a permanent magnet, a direct current or an electric
field changing with time. In this chapter we shall mainly consider the magnetic field produced by
a direct current. The magnetic field produced due to time varying electric field will be discussed
later. Historically, the link between the electric and magnetic field was established Oersted in
1820. Ampere and others extended the investigation of magnetic effect of electricity . There are
two major laws governing the magnetostatic fields are:

Biot-Savart Law, (Ampere's Law )

Usually, the magnetic field intensity is represented by the vector . It is customary to represent
the direction of the magnetic field intensity (or current) by a small circle with a dot or cross sign

depending on whether the field (or current) is out of or into the page as shown in Fig. 1.

So e

Fig. 1: Representation of magnetic field (or current)
Biot- Savart Law

This law relates the magnetic field intensity dH produced at a point due to a differential current

element ! as shown in Fig. 2.

Fig. 2: Magnetic field intensity due to a current element
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The magnetic field intensity ¢4 at P can be written as,

_Idixd, _HdIxR

dH 2= .

47K AR (1a)
- f.:ﬂSm::r

TR e (1b)

Where | | Is the distance of the current element from the point P.
Similar to different charge distributions, we can have different current distribution such as line

current, surface current and volume current. These different types of current densities are shown
in Fig. 3.

dl _Jdv

da- :
2

Fig. 3: Different types of current distributions
By denoting the surface current density as K (in amp/m) and volume current density as J (in
amp/m2) we can write:

Idi = Kds = Jav @)

(1t may be noted that { = £dw = Jdz )

Employing Biot-Savart Law, we can now express the magnetic field intensity H. In terms of
these current distributions.

- def ¥ 3R
AR o for line current........co.coeveereveeene. (3a)
— _FX_F
7= Jﬂfjsﬂf
R for surface current ..........ccco.... (3b)
— T }{_F
- Jj v;
L for volume current............cc........ (3¢)
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Ampere's Circuital Law:

Ampere's circuital law states that the line integral of the magnetic field # (circulation of H )

around a closed path is the net current enclosed by this path. Mathematically,

Hdi=1
(P e 4)
The total current | enc can be written as,
I = l}.ds
...................................... (5)

By applying Stoke's theorem, we can write

—_—

EPH.dE=l‘?xE.dE
3 lvxﬁd;f =!!‘f..:1‘_§

which is the Ampere's law in the point form.
Applications of Ampere's law:
We illustrate the application of Ampere's Law with some examples.

Example : We compute magnetic field due to an infinitely long thin current carrying conductor

as shown in Fig. 4. Using Ampere's Law, we consider the close path to be a circle of radius © as
shown in the Fig. 4.

di(= Idzd_)

If we consider a small current element , @7 s perpendicular to the plane

h &4 (= ’mf‘). Therefore only component of H that will be present is Ay

containing bot and

e, i = Hﬂa?’.

By applying Ampere's law we can write,
ix
JHW';&:H?EEH =i

-1 4

#
Therefore, 272 " \which is same as equation (8)
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Fig. 4.:Magnetic field due to an infinite thin current carrying conductor
Example : We consider the cross section of an infinitely long coaxial conductor, the inner
conductor carrying a current | and outer conductor carrying current - | as shown in figure 4.6.

We compute the magnetic field as a function of < as follows:

In the region VLpth,
2
L,=12
2 R 9)
= fﬂét-’ jr-"'.:::I
P 2
2O 2T e (10)
In the region Ripik
Iﬂéﬁ =
H,= d
ET e (11)
—f
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Fig. 5: Coaxial conductor carrying equal and opposite currents

In the region Biplh
I ot o
e PE _Rgz
BT (12)
_ f R32 _,-':}2
¥ n.o .. np2_pa
2RO RS TR (13)

In the region P25

Magnetic Flux Density:

In simple matter, the magnetic flux density £ related to the magnetic field intensity & as

B=uH \where “ called the permeability. In particular when we consider the free space

— —_—

B=hH \poreth =4mx107

wher H/m is the permeability of the free space. Magnetic flux density is
measured in terms of Wh/m 2 .
The magnetic flux density through a surface is given by:

= lgd;

WD e, (15)

In the case of electrostatic field, we have seen that if the surface is a closed surface, the net flux
passing through the surface is equal to the charge enclosed by the surface. In case of magnetic
field isolated magnetic charge (i. e. pole) does not exist. Magnetic poles always occur in pair (as
N-S). For example, if we desire to have an isolated magnetic pole by dividing the magnetic bar
successively into two, we end up with pieces each having north (N) and south (S) pole as shown
in Fig. 6 (a). This process could be continued until the magnets are of atomic dimensions; still

we will have N-S pair occurring together. This means that the magnetic poles cannot be isolated.
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Fig. 6: (a) Subdivision of a magnet (b) Magnetic field/ flux lines of a
straight current carrying conductor
Similarly if we consider the field/flux lines of a current carrying conductor as shown in Fig. 6
(b), we find that these lines are closed lines, that is, if we consider a closed surface, the number
of flux lines that would leave the surface would be same as the number of flux lines that would
enter the surface.
From our discussions above, it is evident that for magnetic field,

i)B.cx‘3= 0 o

which is the Gauss's law for the magnetic field.

By applying divergence theorem, we can write:

13_3“..:35 =Jv.§dv -0

Hence, VE=0 (17)

which is the Gauss's law for the magnetic field in point form.

Magnetic Scalar and Vector Potentials:

In studying electric field problems, we introduced the concept of electric potential that simplified
the computation of electric fields for certain types of problems. In the same manner let us relate

the magnetic field intensity to a scalar magnetic potential and write:

SO (18)
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From Ampere's law , we know that

B

VHE =T oo (19)
Therefore, " - L e (20)
But using vector identity, V() =0 we find that

H=-vV,

» s valid only where ¥ =0 Thus

the scalar magnetic potential is defined only in the region where ¥ =% . Moreover, Vm in

general is not a single valued function of position.

This point can be illustrated as follows. Let us consider the cross section of a

coaxial line as shown in fig 7.

A= 4

In the region @° <P J =0 ang 270

Fig. 7: Cross Section of a Coaxial Line

If Vm is the magnetic potential then,

1 3,

o g
i

2

IfwesetVm=0at ¥ thenc=0and 2

SAt g=g P =—i¢%
2
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We observe that as we make a complete lap around the current carrying conductor , we reach %
again but Vm this time becomes

- Lg
™ EJ‘T[% )

We observe that value of Vm keeps changing as we complete additional laps to pass through the

same point. We introduced Vm analogous to electostatic potential V. But for static electric fields,
TxF=0 gng PE 40 uxF =0 ic field VXH =0
and , Whereas for steady magnetic field wherever

= _ Hdi=1 L . .
J=0 put § even if < =Ualong the path of integration.

We now introduce the vector magnetic potential which can be used in regions where
current density may be zero or nonzero and the same can be easily extended to time varying

cases. The use of vector magnetic potential provides elegant ways of solving EM field problems.

- v.(v><ﬁ)=0

Since ¥-# = Uand we have the vector identity that for any vector <, , We

can write & =V x4

—_

Here, the vector field < is called the vector magnetic potential. Its SI unit is Wb/m.

Thus if can find 4 of a given current distribution, Z  can be found from 4 through a curl

and 4 related its curl to & . A vector

sl

operation. We have introduced the vector function

function is defined fully in terms of its curl as well as divergence. The choice of ¥-4 is made as

follows.

TRV RA= (T H = uf

— _ — _ 2—0—
By using vector identity, ¥ ¥ A=Y A T A e (24)

T A -Td= 4T

Great deal of simplification can be achieved if we choose ¥-4= 0.

T4 =

Putting ¥-A=0  we get 45 \vhich is vector poisson equation.

In Cartesian coordinates, the above equation can be written in terms of the components as

VA =, (262)
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T4 - _
N = e (26h)
T4 -
e S T (26¢)
The form of all the above equation is same as that of
vy =-£
USRS (27)
for which the solution is
V=ILJ§ma R-fp -7
Rt (28)
VA= EE
In case of time varying fields we shall see that d¢ | which is known as Lorentz

condition, V being the electric potential. Here we are dealing with static magnetic field, so
VA=0

By comparison, we can write the solution for Ax as
Aoy
= [Zdv
A 4;??1 b
Computing similar solutions for other two components of the vector potential, the vector
potential can be written as
A=A idv'
dmd R
This equation enables us to find the vector potential at a given point because of a volume current

density - . Similarly for line or surface current density we can write

T
respectively. e (33)

The magnetic flux ¥ through a given area S is given by
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Substituting & =% *.4
W= lvxﬁ.dE =f£ﬁdf

Vector potential thus have the physical significance that its integral around any closed path is
equal to the magnetic flux passing through that path.

Inductance and Inductor:

Resistance, capacitance and inductance are the three familiar parameters from circuit theory. We
have already discussed about the parameters resistance and capacitance in the earlier chapters. In
this section, we discuss about the parameter inductance. Before we start our discussion, let us

first introduce the concept of flux linkage. If in a coil with N closely wound turns around where a

current | produces a flux ? and this flux links or encircles each of the N turns, the flux linkage

A= Ng

is defined as £ . In a linear medium , Where the flux is proportional to the current, we

define the self inductance L as the ratio of the total flux linkage to the current which they link.
ie., I D, (36)

To further illustrate the concept of inductance, let us consider two closed

loops C1 and C2 as shown in the figure 8, S1 and S2 are respectively the areas of C1 and C2 .

Fig:8
If a current 11 flows in C1 , the magnetic flux B1 will be created part of which will be linked to
C2 as shown in Figure 8:

Prepared by
Mr. Gajjala Ashok,
Asst. Prof, Research & Development, Dept. of ECE, SMGG.



UNIT-II EMTL

Ba=lah (38)
where L12 is the mutual inductance. For a more general case, if C2 has N2 turns then
Aa=Mafla (39)
and =Ll
5= tn
or B e (40)

i.e., the mutual inductance can be defined as the ratio of the total flux linkage of the second
circuit to the current flowing in the first circuit.
As we have already stated, the magnetic flux produced in C1 gets linked to itself and if C1 has

Ay = Nl‘:fil, where % is the flux linkage per turn.

N1 turns then
Therefore, self inductance

Ay
Iy, (or Las defined earlier) _ f_l

As some of the flux produced by I1 links only to C1 & not C2.
by = Ngy = Mydy = gy

................................... (42)
d i i
iy = fﬂu iy = —ﬁﬂll
Further in general, in a linear medium, 1 and 1

Energy stored in Magnetic Field:

So far we have discussed the inductance in static forms. In earlier chapter we discussed
the fact that work is required to be expended to assemble a group of charges and this work is
stated as electric energy. In the same manner energy needs to be expended in sending currents
through coils and it is stored as magnetic energy. Let us consider a scenario where we consider a
coil in which the current is increased from 0 to a value I. As mentioned earlier, the self

inductance of a coil in general can be written as
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L =30yt

di B e (43a)
or LA=NED (43b)
If we consider a time varying scenario,

T

i FL e (44)
é¢

We will later see that @ is an induced voltage.
Lv= E.E

df js the voltage drop that appears across the coil and thus voltage opposes the

change of current.
Therefore in order to maintain the increase of current, the electric source must do an work

against this induced voltage.

AW =vi d
=LddE (45)
W:fﬁ&:luz

” 2 (J0UlE).....oeeeeen, (46)

which is the energy stored in the magnetic circuit.
We can also express the energy stored in the coil in term of field quantities.

For linear magnetic circuit

W:lﬁﬁﬁ=lww

27 2 ——— (47)
= [ EdX = BA
Now, ¢ I ................................... (48)
where A is the area of cross section of the coil. If I is the length of the coil
NI = HI
W= ! HEBAI
2 —— (49)

Al is the volume of the coil. Therefore the magnetic energy density i.e., magnetic energy/unit
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volume is given by

In vector form

in the magnetic

field.
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Forces due to magnetic fields

There are three ways in which the force due to magnetic fields can be experienced.
The force can be

(a) Force on a charped particle:

We have F=0E

This shows that if Q is positive, F, and E are in same direction. It is found that the
magnetic force Fp experienced by a charge O moving with a velocity w in magnetic
feld B is

Fo=hux B

For a moving change Q i the presence of both electric and magnetic ficlds, the total
force on the charge is given by

F = F,+Fx
ar
F=Qi{E+u x B)

This 15 known as Lorentz force eguation.

(b} Force om a current element:

To determine the force on a current element Idl ol a current carrying conductor due
to the magnetic field B, we take the equation

FFP:u

d0 dl
We have Id= 22 g = do = 2 dou
o, dl

Hence

[dl=dQ.u

This shows that an elemental charge d) moving with velocity u (thereby producing
convection current element dCu) 15 eguivalent to a conduction current element 1dl
Thus the force on current element is give by

dF=1dlx B

Ifthe current [ is through a closed path L. or eircuit, the force on the circuit is given

by

F= _{ Il B

(¢} Force between two current elements:

Consider the force between two elements [hdly and [dlh. According to biotsavarts
law, both current elements produce magnetic fields. Force didF) on element T)dl,
due to field dB> produced by element ; dl: az shown i hgure below:
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o
© S
i ) ) - _,.."',f-(; \
/_, HH— i clF 4} e kY
\—> 4 \

d'l-l'“'|:l = l|ﬂl'_ X EI.H‘
But from biot Savarts law

ptdl, xa,,

B, -
Ry,
Hence
Ay = Il (el xa,, )

i,
This eguation is the law of force between two current elements.
gy wag, oedl = (dl, xaR,, )

if ! R

W have Fl

4T

Inductance:
Inductance is the ability of the material to hold encrgy in form of magnetic field.
L, T arg inductance of material and current flowing in the material.

.f:'_lf.fj
2

Total flux linking current |
current (1)

Inductance, L=
"B s inducaed h}' T
= JE.:.!E

Total Flux depends on no of tums
Flux linking for nturns is "N,

LA M depending on condition Le total
! Flux hnkirg the current)

Inductance of a solenoid;
[ the application of ampere’s law to solenokd we found that
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LN

fi= Texla

JNTA
{
With in a loop of N turns, the thax is linking the current W times.
|, Total flux linking [ = N
_uNId

cp=BA

Inductance of coaxial cable:

»  The total flux limking the inner and owter conductors is same as the fux in the

conductor.
{
H=—Tid/m
E-rl { ]
o
B = (Whim*)
2

Here thux density 1= ditfering with radms

- .ﬁ_d}

. pii
i jgm
Ay = ri'r.d-.p.fa
= J- J—ﬂ'r:?'z
=l
1l ey
TS

> A= ﬂh'uI(E]

L= —_—|n[3:]
rl

L_m (b
- L2

. | 2

Where i is the permeability of medium used b'w inner and outer cores.

Also there 15 current fowing even inside the mner core.
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L, 4
L (H
! E:..'[ )
L. W ,
o H ol 2N im)
{ 2o la)

Here u iz permeabiliy of conductor

Total mductance L I

— L + i
Lergth { /

AT
N (N S
2x \aj 2

Questions:

A circular loop of 3 units radius is centred at the origi. iv 2 = 0 plane, and
carries a de current of 10 m A, along ¢ direction. 1"md the magnetic flux

density at (0,0, £ 4). (8]
(b) For a N turn toroid of circular cross section, cartyving a current . determine

the magnetic field inside and outside the t~roo. 8]
(a) Define and explain the Biot-Savart’s Law. Hence obo2in the field due to a

straight current carrving filamentary conductor of 1-7ve length. (8]
(b) In a medium of == 5z,, p= 2.5p,, o= 0.2mhov;m., E = 20uV/m., find the

conduction current density, If this currernt aensity exists in a eylindrical rod

of 2 em. diameter, evaluate the current ti~* can How through the rod. 8]
(a) A circular loop of 3 units radius is centred at the wig.z in z = 0 plane, and

carries a de current of 10 m A. along ¢ direction. “ind the magnetic flux

density at (0,0, = 4). 8]

(b) For a N turn toroid of circular cross secticn, carryving a cwrrent I, determine

the magnetic field inside and outside the o~ oid. (8]
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An infinitely long straight conducting rod of radius ‘a’ caivies a current of I in +
Z direction. Using Ampere’s Cirenital Law, find H in all regions and sketch the
variation of H as a function of radial distance, 1 1 = 3 mA, and a = 2 em., find H
and Fat (0, lem., 0) and (0, dem., 0). [16]
Define Ampere’s work law for magneto static fields. Hence derive the expressions
lor the magnetic felds in the different regions of a coaxial cacle, having inner
conductor radius of a |, outer conductor of inner radius b an thickness t Sketch
the field variations with radial distance,

Define Ampere’s work law for magneto static fields. Hence « rive the expressions
for the magnetic fields in the different regions of a enaxi! cable, having inner
conductor radius of a , outer conductor of inner radius © and thickness t .Sketch
the field variations with radial distance.

Bits:

Static magnetic fields are produced due from charges at rest (yes/no)
Vector potential B is 00U

Inductanceof a solenoid is proportional to N?

Differential form of Ampere’s circuital law is U0 =J

The force produced by B=2.0 wb/m? on a current element of 2.0 A-m, is 4.0N

If normal component of B in medium 1 is 1.0ax wh/m?  the normal component in
medium 2 is 1.0ax wb/m?

Eﬁ.ds is zero

ok wbd

If 1 =1.0UH/m fora medium, H=2.0A/m, the energy stored in the field is 2.0 1 J/m?3

Magnetisation, M is defined as O O
1
10. Energy stored in a magnetostatic field is 2

11.Lorentz force equation is Foe(@ovds)
12. Scalar magnetic potential exsists when J_is zero
NI

13. Magnetic field in Toroid is 207
14, Pi0O0)-ds

15, 000Viis o

16. The boundry condition on B is Bn1=Bn2
17.Inductance depends on current and flux (yes/no)
18. Magnetic field is conservative (yes/no)

19.H=-0Vo
20.Bound current is called Amperian current

is0
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