UNIT -1

UNIT-I

Static Electric fields

In this chapter we will discuss on the followings:

Coulomb's Law

Electric Field & Electric Flux Density
Gauss's Law with Application

Electrostatic Potential, Equipotential Surfaces
Boundary Conditions for Static Electric Fields
Capacitance and Capacitors

Electrostatic Energy

Laplace's and Poisson's Equations

Uniqueness of Electrostatic Solutions

Method of Images

Solution of Boundary Value Problems in Different Coordinate Systems.
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Introduction

In the previous chapter we have covered the essential mathematical tools needed to study EM
fields. We have already mentioned in the previous chapter that electric charge is a
fundamental property of matter and charge exist in integral multiple of electronic charge.
Electrostatics can be defined as the study of electric charges at rest. Electric fields have their
sources in electric charges.

( Note: Almost all real electric fields vary to some extent with time. However, for many
problems, the field variation is slow and the field may be considered as static. For some other
cases spatial distribution is nearly same as for the static case even though the actual field may
vary with time. Such cases are termed as quasi-static.)

In this chapter we first study two fundamental laws governing the electrostatic fields, viz, (1)
Coulomb's Law and (2) Gauss's Law. Both these law have experimental basis. Coulomb's
law is applicable in finding electric field due to any charge distribution, Gauss's law is easier
to use when the distribution is symmetrical.

Coulomb's Law

Coulomb's Law states that the force between two point charges Qland Q2 is directly
proportional to the product of the charges and inversely proportional to the square of the
distance between them.

Point charge is a hypothetical charge located at a single point in space. It is an idealized

model of a particle having an electric charge.

P

: 2 : o
Mathematically, R , Where Kk is the proportionality constant.

In ST units, Q1 and Q2 are expressed in Coulombs(C) and R is in meters.

1
4,

=
Force Fisin Newtons (N) and

, %0 is called the permittivity of free space.

(We are assuming the charges are in free space. If the charges are any other dielectric

£= &,

medium, we will use % instead where % is called the relative permittivity or the

dielectric constant of the medium).
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B ]
Therefore 'Yy B (1)

As shown in the Figure 1 let the position vectors of the point charges Qland Q2 are given by

— —_—

land ™2 . Let i represent the force on Q1 due to charge Q2.

Fig 1: Coulomb's Law

— —+ —_— =+

RE=ln-nl=ln-7

The charges are separated by a distance of . We define the unit vectors as
—ﬁ-_(’":;_""l) —ﬂ-_(’"l ”":4)
1z a1 T
R and B, (2)

= A o~ G
12 7% T y—

N A7, R A, R [ 3 ’3
12 can be defined as 4

—_—

Similarly the force on Q: due to charge Q- can be calculated and if i represents this force then we can

_— —

oy =-H,

write

When we have a number of point charges, to determine the force on a particular charge

due to all other charges, we apply principle of superposition. If we have N number of

charges Q1,Qz,......... Qn located respectively at the points represented by the position
vectors 1,72 .. ¥ the force experienced by a charge Q located at ;is given by,
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5. 0 Tor-n
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Electric Field :

The electric field intensity or the electric field strength at a point is defined as the force

per unit charge. That is

—
—

Fotiml E-
=00 or, e (4)

The electric field intensity E at a point r (observation point) due a point charge Q located

at ;(source point) is given by:

3- 200,
dre, \r—r!
S (5)
For a collection of N point charges Q1,Qz,......... Qn located at 1,2 ......"¥ | the electric

field intensity at point 7 'is obtained as

oL $00D
4‘??5] i=1 |Ir'—lr'_’3

LY (6)

The expression (6) can be modified suitably to compute the electric filed due to a

continuous distribution of charges.

In figure 2 we consider a continuous volume distribution of charge (t) in the region

denoted as the source region.

For an elementary charge %< =#("1@" i o considering this charge as point charge,

we can write the field expression as:

o -r' _ phav'r-rY

T amfr]
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Source region

Fig 2: Continuous Volume Distribution of Charge

When this expression is integrated over the source region, we get the electric field at
the point P due to this distribution of charges. Thus the expression for the electric field

at P can be written as:

B0 o= !
1[-’-'1;??“‘6,:, r rr

Similar technique can be adopted when the charge distribution is in the form of a line

charge density or a surface charge density.

5 - I,az(r VG-

e 9)
B0 - l«ﬁ%(?")(ﬁ" ?‘3'_;
-’-’1;?1E‘,:,r r! (10)

Electric flux density:

As stated earlier electric field intensity or simply ‘Electric field' gives the strength of the
field at a particular point. The electric field depends on the material media in which the
field is being considered. The flux density vector is defined to be independent of the
material media (as we'll see that it relates to the charge that is producing it).For a linear

isotropic medium under consideration; the flux density vector is defined as:

We define the electric flux as
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Gauss's Law: Gauss's law is one of the fundamental laws of electromagnetism and it

states that the total electric flux through a closed surface is equal to the total charge
enclosed by the surface.

Fig 3: Gauss's Law
Let us consider a point charge Q located in an isotropic homogeneous medium of

dielectric constant . The flux density at a distance r on a surface enclosing the charge is
given by

D-eB-—2 4
Ay

If we consider an elementary area ds, the amount of flux passing through the
elementary area is given by

dur = Dds =

Qz decos d
Firs

..................................... (24)
dsu::c;sé‘ — 20
But *

, is the elementary solid angle subtended by the area = at the location

di = £ dhl
of Q. Therefore we can write 4

v gav- %cjsm -0
For a closed surface enclosing the charge, we can write &

Prepared by
Mr. Gajjala Ashok,

Asst. Prof, Research & Development, Dept. of ECE, SMGG.



UNIT -1 EMTL

which can seen to be same as what we have stated in the definition of Gauss's Law.

Application of Gauss's Law :

Gauss's law is particularly useful in computing £ or £'where the charge distribution has
some symmetry. We shall illustrate the application of Gauss's Law with some examples.

1. An infinite line charge

As the first example of illustration of use of Gauss's law, let consider the problem of
determination of the electric field produced by an infinite line charge of density .C/m. Let
us consider a line charge positioned along the z-axis as shown in Fig. 4(a) (next slide).
Since the line charge is assumed to be infinitely long, the electric field will be of the form
as shown in Fig. 4(b) (next slide).

If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm
we can write,

od =0 =?EDE.|:£-.5:=JE‘DEd;+iE‘DEd;+JEﬂEd;
e, (15)

Considering the fact that the unit normal vector to areas S1 and Ss3 are perpendicular to

the electric field, the surface integrals for the top and bottom surfaces evaluates to zero.

Hence we can write, o = & &2l
! =z

X (a)
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Fig 4: Infinite Line Charge

Jo
emE e "

2. Infinite Sheet of Charge
As a second example of application of Gauss's theorem, we consider an infinite charged

sheet covering the x-z plane as shown in figure 5. Assuming a surface charge density of

% for the infinite surface charge, if we consider a cylindrical volume having sides £5
placed symmetrically as shown in figure 5, we can write:

§D+ds =2Dhs = p hs
)

T=_8

Fig 5: Infinite Sheet of Charge
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It may be noted that the electric field strength is independent of distance. This is true for
the infinite plane of charge; electric lines of force on either side of the charge will be
perpendicular to the sheet and extend to infinity as parallel lines. As number of lines of
force per unit area gives the strength of the field, the field becomes independent of
distance. For a finite charge sheet, the field will be a function of distance.

3. Uniformly Charged Sphere

Let us consider a sphere of radius rO having a uniform volume charge density of rv

C/m3. To determine D everywhere, inside and outside the sphere, we construct
Gaussian surfaces of radius r <r0 and r > r0 as shown in Fig. 6 (a) and Fig. 6(b).

For the region o : the total enclosed charge will be

o =

(a) {b)

Fig 6: Uniformly Charged Sphere

By applying Gauss's theorem,

21’ X

$D-ds= [ [ Dr’sin 64644 =4mrD, = Q

-]

gelle=0 (29

Therefore

. > .
For the region ” =": the total enclosed charge will be
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By applying Gauss's theorem,

3
r

= R
D—?,{}va, rEn

Electrostatic Potential and Equipotential Surfaces

In the previous sections we have seen how the electric field intensity due to a charge or
a charge distribution can be found using Coulomb's law or Gauss's law. Since a charge
placed in the vicinity of another charge (or in other words in the field of other charge)
experiences a force, the movement of the charge represents energy exchange.
Electrostatic potential is related to the work done in carrying a charge from one point to

the other in the presence of an electric field. Let us suppose that we wish to move a

positive test charge 24 from a point P to another point Q as shown in the Fig. 8.The
force at any point along its path would cause the particle to accelerate and move it out

of the region if unconstrained. Since we are dealing with an electrostatic case, a force
equal to the negative of that acting on the charge is to be applied while 24 moves from

P to Q. The work done by this external agent in moving the charge by a distance #¢ is
given by:

o

Fig 8: Movement of Test Charge in Electric Field
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The negative sign accounts for the fact that work is done on the system by the external

agent.

The potential difference between two points P and Q , VPQ, is defined as the work

done per unit charge, i.e.

It may be noted that in moving a charge from the initial point to the final point if the
potential difference is positive, there is a gain in potential energy in the movement,
external agent performs the work against the field. If the sign of the potential difference
is negative, work is done by the field.

We will see that the electrostatic system is conservative in that no net energy is
exchanged if the test charge is moved about a closed path, i.e. returning to its initial
position. Further, the potential difference between two points in an electrostatic field is a
point function; it is independent of the path taken. The potential difference is measured
in Joules/Coulomb which is referred to as Volts.

Let us consider a point charge Q as shown in the Fig. 9.
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Fig 9: Electrostatic Potential calculation for a point charge
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Further consider the two points A and B as shown in the Fig. 9. Considering the
movement of a unit positive test charge from B to A , we can write an expression for the

potential difference as:

Vs =—j§-d?= —m%a drd, = 43%; [rl—rl] -V, -V,
e o e (26)
It is customary to choose the potential to be zero at infinity. Thus potential at any point (
rA =r) due to a point charge Q can be written as the amount of work done in bringing a

unit positive charge from infinity to that point (i.e. rB = 0).

R
A T e @27)
Or, in other words,
V= —_[E.f;:ﬂ
B (28)

Let us now consider a situation where the point charge Q is not located at the origin as

shown in Fig. 10.

For

Fig 10: Electrostatic Potential due a Displaced Charge

The potential at a point P becomes

V(r)=£%
47re, |r—r'

So far we have considered the potential due to point charges only. As any other type of

charge distribution can be considered to be consisting of point charges, the same basic
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ideas now can be extended to other types of charge distribution also. Let us first

consider N point charges Q1, Q2 ,..... QN located at points with position vectors 1,2

—_—

....... ¥ . The potential at a point having position vector” can be written as:

= _ 1 { { {
i pp [|; _1;; + F—gr_";; + o |; _%

OR

. Iy
Vi) = Lz—ﬁ"

4??-8':' =R |l?" - 'r?!

For continuous charge distribution, we replace point charges Qn by corresponding

charge elements ol or Peds or Prdv depending on whether the charge distribution
is linear, surface or a volume charge distribution and the summation is replaced by an

integral. With these modifications we can write:

7 =— Z[pi‘:’" i
. 47z, |r -7,
For line charge, = I "l (31)
V(;) _ 1 l,ﬂsjr jlcjfs
47, |r -,
For surface charge, = 1 %l (32)
V) = — J*GVE’ a
4??5'0 |,r' — %,
For volume charge, I 0 (33)

It may be noted here that the primed coordinates represent the source coordinates and
the unprimed coordinates represent field point.
Further, in our discussion so far we have used the reference or zero potential at infinity.

If any other point is chosen as reference, we can write:

0 ..
ATBY e, (34)

I =
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where C is a constant. In the same manner when potential is computed from a known

electric field we can write:

V=—IE-.:1?E+C

We have mentioned that electrostatic field is a conservative field; the work done in
moving a charge from one point to the other is independent of the path. Let us consider
moving a charge from point P1 to P2 in one path and then from point P2 back to P1
over a different path. If the work done on the two paths were different, a net positive or
negative amount of work would have been done when the body returns to its original
position P1. In a conservative field there is no mechanism for dissipating energy
corresponding to any positive work neither any source is present from which energy
could be absorbed in the case of negative work. Hence the question of different works
in two paths is untenable, the work must have to be independent of path and depends
on the initial and final positions.

Since the potential difference is independent of the paths taken, VAB = - VBA , and over
a closed path,

Vd * Vi =<]3_E’-.:ﬂ =0
Applying Stokes's theorem, we can write:

TE-JE=I(?X§)-JE =0

Any vector field that satisfies is called an irrotational field.

From our definition of potential, we can write
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dV=ﬁdx+ﬁdy+ﬁdz= ~Edi
ax e ix

dairf oo, dlf
—, T —a, t—a |

dxii +dvi, +vdzd | = -B-di
dx dy 7 A ( A x)

VI dl=-F dl (40)
from which we obtain,

From the foregoing discussions we observe that the electric field strength at any point is
the negative of the potential gradient at any point, negative sign shows that £ is

directed from higher to lower values of ¥ . This gives us another method of computing

the electric field , i. e. if we know the potential function, the electric field may be
computed. We may note here that that one scalar function ¥ contain all the information
that three components of £ carry, the same is possible because of the fact that three

components of £ are interrelated by the relation ¥ * &,

Equipotential Surfaces

An equipotential surface refers to a surface where the potential is constant. The
intersection of an equipotential surface with an plane surface results into a path called
an equipotential line. No work is done in moving a charge from one point to the other
along an equipotential line or surface.

In figure 12, the dashes lines show the equipotential lines for a positive point charge. By
symmetry, the equipotential surfaces are spherical surfaces and the equipotential lines

are circles. The solid lines show the flux lines or electric lines of force.
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Fig 12: Equipotential Lines for a Positive Point Charge

Michael Faraday as a way of visualizing electric fields introduced flux lines. It may be
seen that the electric flux lines and the equipotential lines are normal to each other. In
order to plot the equipotential lines for an electric dipole, we observe that for a given Q

cos &

. 2 . . .
and d, a constant V requires that * is a constant. From this we can write

7 =5,N2038 14 be the equation for an equipotential surface and a family of surfaces can
be generated for various values of cv.When plotted in 2-D this would give equipotential
lines.

To determine the equation for the electric field lines, we note that field lines represent
the direction of £ in space. Therefore,

dl = KB KiS a CONStANt voveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, (42)
Gdr + rd0G, +d,sin 8 = kK(4,E, + 4,8, +4,8,) = dI

For the dipole under consideration Eﬂ*:o , and therefore we can write,
i _ raf 8

E?’ Eﬂ
dr _2cos8d8 _ 2d(sn &)
r sin & HIE s (44)

Electrostatic Energy and Energy Density:
We have stated that the electric potential at a point in an electric field is the amount of

work required to bring a unit positive charge from infinity (reference of zero potential) to
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that point. To determine the energy that is present in an assembly of charges, let us first
determine the amount of work required to assemble them. Let us consider a number of
discrete charges Q1, Q2,....... , QN are brought from infinity to their present position one
by one. Since initially there is no field present, the amount of work done in bring Q1 is
zero. Q2 is brought in the presence of the field of Q1, the work done W1= Q2V21 where
V21 is the potential at the location of Q2 due to Q1. Proceeding in this manner, we can

write, the total work done W= POy + (5l +P0) + o ol *aryE)
.................... (45)
Had the charges been brought in the reverse order,
W= (W + P00+ * Wwayw s * P awCira) + Vil
................ (46)
Therefore,

Here VIJ represent voltage at the Ith charge location due to Jth charge. Therefore,

1 Ay
W= >0,
2I—1

2
2 =0+ + Vil = z Vil
M0t (48)

then we can write, L (49)

where “* is the volume charge density and V represents the potential function.

Since, & =V D , We can write
1 _
W = EI(?-D)Vdv

VL) = DNV H VN D sing the vector identity,
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, We can write
1 —- =
W = El(v'w} - DV |y

- é(]S[VE).dE— lj(_ﬂ’- V) dv

; A (51)
~§(vD)as !
In the expression - , for point charges, since V varies as ” and D varies as
1 1

r , the term V D varies as 7~ while the area varies as r2. Hence the integral term

1
varies at least as r and the as surface becomes large (i.e. ¥ = ) the integral term
tends to zero.

Thus the equation for W reduces to

W———I[DTV):;’ ——J‘[DE)d __f (e2 )av = dev

W, -1 £

2 , is called the energy density in the electrostatic field.
Poisson’s and Laplace’s Equations

For electrostatic field, we have seen that

Form the above two equations we can write

V(eE) =V (-&V) = g

Using vector identity we can write, &* 77 *V¥VE=TS . (55)

For a simple homogeneous medium, € is constantand ¥€=10 . Therefore,

Ty =7 = -2

This equation is known as Poisson’s equation. Here we have introduced a new operator
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V" (del square), called the Laplacian operator. In Cartesian coordinates,
g, . d. . OF a'{f

T .
Ax dy 7oz Tk B 7 & (57)

Therefore, in Cartesian coordinates, Poisson equation can be written as:

Fr ar d__p

S (58)
In cylindrical coordinates,
gy 19 1 3 V 8 V
rar T w (59)
In spherical polar coordinate system,
2
v3V=i2E rﬂﬁ +— 1 i singﬁ t _1 - E
o dr dr ] rsnf 38 38) rfan'gag (60)
At points in simple media, where no free charge is present, Poisson’s equation reduces to
L (61)

which is known as Laplace’s equation.

Laplace’s and Poisson’s equation are very useful for solving many practical electrostatic field
problems where only the electrostatic conditions (potential and charge) at some boundaries are
known and solution of electric field and potential is to be found hroughout the volume. We shall

consider such applications in the section where we deal with boundary value problems.
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Convention and conduction current:
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¢ The electric current is generally caused by the motion of electric charges.

* The current through a given area is the electric charge passing through the area per unit

time. i
o\
L (1)
ct
# Thus, in a current of one ampere, charge is being transferred at a rate of one coulomb per
second.

e [et consider, the current dcnait}’j, [fcurrent Al flows through a surface AS, then the
current density J is given as,
Al
j" =
AS
>Al =T AS ===—= (2)

* The current density is assumed to be perpendicular to the surface
» [fthe current density is not normal to the surface, then

e Thus, the total current flowing through a surface *S” 1s
[= J’ J ds————— ()
p
s Depending on how ‘1" is produced, there are different kinds of current dengities such as,
v Convection current density
v" Conduction current density

¥~ Displacement current density

* We will discuss about convection and conduction densities.
= The equation (4) can be applied to any Kind of current density.

Convection current Density:

« Convection current, which is different from conduction current, does not involve
conductors and consequently does not satisfy Ohm's law.

» This type of current occurs when current flows through an insulating medium such as
liquid, rarefied gas, or a vacuum.

s For example, a beam of electrons in a vacuum tube can be considered as convection
current.

e Consider a filament as shown in figure below.
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Al

Fig: Current in a filamenrt
If there is a flow of charge, of density £, at velocity u = ay.ay . then the current through

filament is given as,
AdD A
From (1) = AJ h_{ j;_..-':..?ﬁ— " AQ = [ ASA
f At

Al=f, AS uy==eennnnanas (5)
The current density at a given point 15 the current through a unit normal area at that point,
I'he current density *J," along the y-direction is given as,
AT

I,
AS

Ad
Fram (5),— = [ v
: !h -'Ir- -
T, = fy

Henee, in general,
The current *17 15 the convection current and *J7 15 the convection current density in f.ﬁ.."rn'!:l

‘onduction current Density:
The conductien current to flow requires a conductor.
['he comductor has large amount of froe clecirons that provide conduction cwrrent due o an
applied clectric field.
When an electric field £ is applied, the force on an electron with charge *-e” is given as,

Since the electron is not in free space, it will not under the influence of the electric Held.
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o Rather, it sutfers constant collision with the atomic lattice and drifts from one atom to
another,

s Ifthe electron with mass ‘m’ is moving in an electric field £ with an average drift velocity

u , according to Newton's law, the average charge in momentum of the free electron must

match the applied force, Thus,

mi__

T

ar

— T—

H_—F—.E
m

Where T is the average lime interval between collisions.
If there are ‘o’ electrons per unit vohime, the electronic charge density is given by,
£ -ne

I'hus, the conduchion current denstty is,

2 S f =—ne
- — nme'T L
.-r=,i‘r_, W= . N ;_—i_ﬁ
L

o =6E ST

-

ne T

Where b=

. 15 the conductivity of the conductor.
m

The above relatienship in equation (%) known as the point form of Ohm’s law,
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MELECTRIC CONSTANT:

e [In general, all insulators are also called as dielectrics.
» In perfect dielectrics, there are no free charges existing.
 Consider an atom of the dielectric as consisting of a negative charge *-(Q° and positive
charge "+, as shown in figure below:
+()
-[)
Fig: Atom of an Dielectric
LI tive charge is displaced from its
¢ y the force F+=0} T while the negative
¢ by force F—=QI.
E
T
T~
;T = == T
! — —_—
| S | [ — -
I — | ——
| o o —
N —
——'_ﬂ-'_
'\-__‘_ _'_'_—I—
—_—

Fig: Atom when E field is apphed
e A dipole results from the displacement of the charges and the dielectric 15 said 1o be
polarized.

s In the polarized state, the electron cloud is distorted by the applied electric field &
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T 0

Fig: Electric Dipole
#  The dipole moment 15 given as,
P=0d
Where d is the distance vector from —J o+ of the dipole as shown in abave
figure.
s Sum ofall the dipole moments gives the net electric field
»  The measure of intensity of the polarization is given by polarization P (in
coulomba/m”)
» Polarization P is the dipole moment per unit volume of the dielectric; Le
Li =
NP
F—=0
AV

Where P is dipole moment,

P

P is polarization
M iz total no of electrons,

¢  When there 13 no polarization, then the clectrie flux density D is given as,

D =g, E====(1)
- D
= E=—
r:L
e i the presence of polarization, we have,

- b N

E=———

Sy Eg

e, E=D—P————2)

o Ifpoelarization P and electric field intensily £ are in same divection, then P can be
expressed as,

P=g, X,E————(3)
Where X 18 known as the electric suscephibilitv of the material.
o Substituting eg. (3] in eq{2] we get
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ﬁ =y 4 'F
=N E =" E{E
D=z, {1+ X, )E
Dec, c F
=0D=ck
eotric
_:"'r_] i ,][r, = i ——(4
LI'I-
-
Where gq 15 permittivity of free space = Fim
30

g called the dielectne constant or relative permitlivily.

¢ The dielectric constant (or relative permillivity). & is the ratio of the permittivity of
the diglectric to that of free space.

e The dielectric constant &, and X, are dimension less.

# 08 alwave preater than oF equal to unity and &,=1 for free space and non-dielectric
materials (such as metals).

¢  The munimmum value of the electric field at which the diclectric breakdown occurs 15
called the diclectric stremgth of the diclectric matenal,

¢ The dielectric strength is the maximum electric field that a dielectric can tolerate or

withstand without breakdown.
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.13 RELAXATION TIME:

o Letus congider that a charge i introduced at some interior point of a given material
(conductor or diclectric)

s  Frof, continwily of curren! egquation, we have

— _;:I"I L
T (1)

We have, the point form of Olun’s Law as,
Y p——"

»  From Gausz's law, we have,

VD~ f =eVE-f|:D-cE]
vE=4=
=

Substituie equations (2} and (3} in equation {17}, we get

— Y
V.6Ef =65V E = 6,42 = =%,

= it

————— ()

variable in eq (4), we get,
af, =h
&« 7,
i - i
L% =6
ol =

The above equation is a homogeneous linear ordinary differential equation. By separating

o

Mow integrate on both sides of above equation

.8 .
!i = _E. |5y
it i

>In i =—£.r-|-1n o
L=

Where In py s a constant of infegration.
Thus,

jw - _f,,_.-l’-" LT

@ m
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¢ Ineq(5), fuo 15 the mitial charge density (L.e fv at =0),

o W can see from the equation that as a result of introducing charge at some interior point of
the material there is a decay of volume charge density [,

e  The time constant “T," is known as the relaxation time or rearrangement lime,

s Relaxation time is the time it takes a charge placed in the interior of a material to drop to ¢
=368 percent fits imitial value

e The relation time 15 short for good conductors and long for good dielectrics.

Capacitance and Capacitors
We have already stated that a conductor in an electrostatic field is an Equipotential body and any
charge given to such conductor will distribute themselves in such a manner that electric field

inside the conductor vanishes. If an additional amount of charge is supplied to an isolated

conductor at a given potential, this additional charge will increase the surface charge density Py

1 faih
4e,

I =

. Since the potential of the conductor is given by J T the potential of the

o _¢
conductor will also increase maintaining the ratio same F. Thus we can write " v where the
constant of proportionality C is called the capacitance of the isolated conductor. Sl unit of
capacitance is Coulomb/ Volt also called Farad denoted by F. It can It can be seen that if V=1, C
= Q. Thus capacity of an isolated conductor can also be defined as the amount of charge in
Coulomb required to raise the potential of the conductor by 1 Volt.

Of considerable interest in practice is a capacitor that consists of two (or more) conductors
carrying equal and opposite charges and separated by some dielectric media or free space. The

conductors may have arbitrary shapes. A two-conductor capacitor is shown in figure below.

Fig : Capacitance and Capacitors
When a d-c voltage source is connected between the conductors, a charge transfer occurs which
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results into a positive charge on one conductor and negative charge on the other conductor. The
conductors are equipotential surfaces and the field lines are perpendicular to the conductor
surface. If V is the mean potential difference between the conductors, the capacitance is given by
e

V. Capacitance of a capacitor depends on the geometry of the conductor and the
permittivity of the medium between them and does not depend on the charge or potential

difference between conductors. The capacitance can be computed by assuming Q(at the same

time -Q on the other conductor), first determining £ using Gauss’s theorem and then

- ~-(Edl . .
determining .[ . We illustrate this procedure by taking the example of a parallel plate
capacitor.

Example: Parallel plate capacitor

Gausian
Surface

Fig : Parallel Plate Capacitor
For the parallel plate capacitor shown in the figure about, let each plate has area A and a distance
h separates the plates. A dielectric of permittivity £ fills the region between the plates. The
electric field lines are confined between the plates. We ignore the flux fringing at the edges of

the plates and charges are assumed to be uniformly distributed over the conducting plates with

52
densities % and- ©, " 4.
-]
By Gauss’s theorem we can write, £ AE 1)

As we have assumed “* to be uniform and fringing of field is neglected, we see that E is

V=FEk= A
constant in the region between the plates and therefore, we can write £A4  Thus, fora
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parallel plate capacitor we have,

Series and parallel Connection of capacitors

Capacitors are connected in various manners in electrical circuits; series and parallel connections

are the two basic ways of connecting capacitors. We compute the equivalent capacitance for such
connections.

Series Case: Series connection of two capacitors is shown in the figure 1. For this case we can
write,

V=Iz;+i';f2 =£+£
Cl Cz

vt _ 1,1
¢ Co O G )
Vj VZ
Cops
I o
|| |
| | |
+0 o} - e 2
o o 0 O
+ - + B
” v

Fig 1.: Series Connection of Capacitors

L
| |
o7 -0 g
v
'C'2|— _| I_
+0l -0 e -2
L o0—
+ -
| 1
| |
+p-
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Fig 2: Parallel Connection of Capacitors
The same approach may be extended to more than two capacitors connected in series.
Parallel Case: For the parallel case, the voltages across the capacitors are the same.

The total charge & = &1 * & = G + 07

o
Cop == =C1+C,

Therefore, P T (2)

Continuity Equation and Kirchhoff’s Current Law

Let us consider a volume V bounded by a surface S. A net charge Q exists within this region. If a
net current | flows across the surface out of this region, from the principle of conservation of
charge this current can be equated to the time rate of decrease of charge within this volume.
Similarly, if a net current flows into the region, the charge in the volume must increase at a rate

equal to the current. Thus we can write,

- 4
T (3)
133..:1?5 = —di 1[ ody
or, £ S 4)
Applying divergence theorem we can write,
Jv.jdv = —JZ—’? v
..................... (5)

It may be noted that, since € in general may be a function of space and time, partial derivatives
are used. Further, the equation holds regardless of the choice of volume V , the integrands must
be equal.

Therefore we can write,

vi--2°

The equation (6) is called the continuity equation, which relates the divergence of current density
vector to the rate of change of charge density at a point.

For steady current flowing in a region, we have

Considering a region bounded by a closed surface,
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Jds=0
iﬁ (8)

which can be written as,
-
E 9)
when we consider the close surface essentially encloses a junction of an electrical circuit.
The above equation is the Kirchhoff’s current law of circuit theory, which states that algebraic
sum of all the currents flowing out of a junction in an electric circuit, is zero.
Questionbank:
15t unit
(a) What is the potential function at point P due to point charges ¢}y and €J2 at

distances ry and ry respectively and a line charge of density pr C/m whose
elemental charge pp dl is assumed to be at distance ry from P? (8]

(b) A point charge of 15nC is sitnated at the origin and another point charge of

-12nC is located at the point (3,3,3)m. Find E and V at the »owt (0,-3,-3).

8]
(a) Derive the boundary conditions for the tangential and nornal components of
Electrostatic fields at the boundary between two perfect dielectrics. 8]

(b) x-z-plane is a boundary between two dielectrics. Region y < ) contains dielec-
tric material ., = 2.5 while region y = 0 has dielectric with - .= 4.0, If

E = —30a,+50a,+70a,v/m, find normal and tangential compments of the E
field on both sides of the boundary. (8]
(a) Explain the following terms: [8]

i, Homogeneous and isotropic medium and
ii. Line, surface and volume charge distributions.

(b) A circular ring of radius ‘a’ carries uniform charge p; C/r a~d = in xy-plane.
Find the Electric Field at Point {0, 0, 2) along its axis. 8]

(a) Establish Poisson’s and Laplace’s equations from Gausss law,

(b} Obtain the expressions for the far field and the potential due to a small electric
dipole oriented along Z-axis.

(a) A uniform line of length 2 m with total charge 3 nC is situated coincident to
the z-axis with its center point 2 m from the origin. At a point on the x-axis,

2m from the origin, find V and £ .

(b) A point charge of 3 nC is on the z-axis, 2 m away from the ¢-igin. Find the
resultant V and E

Prepared by
Mr. Gajjala Ashok,
Asst. Prof, Research & Development, Dept. of ECE, SMGG.



UNIT -1 EMTL

Bits:

1. Displacement current in a conductor is greater than conduction current (yes/no)

2. Electric dipole moment is a vector (yes/no)

3. Electric susceptibility has the unit of permittivity (yes/no)

4. Capacitance depends on dielectric material between the conductors (yes/no)

5. The unit of potential is Joule/coulomb (yes/no)

6. 0./ 08, (yes/no)
1

7. Coulombs force is proportional to r’

8. The unit of electric flux is coulombs

i

9. The electric field on x-axis due to a line charge extending from 00 to0 210,
10.Potential at all points on the surface of a conductor is the same

11.Laplace equation has only one solution

12.Example of nonpolar type of dielectric is oxygen

13. The electric susceptabilitty of a dielectric is 4,it’s relative permittivity is_5
14.Boundary condition for the normal component of E on the boundary of a_dielectric is

[

P
==E
E, _0, n2
15. Potential due to a charge at a point situated at infinity is 0

i

16. Relation time is [
17.The force magnitude b/w Q1 =1C and Q2 =1C when they are separated by 1m in free
space is 9*10° N

18 PF 90 isin point form UUE =0

19. Direction of dipole moment is in direction of applied electric field

20.1f a force , F=4ax+ay+ 2az moves 1 Uc charge through a displacement of 4ax+ 2ay-
6az the resultant work done is G_DJ

Prepared by
Mr. Gajjala Ashok,
Asst. Prof, Research & Development, Dept. of ECE, SMGG.



UNIT -1 EMTL

Prepared by
Mr. Gajjala Ashok,
Asst. Prof, Research & Development, Dept. of ECE, SMGG.



