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UNIT-III 

PRIORITY QUEUES (HEAPS) 
What is a Priority Queue? 

1) Stores prioritized key-value pairs 

2) Implements insertion • No notion of storing at particular position 

3) Returns elements in priority order • Order determined by key 

Stacks and Queues • Removal order determined by order of inserting  

Sequences • User chooses exact placement when inserting and explicitly chooses removal order 

Priority Queue • Order determined by key • Key may be part of element data or separate 

An entry in a priority queue is simply a key-value pair 

Priority queues store entries to allow for efficient insertion and removal based on 

keys Methods: • getkeyȋȌ: returns the key for this entry • getvalueȋȌ: returns the value associated with this entry 

Implementing PQ with Unsorted Sequence 

Each call to insertItem(k, e) uses insertLast( ) to store in Sequence • O(1) time 

Each call to extractMin( ) traverses the entire sequence to find the minimum, then 

removes element • O(n) time 

Implementing PQ with Sorted Sequence 

Each call to insertItem(k, e) traverses sorted sequence to find correct position, then 

does insert • O(n) worst case 

Each call to extractMin( ) does removeFirst( ) • O(1) time 

Implementing PQ with a BST 

Each call to insertItem(k, e) does tree insert • O(log(n)) worst case 

Each call to extractMin( ) does delete( ) • O(log(n)) time 
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Heaps 

" A heap is a binary tree storing keys at its nodes and satisfying the following 

properties: 

Heap-Order: for every internal node v other than the root, 

key(v) η key(parent(v)) 

Complete Binary Tree: let h be the height of the heap 

for i = Ͳ, … , h - 1, there are 2i nodes of depth i 

at depth h - 1, the internal nodes are to the left of the external nodes 

The last node of a heap is the rightmost node of depth h 

 
Height of a Heap 

Theorem: A heap storing n keys has height O(log n) 

Proof: (we apply the complete binary tree property) 

Let h be the height of a heap storing n keys Since there are ʹi keys at depth i = Ͳ, … , h - 1 and at least one key at 

depth h, we have n η ͳ + ʹ + 4 + … + ʹh-1 + 1 Thus, n η ʹh , i.e., h ζ log n 
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Heap 

Binary tree-based data structure • Complete in the sense that it fills up levels as completely as possible • Height of tree is O(log n) 

Can be stored using the array representation (just add at the end of the array) 

Use extendable arrays to expand and shrink as Needed 

Heap Example 

 

 

Binary Heaps • A binary heap is a binary tree ȋNOT a BSTȌ that is: › Complete: the tree is completely filled except possibly the bottom level, which is 

filled from left to right 

 Satisfies the heap order property • every node is less than or equal to its children or every node is greater than 
or equal to its children • The root node is always the smallest node or the largest, depending on the 

heap order 

Heap order property • A heap provides limited ordering information • Each path is sorted, but the subtrees are not sorted relative to each other 
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 A binary heap is NOT a binary search tree 

 
Fig: These are all valid binary heaps (minimum) 

 

Binary Heap vs Binary Search Tree 

 
Structure property • A binary heap is a complete tree › All nodes are in use except for possibly the right end of the bottom row 
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Examples: 

 
Array Implementation of Heaps • Root node = A[ͳ] • Children of A[i] = A[ʹi], A[2i + 1] • Keep track of current size N ȋnumber of nodes) 
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FindMin and DeleteMin: 

 

 

Maintain the Structure Property 

 



ADVANCED DATA STRUCTURES Page 7 

 

Maintain the Heap Property 

 

Applications of Priority queues: 
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The Selection Problem Event Simulation Problem: 

 

Binomial Queues 

A Binomial Queue is a collection of heap-ordered trees known as a forest. Each tree 

is a binomial tree.  

A recursive definition is: 

1. A binomial tree of height 0 is a one-node tree. 

2. A binomial tree, Bk, of height k is formed by attaching a binomial tree Bk−ͳ to the root of another binomial tree Bk−ͳ . 
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Examples 

 

Implementing Binomial Queues 

1. Use a k-ary tree to represent each binomial tree – sibling and child pointers 

2. Use a Vector to hold references to the root node of each binomial tree 

3. Keep a reference to smallest root for past find min (e.g. a Heap on positions). 

Use a k-ary tree to represent each binomial tree.  

Use an array to hold references to root nodes of each binomial tree. 

 


