UNIT-III
PRIORITY QUEUES (HEAPS)
What is a Priority Queue?
1) Stores prioritized key-value pairs
2) Implements insertion
» No notion of storing at particular position
3) Returns elements in priority order
e Order determined by key

Stacks and Queues

* Removal order determined by order of inserting

Sequences

 User chooses exact placement when inserting and explicitly chooses removal order
Priority Queue

 Order determined by key

» Key may be part of element data or separate

An entry in a priority queue is simply a key-value pair

Priority queues store entries to allow for efficient insertion and removal based on
keys Methods:

» getkey(): returns the key for this entry

e getvalue(): returns the value associated with this entry

Implementing PQ with Unsorted Sequence

Each call to insertltem(k, e) uses insertLast() to store in Sequence

e 0(1) time

Each call to extractMin() traverses the entire sequence to find the minimum, then
removes element

e O(n) time

Implementing PQ with Sorted Sequence

Each call to insertltem(k, e) traverses sorted sequence to find correct position, then
does insert

e O(n) worst case

Each call to extractMin() does removeFirst()

e 0(1) time

Implementing PQ with a BST

Each call to insertltem(k, e) does tree insert
e O(log(n)) worst case

Each call to extractMin() does delete()

* O(log(n)) time

ADVANCED DATA STRUCTURES

Heaps

" A heap is a binary tree storing keys at its nodes and satisfying the following
properties:

Heap-Order: for every internal node v other than the root,

Kkey(v) = key(parent(v))

Complete Binary Tree: let h be the height of the heap

fori=0,..,h-1,there are 2i nodes of depth i

at depth h - 1, the internal nodes are to the left of the external nodes

The last node of a heap is the rightmost node of depth h

L]
last node

Height of a Heap
Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)
Let h be the height of a heap storing n keys
Since there are 2i keys at depthi =0, ..., h - 1 and at least one key at
depthh,wehaven=1+2+4+..+2h-1+1
Thus,n = 2h,i.e, h<logn
depth keys

ADVANCED DATA STRUCTURES

Heap

Binary tree-based data structure

e Complete in the sense that it fills up levels as completely as possible
» Height of tree is O(log n)

Can be stored using the array representation (just add at the end of the array)

Use extendable arrays to expand and shrink as Needed

Heap Example

Binary Heaps
e A binary heap is a binary tree (NOT a BST) that is:
» Complete: the tree is completely filled except possibly the bottom level, which is
filled from left to right
» Satisfies the heap order property
» every node is less than or equal to its children or every node is greater than
or equal to its children
e The root node is always the smallest node or the largest, depending on the
heap order
Heap order property
e A heap provides limited ordering information
e Each path is sorted, but the subtrees are not sorted relative to each other

ADVANCED DATA STRUCTURES

A binary heap is NOT a binary search tree

Fig: These are all valid binary heaps (minimum)

Binary Heap vs Binary Search Tree

Binary Heap Binary Search Tree

(04)
'y
D

- ™
_\} min v'alue P,

24

Parent is less than both Parent is greater than left
left and right children child, less than right child

Structure property
e A binary heap is a complete tree
» All nodes are in use except for possibly the right end of the bottom row

ADVANCED DATA STRUCTURES

Examples:

complete free,
heap order 1s "max"

(™)

/‘%
/{ I ©
complete tree,
heap order 1s "min"

/

/

not complete

/ { ~ 4‘

cmnplete tree, but min
heap order 1s broken

Array Implementation of Heaps

e Root node = A[1]

e Children of A[i]

= A[2i], A[2i + 1]

» Keep track of current size N (number of nodes)

=

4

6

2

ADVANCED DATA STRUCTURES

3

~
-
4

FindMin and DeleteMin:
* FindMin:
> Return root value A[1] @
,f“‘“\

> Runtime =7 {x
(7) (® !}3

ﬂy@ 6)@

» Delete (and return)
value at root node

Maintain the Structure Property

« We now have a “Hole” at
the root
» Need to fill the hole with
another value
« When we get done, the
tree will have one less

node and must still be
complete

ADVANCED DATA STRUCTURES

Maintain the Heap Property

« The last value has lost its
node

» we need to find a new
place for it

« We can do a simple
insertion sort - like
operation to find the
correct place for it in the
free

Applications of Priority queues:

Event-driven simulation. [customers in a line, colliding particles]
Numerical computation. [reducing roundoff error]

Data compression. [Huffman codes]

Graph searching. [Dijkstra’s algorithm, Prim's algorithm]
Computational number theory. [sum of powers]

Artificial intelligence. [A* search]

Statistics. [maintain largest M values in a sequence]
Operating systems. [load balancing, interrupt handling]
Discrete optimization. [bin packing, scheduling]

Spam filtering. [Bayesian spam filter]

ADVANCED DATA STRUCTURES

The Selection Problem Event Simulation Problem:
Change state only when something happens.

* Between collisions, particles move in straight-line trajectories.
* Focus only on times when collisions occur.
e Maintain priority queue of collision events, prioritized by time.
* Remove the minimum = get next collision.

Collision prediction. Given position, velocity, and radius of a particle,
when will it collide next with a wall or another particle?

Collision resolution. If collision occurs, update colliding particle(s)
according to laws of elastic collisions.

Note: Same approach works for a broad variety of systems

Binomial Queues

A Binomial Queue is a collection of heap-ordered trees known as a forest. Each tree
is a binomial tree.

A recursive definition is:
1. A binomial tree of height 0 is a one-node tree.

2. A binomial tree, Bk, of height k is formed by attaching a binomial tree Bk-1 to the
root of another binomial tree Bk-1.

ADVANCED DATA STRUCTURES

Examples

Implementing Binomial Queues

1. Use a k-ary tree to represent each binomial tree - sibling and child pointers
2. Use a Vector to hold references to the root node of each binomial tree

3. Keep a reference to smallest root for past find min (e.g. a Heap on positions).

Use a k-ary tree to represent each binomial tree.

Use an array to hold references to root nodes of each binomial tree.

ADVANCED DATA STRUCTURES

