

Unit – VI

Objectives:

 To understand and implement finite state machines

Syllabus:

Finite State Machines: Analysis of clocked sequential circuits, state diagrams, state tables,

reduction of state tables and state assignment, design procedures. Realization of circuits

using various flip-flops. Meelay to Moore conversion and vice-versa.

Outcomes:

Students will be able to

 Understand Capabilities and limitations of finite state machine.

 Demonstrate the types of finite state machine.

 Reduce state tables using Partition technique.

 Realize finite state machine using sequential circuits.

 Convert Mealy to Moore FSM and vice-versa.

Learning Material

Introduction

There are two types of digital circuits, namely combinational and sequential circuits. In

combinational circuits, output at any instant of time is entirely dependent on the input present at

that time. A sequential circuit can be regarded as a collection of memory elements and

combinational circuits.

A sequential circuit whose behaviour depends upon the sequence in which the inputs areapplied,

is called Asynchronous Sequential Circuit. In these circuits, outputs are affectedwhenever a

change in inputs is detected.

A synchronous sequential circuit may be defined as a sequential circuit, whose state can be

affected only at discrete instants of time. The synchronization is achieved by using a timing

device, termed as System Clock Generator, which generates a periodic train of clock pulses. All

the state variables in sequential circuits are binary in nature. Therefore, total possible states for

the sequential circuit having state variables ‘n’ is 2n. Even for larger values of ‘n’, the number of

possible state is finite. Therefore, sequential circuits are referred to as finite state machines

(FSM).

General Model of FSM

A typical sequential system is composed of

• Inputs

• Internal state of the system stored in the memory elements

• Outputs

• Next state decoder

• Output decoder

The model for a general sequential circuit is shown in Fig. 6.1. The current state/present state of

the circuit is stored in the memory element. The memory can be any device capable of storing

information to specify the state of the system. Both the next state and output are functions of the

input and current state Next state = G (Input, current state), Output = F (Input, current state).

The next state of the system is determined by the present state (current state) and by the inputs.

The function of the next state decoder is to decode the external inputs and the current state of the

system (stored in memory) and to generate at its output a code called next state variable.When

the next state variables stored in the memory, they became the present state variables. This

process is called a state change.

Fig 6.1.General model of FSM

CAPABILITIES AND LIMITATIONS OF FINITE STATE MACHINES

 With ail n-state machine, we can generate a periodic sequence of u states or less than n

states,

 Certain infinite sequences cannot be produced by a finite state machine.

 The finite state machine has limited memory and due to limited memory it cannot

produce certain outputs.

CLASSIFICATION OF FSM (MEALY & MOORE MODELS)

FSM are classified into two types

(i) Mealy FSM

(ii) Moore FSM

The different models can be derived from the general model of FSM shown in Fig. 6.1.

The Mealy FSM named after G.H. Mealy, a pioneer in this field. The basic property of Mealy

FSM is that the output is a function of the present input conditions and the current state of FSM.

Fig.6.2.Mealy FSM

The Moore FSM, named after another pioneer E.F. Moore. In Moore FSMs, the output is

associated only with the current state (present state). The block diagram is shown in Fig. 6.3

Fig.6.3. Moore FSM

Comparison of Mealy and Moore machine

Moore Machine Mealy Machine

Its output is a function of present state

only y(t)=g{x(t)}

Its output is a function of present state as

well as present state input

y(t)=g{x1(t),x2(t)}

Input changes do not affect the output
Input changes may affect the output of
the circuit

It requires more number of states for
implementing same function

It requires less number of states for
implementing same function

Applications of FSM:

FSM can be designed to control processes of digital nature (discrete inerrable with but different

from the PID controllers which are used to control processes of analog nature (continuous in

both time and variable values) described by differential equations. Fig. 6.4 shows FSM used as a

controller.

Fig.6.4. Finite State FSM (FSM) used as a Controller

State Tables and State Diagram

In the general model for sequential circuits, the effect of all previous inputs on the outputs is

represented by a state of the circuit. Thus, the output of the circuit at any time depends upon its

current state and the input. These also determine the next state of the circuit. The relationship

that exists among the inputs, outputs, present states and next states can be specified by either

the state table or the state diagram.

State Diagram

In addition to graphical symbols, tables or equations, flip-flops can also be represented

graphically by a state diagram. In this diagram, a state is represented by a circle, and the

transition between states is indicated by directed lines (or arcs) connecting the circles. An

example of a state diagram is shown in Figure 6.5 below.

Figure 6.5: State Diagram

The binary number inside each circle identifies the state the circle represents. The directed lines

are labelled with two binary numbers separated by a slash (/). The input value that causes the

state transition is labelled first. The number after the slash symbol / gives the value of the output.

For example, the directed line from state 00 to 01 is labelled 1/0, meaning that, if the sequential

circuit is in a present state and the input is 1, then the next state is 01 and the output is 0. If it is

in a present state 00 and the input is 0, it will remain in that state. A directed line connecting a

circle with itself indicates that no change of state occurs. The state diagram provides exactly the

same information as the state table and is obtained directly from the state table.

State Table

The state table representation of a sequential circuit consists of three sections labelled present

state, next state and output. The present state designates the state of flip-flops before the

occurrence of a clock pulse. The next state shows the states of flip-flops after the clock pulse,

and the output section lists the value of the output variables during the present state.

Figure 6.7 State Diagram

Table 1. State table for the state diagram in figure 6.7

Present State Next State Output

Q1Q2 x = 0 x = 1 x = 0 x = 1

0 0

0 1

1 0

1 1

1 1 0 1

1 1 0 0

1 0 1 1

1 0 1 0

0 0

0 0

0 1

0 1

State Assignment

Assigning codes to different states is known as state assignment. State assignment is also known
as state encoding. The different types of state assignment are given below.

Binary code:

The Binary Method for assigning states is a common method to use. It counts up in
binary starting from 0 and going up

assigning each state the next number. S1
It will use Log2 bits to assign the

states. Binary is a common method 0

to use because it is easy to think of
what the bit code will be for each

state. Students often learn binary S2

coding as their first encoding 01
sequence because of this reason.

However, it is very inefficient. There

are a minimum number of bits used 0 0
to encode the machine, but the S3
encoding equations derived for each 10
bit are often large and complex.

Gray Code:

Gray code was named after Frank Gray. In gray code, each successive state differs from

the previous state by only one bit. With only one bit changing from each state to the next, power

consumption is reduced from binary code where multiple states can change at the same time. In

addition, This allows for a minimum number of bits used and an also a small equation for each

bit. However, the encoding only works if the machine transfers from one state to the next in

order. If the states do not travel in order, then the gray code does not work very well.

 00

1

1

S4 1

11 0

1

Design of Sequential Circuits

The design of a synchronous sequential circuit starts from a set of specifications and culminates

in a logic diagram or a list of Boolean functions from which a logic diagram can be obtained. In

contrast to a combinational logic, which is fully specified by a truth table, a sequential circuit

requires a state table for its specification. The first step in the design of sequential circuits is to

obtain a state table or an equivalence representation, such as a state diagram.

A synchronous sequential circuit is made up of flip-flops and combinational gates. The design of

the circuit consists of choosing the flip-flops and then finding the combinational structure which,

together with the flip-flops, produces a circuit that fulfils the required specifications. The number

of flip-flops is determined from the number of states needed in the circuit.

The recommended steps for the design of sequential circuits are set out below.

Design of Sequential Circuits

Example 1:

Figure 6.7. State diagram

From the state diagram, we can generate the state table shown in Table 3. Note that there is no

output section for this circuit. Two flip-flops are needed to represent the four states and are

designated Q0Q1. The input variable is labeled x.

Table 3. State table.

Present State Next State

Q0 Q1 x = 0 x = 1

0 0

0 1

1 0

1 1

0 0 0 1

1 0 0 1

1 0 1 1

1 1 0 0

We shall now derive the excitation table and the combinational structure. The table is now

arranged in a different form shown in Table 5, where the present state and input variables are

arranged in the form of a truth table. Remember, the excitable for the JK flip-flop was derive

in Table 4.

Table 4. Excitation table for JK flip-flop

Output Transitions

Q �Q(next)

Flip-flop inputs

J K

0 � 0 0 X

1 X

X 1

X 0

0 � 1

1 � 0

1 � 1

Table 5. Excitation table of the circuit

Present State Next State

 Q0 Q1

Input

 x

Flip-flop Inputs

Q0 Q1 J0K0 J1K1

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

0 0

0 1

1 0

0 1

1 0

1 1

1 1

0 0

0

1

0

1

0

1

0

1

0 X 0 X

0 X 1 X

1 X X 1

0 X X 0

X 0 0 X

X 0 1 X

X 0 X 0

X 1 X 1

In the first row of Table 5, we have a transition for flip-flop Q0 from 0 in the present state to 0 in

the next state. In Table 4 we find that a transition of states from 0 to 0 requires that input J = 0

and input K = X. So 0 and X are copied in the first row under J0 and K0 respectively. Since the

first row also shows a transition for the flip-flop Q1 from 0 in the present state to 0 in the next

state, 0 and X are copied in the first row under J1 and K1. This process is continued for each row

of the table and for each flip-flop, with the input conditions as specified in Table 4.

The simplified Boolean functions for the combinational circuit can now be derived. The input

variables are Q0, Q1, and x; the output are the variables J0, K0, J1 and K1. The information from

the truth table is plotted on the Karnaugh maps shown in Figure 6.8.

Figure 6.8 Karnaugh Maps

The flip-flop input functions are derived:

J0 = Q1*x' K0 = Q1*x

J1 = x K1 = Q0'*x' + Q0*x = Q0 x

Note: the symbol is exclusive-NOR.

The logic diagram is drawn in Figure 6.9.

Figure 6.9. Logic diagram of the sequential circuit.

Example2 : Design a sequential circuit whose state tables are specified in Table 6, using

D flip-flops.

Table 6. State table of a sequential circuit.

Present State Next State Output

Q0 Q1 x = 0 x = 1 x = 0 x = 1

0 0

0 1

1 0

1 1

0 0 0 1

0 0 1 0

1 1 1 0

0 0 0 1

0 0

0 0

0 0

0 1

Table 7. Excitation table for a D flip-flop.

Output Transitions Flip-flop inputs

Q�Q(next) D

0

0

�

�

0

1

0

1

1 � 0 0

1 � 1 1

Next step is to derive the excitation table for the design circuit, which is shown in Table 8. The

output of the circuit is labeled Z.

Table 8. Excitation table

Present State

Q0 Q1

Next State

Q0 Q1

Input

x

Flip-
Inp

D0

flop
uts

D1

Output

Z

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

0 0

0 1

0 0

1 0

1 1

1 0

0 0

0 1

0

1

0

1

0

1

0

1

0 0

0 1

0 0

1 0

1 1

1 0

0 0

0 1

0

0

0

0

0

0

0

1

Now plot the flip-flop inputs and output functions on the Karnaugh map to derive the Boolean

expressions, which is shown in Figure 6.10.

Figure 6.10. Karnaugh maps

The simplified Boolean expressions are:

D0 = Q0*Q1' + Q0'*Q1*x

D1 = Q0'*Q1'*x + Q0*Q1*x + Q0*Q1'*x'

Z = Q0*Q1*x

Finally, the logic gates diagram is shown in figure 6.11.

Figure 6.11. Logic diagram of the sequential circuit.

State Reduction

The three main methods of state reduction include: row matching, implication charts, and

successive partitioning. Row matching, which is the easiest of the three, works well for state

transition tables which have an obvious next state and output equivalences for each of the

present states? This method will generally not give the most simplified state machine available,

but its ease of use and consistently fair results is a good reason to pursue the method. The

implication chart uses a graphical grid to help find any implications or equivalences and is a

great systematic approach to reducing state machines.

Successive partitioning is almost a cross between row matching and implication chart

where both a graphical table and equivalent matching is used. Each of these methods will, in

most cases, reduce a state machine into a smaller number of states. Keep in mind that one

method may result in a simpler state machine than another. Experience will help in

understanding and determining the best method to use in any particular situation.

Partitioning Method

Partitioning Method has the following three steps:

 The first partition P1 is formed by placing two or more states in the same block of P1. If

and only if their output is identical for each input. For the example on the next page we

have P1 = (ABC)(DE), and hence the states within each block are 1-equivalent. This step

guarantees that each block in P1 satisfies condition 1.

 Successive partitions PK , K = 2, 3, 4..., l, are derived by placing two or more states in the

same block of PK if and only if for each input value their next states all lie in a single

block of PK-1. This iterative procedure is suggested by condition 2 for equivalent states.

 When PK+1 = PK, which means a partition repeats, the states in each block of PK that are

K-equivalent are (K+1)-equivalent, (K+2)-equivalent and so on. The last partition PK is

said to be an equivalence partition. Condition 2 for equivalent states is now satisfied by

PK.

Example:

State Next State

X=0 X=1

A

B

C

D

E

C/1 B/0

C/1 E/0

B/1 E/0

D/0 B/1

E/0 A/1

State Partitioning Table

Partition Next States Partition Blocks Action

P0

Output for X = 0

Output for X = 1

(ABCDE)

111 00

000 11

Separate (ABC) and (DE)

Separate (ABC) and (DE)

P
1

NS for X = 0

NS for X = 1

(ABC) (DE)

C C B D E

B E E B A

Separate (A) and (BC)

P
2

NS for X = 0

NS for X = 1

(A) (BC) (DE)

C C B D E

B E E B A

Separate (D) and (E)

P
3

NS for X = 0

NS for X = 1

(A) (BC) (D) (E)

C C B D E

B E E B A

P4 = P3 (A) (BC) (D) (E)

Partition P2 is obtained by examining each block of P1.

 In the first block of P1 the next states for A, B and C with X = 0 all lie in the same block

of P1. For X = 1 the next state of A lies in a different block of P1 than the next states of

B and C. Therefore the block (ABC) contained in P1 is split into the blocks (A) (BC) in

P2.

 In the second block of P1 the next states for D and E lie in the same block of P1 for both

X values. Hence D and E will remain in the same block of P2.

 P2 = (A) (BC) (DE), the states within each block are 2-equivalent.

Partition P3 is obtained by examining each block of P2.

 The next states of B and C lie in the same block of P2 for each input and hence the

block (BC) remains in P3.

 The next states for D and E with x = 1 now lie in different blocks of P2 and hence these

two states must be separated into different blocks of P3.

 P3 = (A) (BC) (D) (E), the states B and C are 3-equivalent.

Moore to Mealy FSM conversion

 Take a blank Mealy Machine transition table format.

 Copy all the Moore Machine transition states into this table format.

 Check the present states and their corresponding outputs in the Moore Machine state table; if

for a state Qi output is m, copy it into the output columns of the Mealy Machine state table

wherever Qi appears in the next state.

 After repeating the above process for other states, the final mealy machine transition table is

obtained.

Example:

Suppose the moore machine transition table is:

Present State Next State Output

a = 0 a = 1

-> q0 q3 q1 1

q1 q0 q3 0

q2 q2 q2 0

q3 q1 q0 1

Convert this transition table into mealy machine.

First of all take the mealy machine transition table format, i.e.,

Present

State

Next

State

a = 0 a = 1

State Output State Output

Next step is to copy Moore machine transition table states into mealy machine transition table

format

Present State

Next State

a = 0 a = 1

State Output State Output

-> q0
q3

q1

q1 q0

q3

q2 q2

q2

q3 q1

q0

Now in the Moore machine, the output of the q0 is 1. so make the output of q0 in the mealy

machine next state column of the above table is 1. same process is repeated for q1, q2 and q3.

Present State

Next State

a = 0 a = 1

State Output State Output

-> q0 q3

q1

q1 q0 1 q3

q2 q2

q2

q3 q1

q0 1

After repeating the above process for q1,q2 and q3 states, the final mealy machine transition

table is:

Present State

Next State

a = 0 a = 1

State Output State Output

-> q0 q3 1 q1 0

q1 q0 1 q3 1

q2 q2 0 q2 0

q3 q1 0 q0 1

Mealy to Moore FSM conversion

1. Determine the number of different output associated with qi in the next state column.

2. Split qi into different states according to different output associated with it. for ex. suppose in

the next state column of the above sample transition table of mealy machine, the output

associated with q1 is "0" in the first next state column and "1" in the second next state column.

so we split q1 into q10 and q11 states. similarly check others and split them.

Example:

Suppose the moore machine transition table is:

Present

State

Next State

a = 0 a = 1

Stat
e

Outpu
t

Stat
e

Outpu
t

->

q0

q3 0 q1 1

q1 q0 1 q3 0

q2 q2 1 q2 0

q3 q1 0 q0 1

Convert this transition table into mealy machine.

Solution:

After applying the conversion steps, we get two states (q1 and q2) that are associated with

different outputs (0 and 1). so we split both states into q10 , q11 and q20, q21.

Now the transition table becomes

Present State

Next State

a = 0 a = 1

State Output State Output

-> q0 q3 0 q11 1

q10 q0 1 q3 0

q11 q0 1 q3 0

q20 q21 1 q20 0

q21 q21 1 q20 0

q3 q10 0 q0 1

 Whole row of q1 is copied to q10 , q11 and whole row of q2 is copied to q20 and q21 of the
sample transition table of mealy machine.

 The outputs of the next state columns of q1 and q2 are depend on the previous output. For ex.

in the first row, q1 becomes q11 because the out of q1 is 1. in the fourth row, q2 becomes

q21 because the output of the q2 is 1. and in the subsequent column q2 becomes q20 because the

output of q2 in that column was 0. and so on.

 Now in moore machine format, we copied all the states and common output because in
moore machine, the outputs of the next state are common.

Present State

Next State
Output

a = 0 a = 1

-> q0 q3 q11 1

q10 q0 q3 0

q11 q0 q3 1

q20 q21 q20 0

q21 q21 q20 1

q3 q10 q0 0

This table is Moore machine table corresponding to the sample mealy machine.

Assignment-Cum-Tutorial Questions

A. Questions testing the remembering / understanding level of students

I) Objective Questions

1. The sequential machine is another name of .

2. The sequential circuit in which the output depends only on the present state of the flip-flop is

called a circuit.

3. The sequential circuit in which the output depends only on the present state of the flip-flop as

well as on the present input is called a circuit.

4. State diagram can also be called as .

5. The next state part of the state table is called the table.

6. The process of assigning the states of a physical device to the states of a sequential machine is
known as .

7. states are states whose functions can be accomplished by other states.

8. A FSM has more number of states.

9. If the outputs of two states are different after P-state transitions they are said to be--------- --.

II) Descriptive Questions

1. What are the Moore and Mealy machines? Compare them.

2. What are the capabilities and limitations of Finite state machines?

3. What does the word state diagram represent and explain with example?

4. Compare state diagram and state table.

4. Explain the reduction of state tables using Partition technique

5. Give various types of state assignment

6. Explain the steps involved in designing FSMs

7. Describe the process of converting Moore to Mealy FSM with an example.

8. Discuss the steps involved to convert a Mealy FSM to Moore FSM.

B. Question testing the ability of students in applying the concepts.

I) Objective Questions

1) In a sequential circuit design, state reduction is done for designing the circuit with

A. a minimum number of flip flops B. a minimum number of gates

C. a minimum number of gates and memory elements D. none of the above

2) A sequential circuit with 10 states will have

A. 10 flip flops B. 5 flip flops C. 4 flip flops D. 0 flip flops

3) In general, a sequential logic circuit consists of

A. only flip flops B. only gates

C. flip flops and combinational logic circuits D. only combinational logic circuits

4). Reduction of flip-flops in a sequential circuit is referred to as

A.Reduction B. State reduction C. Next state D. Both a and b

5). M flip-flops produces

A. 2^m-1 states B. 2^1 states C. 2^m+1 states D. 2^m states

6) Two states are said to be equal if they have exactly same

A. Inputs B. Next state C. Output D. Both a and b

7). A State which has no outgoing arcs is called a state.

8) outputs provide additional flexibility in state reduction.

9) The design of a clocked sequential requires

A. the state reduction B. the state assignment

C. the design of the next state decoder D. all of the above

II) Descriptive Questions

1. A clocked sequential circuit with single input x and single output z produces an output z=1

whenever the input x complete the sequence 1011 and overlapping is allowed.

(a) Obtain the state diagram

(b) Obtain its minimum state table and design the circuit with D flip flops.

2. A clocked sequential circuit with single input x and single output z produces an output z=1

whenever the input x complete the sequence 1011 and overlapping not allowed.

(c) Obtain the state diagram

(d) Obtain its minimum state table and design the circuit with D flip flops.

3. Realize the 4-bit serial binary adder using D flip flops.

4. For the state tables of the machines given below, find the equivalence partition and

corresponding reduced machine in standard form

5. Design a sequential circuit with minimum hardware to produce the output when the input

data stream contains 101 pattern. (consider overlapping pattern is not allowed)

6. Design a sequential circuit with minimum hardware to produce the output when the input

data stream contains 1010 pattern. (consider overlapping pattern is allowed)

7. Convert the following Mealy FSM to Moore FSM.

8. For the state diagram given below obtain the following:

(Assume your own inputs and outputs according to the state diagram)

i) State table

ii) Next state and output functions

iii) Sequential circuit using logic gates and T-flip-flops.

C. Questions testing the analyzing / evaluating ability of students

1. Design a finite state machine (FSM) for a counter that counts through the 3-bit prime

numbers downwards. Assume the counter starts with initial prime value set to 010 as its first

3 bit prime number. You need to provide the state transition table and the state transition

diagram. Assume that the state is stored in three D-FFs.

2. Design a 2-input 2-output synchronous sequential circuit which produces an output Z=1,

whenever any of the following input sequence-1101,1011, or 1001- occurs. The circuit resets

to the initial state after a 1 output is generated.

3) Construct Moore machine whose output is 1 if the last five inputs were 11010 using JK flip-

flops.

4) Simplify the state table given in the figure below.

	Unit – VI
	Objectives:
	Syllabus:
	Outcomes:

	Learning Material
	Introduction
	General Model of FSM
	CAPABILITIES AND LIMITATIONS OF FINITE STATE MACHINES
	CLASSIFICATION OF FSM (MEALY & MOORE MODELS)
	Comparison of Mealy and Moore machine
	State Tables and State Diagram
	State Diagram
	State Table
	State Assignment
	Design of Sequential Circuits
	Design of Sequential Circuits Example 1:
	State Reduction
	Partitioning Method
	State Partitioning Table
	Moore to Mealy FSM conversion
	Mealy to Moore FSM conversion

	Assignment-Cum-Tutorial Questions
	A. Questions testing the remembering / understanding level of students
	I) Objective Questions

	B. Question testing the ability of students in applying the concepts.
	I) Objective Questions

	II) Descriptive Questions

