
UNIT-IV    Combinational Logic 
Introduction: 

The signals are usually represented by discrete bands of analog levels in digital 

electronic circuits or digital electronics instead of continuous ranges represented in 

analogue electronics. The simple electronic representations of Boolean logic 

functions, large assemblies of logic gates are typically used to make digital electronic 

circuits. In digital circuit theory, the circuits, thus formed from logic gates are used to 

generate outputs based on the input logic. Hence, these circuits are called as logic 

circuits and are classified into two types such as sequential logic and combinational 

logic circuits. 

 
The logic gates can be defined as simple physical devices used to implement the 

Boolean function. Logic gates are used to perform a logical operation with one or 

more inputs and generates a logical output. These logic circuits are formed by 

connecting one or more logic gates together. These logic circuits are classified into 

two types: sequential logic circuits and combinational logic circuits. 

 

 Combinational Logic Circuit Definition 

The combinational logic circuits or time-independent logic circuits in digital circuit 

theory can be defined as a type of digital logic circuit implemented using Boolean 

circuits, where the output of logic circuit is a pure function of the present inputs only. 

The combinational logic circuit operation is instantaneous and these circuits do not 

have the memory or feedback loops. 

This combinational logic is in contrast compared to the sequential logic circuit in 

which the output depends on both present inputs and also on the previous inputs. 

Thus, we can say that combinational logic does not have memory, whereas sequential 

logic stores previous input in its memory. Hence, if the input of combinational logic 

circuit changes, then the output also changes. 
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 Classification of Combinational Logic 

 

 

 
 

 

The combinational logic circuits can be classified into various types based on the 

purpose of usage, such as arithmetic & logical functions, data transmission, and code 

converters. To solve the arithmetic and logical functions we generally use adders, 

subtractors, and comparators which are generally realized by combining various logic 

gates called as combinational logic circuits. Similarly, for data transmission, we use 

multiplexers, demultiplexers, encoders, and decoders which are also realized using 

combinational logic. The code converters such as binary, BCD, and 7-segment are 

designed using various logic circuits. 

 

 ANALYSIS OF COMBINATIONAL LOGIC FUNCTIONS 

There are 3 ways to represent combinational logic functions 

1. Logic gates - Logic gates are used as the building blocks in the design of combinational 

logic circuits. These gates are the AND, OR, NOT, NAND, NOR gates. 

2. Boolean Algebra - Boolean Algebra specifies the relationship between Boolean variables 

which is used to design digital circuits using Logic Gates. Every logic circuit can be 

completely described using the Boolean operations, because the OR, AND gate, and NOT 

gates are the basic building blocks of digital systems. 

3. Truth table - A truth table is used in logic to compute the functional values of logical 

expressions on each combination of values taken by their logical variables. If a 

combination logic block have more than one bit output, each single-bit output gets its 

own truth-table. Often they are combined into a single table with multiple output 

columns, one for each single-bit output. 

 Design procedure 

The design procedure for combinational logic circuits starts with the problem specification and 

comprises the following steps: 
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1. Determine required number of inputs and outputs from the specifications. 

2. Derive the truth table for each of the outputs based on their relationships to the input. 

3. Simplify the boolean expression for each output. Use Karnaugh Maps or Boolean algebra. 

4. Draw a logic diagram that represents the simplified Boolean expression. Verify the design 

by analysing or simulating the circuit. 

EXAMPLE:   Is input greater than or equal to 5? 

Specification 

Design a circuit that has a 3-bit binary input and a single output (Z) specified as follows: 

 Z = 0, when the input is less than 510 

 Z = 1, otherwise 

1. Determine the inputs and Outputs 

1. Label the inputs (3 bits) as A, B, C 

 A is the most significant bit 

 C is the least significant bit 

2. The output (1 bit) is Z 

 Z = 1 -> 1012, 1102, 1112 

 Z = 0 -> other inputs 

2. Derive the Truth Table 

Truth Table 

A B C Z 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 
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3. Simplify the Boolean Expression 

From the truth table, we use one of the following 2 methods to obtain the simplified 

boolean expression 

o Use Karnaugh Map to minimise the logic or 

o From the truth table, get the Canonical Sum of Products boolean expression. 

Z = A * ~B * C + A * B * ~C + A * B * C 

Use Boolean Algebra to simplify the boolean expression to: 

Z = (B + C) * A 

4. Draw the logic diagram 

Draw a logic diagram that represents the simplified Boolean expression. Verify the design 

by analysing or simulating the circuit. 

Bool Expression 

Z = (B + C) * A 

Truth Table 

A B C Z 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

 A Half Adder Circuit 

A half adder is a logical circuit that performs an addition operation on two 

binary digits. The half adder produces a sum and a carry value which are 

both binary digits. 

Half Adder Truth Table with Carry-Out 

Symbol Truth Table 

B A SUM CARRY 

0 0 0 0 
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0 1 1 0 

1 0 1 0 

1 1 0 1 

From the truth table of the half adder we can see that the SUM (S) output is 

the result of the Exclusive-OR gate and the Carry-out (Cout) is the result of 

the AND gate. Then the Boolean expression for a half adder is as follows. 

For the SUM bit: 

SUM = A XOR B = A ⊕ B 

For the CARRY bit: 

CARRY = A AND B = A.B 

One major disadvantage of the Half Adder circuit when used as a binary 

adder, is that there is no provision for a “Carry-in” from the previous circuit 

when adding together multiple data bits. 

 Full Adder Truth Table with Carry 

Symbol Truth Table 

 

C-in B A Sum 
C-

out 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 



1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

Then the Boolean expression for a full adder is as follows. 

For the SUM (S) bit: 

SUM = (A XOR B) XOR Cin = (A ⊕ B) ⊕ Cin 

For the CARRY-OUT (Cout) bit: 

CARRY-OUT = A AND B OR Cin(A XOR B) = A.B + Cin(A ⊕ B) 

 An n-bit Binary Adder 

We have seen above that single 1-bit binary adders can be constructed from 

basic logic gates. But what if we wanted to add together two n-bit numbers, 

then n number of 1-bit full adders need to be connected or “cascaded” 
together to produce what is known as a Ripple Carry Adder. 

A “ripple carry adder” is simply “n”, 1-bit full adders cascaded together 

with each full adder representing a single weighted column in a long binary 

addition. It is called a ripple carry adder because the carry signals produce a 

“ripple” effect through the binary adder from right to left, (LSB to MSB). 

For example, suppose we want to “add” together two 4-bit numbers, the two 

outputs of the first full adder will provide the first place digit sum (S) of the 

addition plus a carry-out bit that acts as the carry-in digit of the next binary 

adder. 

The second binary adder in the chain also produces a summed output (the 

2nd bit) plus another carry-out bit and we can keep adding more full adders 

to the combination to add larger numbers, linking the carry bit output from 

the first full binary adder to the next full adder, and so forth. An example of 

a 4-bit adder is given below. 



A 4-bit Ripple Adder

 

 A Half Subtractor Circuit 

A half subtractor is a logical circuit that performs a subtraction operation on two 

binary digits. The half subtractor produces a sum and a borrow bit for the next stage. 

Half Subtractor with Borrow-out 

 

Symbol Truth Table 

 

Y X DIFFERENCE BORROW 

0 0 0 0 

0 1 1 0 

1 0 1 1 

1 1 0 0 



From the truth table of the half subtractor we can see that the DIFFERENCE (D) 

output is the result of the Exclusive-OR gate and the Borrow-out (Bout) is the result 

of the NOT-AND combination. Then the Boolean expression for a half subtractor is 

as follows. 

For the DIFFERENCE bit: 

D = X XOR Y = X ⊕ Y 

For the BORROW bit 

B = not-X AND Y = X.Y 

If we compare the Boolean expressions of the half subtractor with a half adder, we 

can see that the two expressions for the SUM (adder) and DIFFERENCE (subtractor) 

are exactly the same and so they should be because of the Exclusive-OR gate 

function. The two Boolean expressions for the binary subtractor BORROW is also 

very similar to that for the adders CARRY. Then all that is needed to convert a half 

adder to a half subtractor is the inversion of the minuend input X. 

One major disadvantage of the Half Subtractor circuit when used as a binary 

subtractor, is that there is no provision for a “Borrow-in” from the previous circuit 

when subtracting multiple data bits from each other. Then we need to produce what is 

called a “full binary subtractor” circuit to take into account this borrow-in input from 

a previous circuit. 

 A Full Binary Subtractor Circuit 

The main difference between the Full Subtractor and the previous Half 

Subtractor circuit is that a full subtractor has three inputs. The two single bit data 

inputs X (minuend) and Y (subtrahend) the same as before plus an 

additional Borrow-in (B-in) input to receive the borrow generated by the subtraction 

process from a previous stage as shown below. 

Full Subtractor Block Diagram 

 

Then the combinational circuit of a “full subtractor” performs the operation of 

subtraction on three binary bits producing outputs for the difference Dand borrow B-

out. Just like the binary adder circuit, the full subtractor can also be thought of as two 

half subtractors connected together, with the first half subtractor passing its borrow to 

the second half subtractor as follows. 

 



Full Subtractor Logic Diagram 

 

As the full subtractor circuit above represents two half subtractors cascaded together, 

the truth table for the full subtractor will have eight different input combinations as 

there are three input variables, the data bits and the Borrow-in, BIN input. Also 

includes the difference output, D and the Borrow-out, BOUT bit. 

Full Subtractor Truth Table 

Symbol Truth Table 

 

B-

in 
Y X Diff. B-out 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 1 

0 1 1 0 0 

1 0 0 1 1 

1 0 1 0 0 

1 1 0 0 1 

1 1 1 1 1 

Then the Boolean expression for a full subtractor is as follows. 

For the DIFFERENCE (D) bit: 



D = (X.Y.BIN) + (X.Y.BIN) + (X.Y.BIN) + (X.Y.BIN) 

which can be simplified too: 

D = (X XOR Y) XOR BIN = (X ⊕ Y) ⊕ BIN 

For the BORROW OUT (BOUT) bit: 

BOUT = (X.Y.BIN) + (X.Y.BIN) + (X.Y.BIN) + (X.Y.BIN) 

which will also simplify too: 

BOUT = X AND Y OR (X XOR Y)BIN = X.Y + (X ⊕ Y)BIN 

 An n-bit Binary Subtractor 

As with the binary adder, we can also have n number of 1-bit full binary subtractor 

connected or “cascaded” together to subtract two parallel n-bitnumbers from each 

other. For example two 4-bit binary numbers. We said before that the only difference 

between a full adder and a full subtractor was the inversion of one of the inputs. 

So by using an n-bit adder and n number of inverters (NOT Gates), the process of 

subtraction becomes an addition as we can use two’s complement notation on all the 

bits in the subtrahend and setting the carry input of the least significant bit to a logic 

“1” (HIGH). 

Binary Subtractor using 2’s Complement 

 

 

 

 

 

 

 



 COMPARATOR 

1-bit Digital Comparator Circuit 

 

  

Then the operation of a 1-bit digital comparator is given in the following 

Truth Table. 

Digital Comparator Truth Table 

Inputs Outputs 

B A A > B A = B A < B 

0 0 0 1 0 

0 1 1 0 0 

1 0 0 0 1 

1 1 0 1 0 

You may notice two distinct features about the comparator from the above 

truth table. Firstly, the circuit does not distinguish between either two “0” or 

two “1”‘s as an output A = B is produced when they are both equal, either A 

= B = “0” or A = B = “1”. Secondly, the output condition for A = 

B resembles that of a commonly available logic gate, the Exclusive-

NOR or Ex-NOR function (equivalence) on each of the n-

bits giving: Q = A ⊕ B 



Digital comparators actually use Exclusive-NOR gates within their design 

for comparing their respective pairs of bits. When we are comparing two 

binary or BCD values or variables against each other, we are comparing the 

“magnitude” of these values, a logic “0” against a logic “1” which is where 

the term Magnitude Comparator comes from. 

As well as comparing individual bits, we can design larger bit comparators 

by cascading together n of these and produce a n-bit comparator just as we 

did for the n-bit adder in the previous tutorial. Multi-bit comparators can be 

constructed to compare whole binary or BCD words to produce an output if 

one word is larger, equal to or less than the other. 

A very good example of this is the 4-bit Magnitude Comparator. Here, 

two 4-bit words (“nibbles”) are compared to each other to produce the 

relevant output with one word connected to inputs A and the other to be 

compared against connected to input B as shown below. 

 4-bit Magnitude Comparator 

 

 

 Binary Decoder 

Binary Decoder is another combinational logic circuit constructed from individual 

logic gates and is the exact opposite to that of an Encoder 

 

 



 
  
This simple example above of a 2-to-4 line binary decoder consists of an array of 

four AND gates. The 2 binary inputs labelled A and B are decoded into one of 4 

outputs, hence the description of 2-to-4 binary decoder. Each output represents one of 

the miniterms of the 2 input variables, (each output = a miniterm). 

The binary inputs A and B determine which output line from Q0 to Q3 is “HIGH” at 

logic level “1” while the remaining outputs are held “LOW” at logic “0” so only one 

output can be active (HIGH) at any one time. Therefore, whichever output line is 

“HIGH” identifies the binary code present at the input, in other words it “de-codes” 
the binary input. 

Some binary decoders have an additional input pin labelled “Enable” that controls the 

outputs from the device. This extra input allows the decoders outputs to be turned 

“ON” or “OFF” as required. These types of binary decoders are commonly used as 

“memory address decoders” in microprocessor memory applications. 

We have seen that a 2-to-4 line binary decoder (TTL 74155) can be used for decoding 

any 2-bit binary code to provide four outputs, one for each possible input 

combination. However, sometimes it is required to have a Binary Decoder with a 

number of outputs greater than is available, so by adding more inputs, the decoder can 

potentially provide 2n more outputs. 

So for example, a decoder with 3 binary inputs ( n = 3 ), would produce a 3-to-8 line 

decoder (TTL 74138) and 4 inputs ( n = 4 ) would produce a 4-to-16 line decoder 

(TTL 74154) and so on. But a decoder can also have less than 2noutputs such as the 

BCD to seven-segment decoder (TTL 7447) which has 4 inputs and only 7 active 

outputs to drive a display rather than the full 16 (24) outputs as you would expect. 

Here a much larger 4 (3 data plus 1 enable) to 16 line binary decoder has been 

implemented using two smaller 3-to-8 decoders. 

 

 



A 4-to-16 Binary Decoder Configuration 

 
 

 
 Inputs A, B, C are used to select which output on either decoder will be at 

logic “1” (HIGH) and input D is used with the enable input to select which encoder 

either the first or second will output the “1”. 

 Encoder 

Encoders take all of their data inputs one at a time and converts them into an 

equivalent binary code at its output 

 
 
Unlike a multiplexer that selects one individual data input line and then sends that 

data to a single output line or switch, Digital Encoder more commonly called 

a Binary Encoder takes ALL its data inputs one at a time and then converts them into 

a single encoded output. So we can say that a binary encoder, is a multi-input 

combinational logic circuit that converts the logic level “1” data at its inputs into an 

equivalent binary code at its output. 



Generally, digital encoders produce outputs of 2-bit, 3-bit or 4-bit codes depending 

upon the number of data input lines. An “n-bit” binary encoder has 2n input lines 

and n-bit output lines with common types that include 4-to-2, 8-to-3 and 16-to-4 line 

configurations. 

The output lines of a digital encoder generate the binary equivalent of the input line 

whose value is equal to “1” and are available to encode either a decimal or 

hexadecimal input pattern to typically a binary or “B.C.D” (binary coded decimal) 

output code. 

4-to-2 Bit Binary Encoder 

 
 

 
 One of the main disadvantages of standard digital encoders is that they can 

generate the wrong output code when there is more than one input present at logic 

level “1”. For example, if we make inputs D1 and D2 HIGH at logic “1” both at the 

same time, the resulting output is neither at “01” or at “10” but will be at “11” which 

is an output binary number that is different to the actual input present. Also, an output 

code of all logic “0”s can be generated when all of its inputs are at “0” OR when 

input D0 is equal to one. 

One simple way to overcome this problem is to “Prioritise” the level of each input 

pin. So if there is more than one input at logic level “1” at the same time, the actual 

output code would only correspond to the input with the highest designated priority. 

Then this type of digital encoder is known commonly as a Priority Encoder or P-

encoder for short. 

 Priority Encoder 

The Priority Encoder solves the problems mentioned above by allocating a priority 

level to each input. The priority encoders output corresponds to the currently active 

input which has the highest priority. So when an input with a higher priority is 

present, all other inputs with a lower priority will be ignored. 

 

It's applications includes 

 used to control interrupt requests by acting on the highest priority request 



 to encode the output of a flash analog to digital converter 

 

The priority encoder comes in many different forms with an example of an 8-input 

priority encoder along with its truth table shown below. 

8-to-3 Bit Priority Encoder 

 
 

 
 Priority encoders are available in standard IC form and the TTL 74LS148 is an 

8-to-3 bit priority encoder which has eight active LOW (logic “0”) inputs and 

provides a 3-bit code of the highest ranked input at its output. 

Priority encoders output the highest order input first for example, if input lines “D2“, 
“D3” and “D5” are applied simultaneously the output code would be for input “D5” 
(“101”) as this has the highest order out of the 3 inputs. Once input “D5” had been 

removed the next highest output code would be for input “D3” (“011”), and so on. 

The truth table for a 8-to-3 bit priority encoder is given as: 

Digital Inputs Binary Output 

D7 D6 D5 D4 D3 D2 D1 D0 Q2 Q1 Q0 

0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 X 0 0 1 

0 0 0 0 0 1 X X 0 1 0 
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0 0 0 0 1 X X X 0 1 1 

0 0 0 1 X X X X 1 0 0 

0 0 1 X X X X X 1 0 1 

0 1 X X X X X X 1 1 0 

1 X X X X X X X 1 1 1 

Where X equals “dont care”, that is logic “0” or a logic “1”. 

From this truth table, the Boolean expression for the encoder above with data 

inputs D0 to D7 and outputs Q0, Q1, Q2 is given as: 

Output Q0

 

 

Output Q1 

 

Output Q2 

 



Then the final Boolean expression for the priority encoder including the zero inputs is 

defined as: 

Priority Encoder Output Expression 

 
In practice these zero inputs would be ignored allowing the implementation of the 

final Boolean expression for the outputs of the 8-to-3 priority encoder. We can 

constructed a simple encoder from the expression above using individual OR gates as 

follows. 

Digital Encoder using Logic Gates 

 

 
 

4 to 2 priority encoder 

A 4-to-2 priority encoder takes 4 input bits and produces 2 output bits. In this truth 

table, for all the non-explicitly defined input combinations (i.e. inputs containing 2, 3, 

or 4 high bits) the lower priority bits are shown as don't cares (X). Similarly when the 

inputs are 0000, the outputs are not valid and therefore they are XX. 

Truth Table 

I3 I2 I1 I0 O1 O0 

0 0 0 0 X X 



0 0 0 1 0 0 

0 0 1 X 0 1 

0 1 X X 1 0 

1 X X X 1 1 

From the above truth table, we can obtain the full truth table required for our design. 

Truth Table 

I3 I2 I1 I0 O1 O0 

0 0 0 0 X X 

0 0 0 1 0 0 

0 0 1 0 0 1 

0 0 1 1 0 1 

0 1 0 0 1 0 

0 1 0 1 1 0 

0 1 1 0 1 0 

0 1 1 1 1 0 

1 0 0 0 1 1 

1 0 0 1 1 1 

1 0 1 0 1 1 



1 0 1 1 1 1 

1 1 0 0 1 1 

1 1 0 1 1 1 

1 1 1 0 1 1 

1 1 1 1 1 1 

From this truth table, we use the Karnaugh Map to minimise the logic to the 

following boolean expressions: 

 O1 = I2 + I3 

 O0 = ~I2 * I1 + I3 

Implementation of the 4 to 2 priority encoder using combinational logic circuits. 

 The Multiplexer 

The multiplexer is a combinational logic circuit designed to switch one of 

several input lines to a single common output line 

 
Multiplexing is the generic term used to describe the operation of sending one 
or more analogue or digital signals over a common transmission line at 
different times or speeds and as such, the device we use to do just that is 
called a Multiplexer. 

The multiplexer, shortened to “MUX” or “MPX”, is a combinational logic circuit 
designed to switch one of several input lines through to a single common 
output line by the application of a control signal. Multiplexers operate like very 
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fast acting multiple position rotary switches connecting or controlling multiple 
input lines called “channels” one at a time to the output. 

Multiplexers, or MUX’s, can be either digital circuits made from high speed 
logic gates used to switch digital or binary data or they can be analogue types 
using transistors, MOSFET’s or relays to switch one of the voltage or current 
inputs through to a single output. 

The most basic type of multiplexer device is that of a one-way rotary switch as 
shown. 

Basic Multiplexing Switch 

 

 
Generally, the selection of each input line in a multiplexer is controlled by an 
additional set of inputs called control lines and according to the binary 
condition of these control inputs, either “HIGH” or “LOW” the appropriate data 
input is connected directly to the output. Normally, a multiplexer has an even 
number of 2n data input lines and a number of “control” inputs that correspond 
with the number of data inputs. 

Note that multiplexers are different in operation to Encoders. Encoders are 
able to switch an n-bit input pattern to multiple output lines that represent the 
binary coded (BCD) output equivalent of the active input. 



4 Channel Multiplexer using logic gates

 

 The Demultiplexer 

The demultiplexer is a combinational logic circuit designed to switch one common 

input line to one of several seperate output line 

 

 
 The data distributor, known more commonly as a Demultiplexer or “Demux” 
for short, is the exact opposite of the Multiplexer we saw in the previous tutorial. 

The demultiplexer takes one single input data line and then switches it to any one of a 

number of individual output lines one at a time. The demultiplexerconverts a serial 

data signal at the input to a parallel data at its output lines as shown below. 

1-to-4 Channel De-multiplexer 



 
 

S1 S0 A B C D 

0 0 F O O O 

0 1 O F O O 

1 0 O O F O 

1 1 O O O F 

 

The Boolean expression for this 1-to-4 Demultiplexer above with outputs Ato D and 

data select lines a, b is given as: 

F =  

The function of the Demultiplexer is to switch one common data input line to any 

one of the 4 output data lines A to D in our example above. As with the multiplexer 

the individual solid state switches are selected by the binary input address code on the 

output select pins “a” and “b” as shown. 

Demultiplexer Output Line Selection 

 

As with the previous multiplexer circuit, adding more address line inputs it is possible 

to switch more outputs giving a 1-to-2n data line outputs. 

Some standard demultiplexer IC´s also have an additional “enable output” pin which 

disables or prevents the input from being passed to the selected output. Also some 

have latches built into their outputs to maintain the output logic level after the address 

inputs have been changed. 

However, in standard decoder type circuits the address input will determine which 

single data output will have the same value as the data input with all other data 

outputs having the value of logic “0”. 



The implementation of the Boolean expression above using individual logic gates 

would require the use of six individual gates consisting of AND and NOT gates as 

shown. 

4 Channel Demultiplexer using Logic Gates 

. 

 

 

 

 

 

 

 

 

 CODE CONVERTERS 
 

Converting Binary to Gray Code – 

B3 B2 B1 B0 G3 G2 G1 G0 

0 0 0 0     

0 0 0 1     

0 0 1 0     

0 0 1 1     

0 1 0 0     

0 1 0 1     

0 1 1 0     

0 1 1 1     

1 0 0 0     



1 0 0 1     

1 0 1 0     

1 0 1 1     

1 1 0 0     

1 1 0 1     

1 1 1 0     

1 1 1 1     

 

 

 

 

Converting Gray to Binary Code – 

G3 G2 G1 G0 B3 B2 B1 B0 

    0 0 0 0 

    0 0 0 1 

    0 0 1 0 

    0 0 1 1 

    0 1 0 0 

    0 1 0 1 

    0 1 1 0 

    0 1 1 1 

    1 0 0 0 

    1 0 0 1 

    1 0 1 0 



    1 0 1 1 

    1 1 0 0 

    1 1 0 1 

    1 1 1 0 

    1 1 1 1 

 

 

Converting BCD(8421) to Excess-3 – 

A B C D W X Y Z 

0 0 0 0 0 0 1 1 

0 0 0 1 0 1 0 0 

0 0 1 0 0 1 0 1 

0 0 1 1 0 1 1 0 

0 1 0 0 0 1 1 1 

0 1 0 1 1 0 0 0 

0 1 1 0 1 0 0 1 

0 1 1 1 1 0 1 0 

1 0 0 0 1 0 1 1 

1 0 0 1 1 1 0 0 



1 0 1 0 X X X X 

1 0 1 1 X X X X 

1 1 0 0 X X X X 

1 1 0 1 X X X X 

1 1 1 0 X X X X 

1 1 1 1 X X X X 

 

Converting Excess-3 to BCD(8421) – 

W X Y Z A B C D 

0 0 0 0 X X X X 

0 0 0 1 X X X X 

0 0 1 0 X X X X 

0 0 1 1 0 0 0 0 

0 1 0 0 0 0 0 1 

0 1 0 1 0 0 1 0 

0 1 1 0 0 0 1 1 

0 1 1 1 0 1 0 0 

1 0 0 0 0 1 0 1 

1 0 0 1 0 1 1 0 



1 0 1 0 0 1 1 1 

1 0 1 1 1 0 0 0 

1 1 0 0 1 0 0 1 

1 1 0 1 X X X X 

1 1 1 0 X X X X 

1 1 1 1 X X X X 

 
 

 

 

 

 

 

 

 BCD TO 7-SEGMENT DECODER 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

CIRCUIT DIAGRAM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Binary Multiplier Circuit  

Let us consider two unsigned 2 bit binary numbers A and B to generalize the 
multiplication process. The multiplicand A is equal to A1A0 and the multiplier 
B is equal to B1B0. The figure below shows the multiplication process of two 2 
bit binary numbers. 
 

 

 
This process involves the multiplication of two digits and the addition of digits 
with or without carry. After the multiplication of the each bit to the multiplicand, 
partial products are generated, and then these products are added to produce 
the total sum which represents the binary multiplication value. 

This multiplication is implemented by combinational circuit such that the 
multiplication is performed with AND gates whereas the addition is carried out 



by using half adders as shown in figure.

 

The first partial product is obtained by the AND gate which is nothing but a 
least significant bit of the multiplication result. Since the second partial product 
is shifted to the left position, the first partial second term and second partial 
product first term is added by half adder and produce the sum output along 
with the carry out. 

This carry out is added at the next half adder as an input as shown in figure. 
Likewise, it produces the multiplication result of two binary numbers by using 
the simple circuit configuration. The multiplication of the two 2 bit number 
results a 4-bit binary number. 

Let us consider two unsigned 4 bit numbers multiplication in which the 
multiplicand, A is equal to A3A2 A1A0 and the multiplier B is equal to 
B3B2B1B0. The partial products are produced depending on each multiplier 
bit multiplied by the multiplicand. 

Each partial product consists of four product terms and these are shifted to 
the left relative to the previous partial product as shown in figure. All these 
partial products are added to produce the 8 bit product. 



 

 

The logic circuit for the 4× 4 binary multiplication can be implemented by 
using three binary full adders along with AND gates. 

In the above operation the first partial product is obtained by multiplying B0 
with A3A2 A1A0, the second partial product is formed by multiplying B1 with 
A3A2 A1A0, likewise for 3rd and 4th partial products. So these partial 
products can be implemented with AND gates as shown in figure. 

These partial products are then added by using 4 bit parallel adder. The three 
most significant bits of first partial product with carry (considered as zero) are 
added with second partial term in the first full adder. 

Then the result is added to the next partial product with carry out and it goes 
on till the final partial product, finally it produces 8 bit sum which indicates the 
multiplication value of the two binary numbers. 

https://www.electronicshub.org/wp-content/uploads/2015/06/4-bit-multiplication.jpg
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 Decimal Adder / BCD Adder: 

Decimal Adder – The digital systems handles the decimal number in the form 
of binary coded decimal numbers (BCD). A BCD adder is a circuit that adds 
two BCD digits and produces a sum digit also in BCD. BCD numbers use 10 
digits, 0 to 9 which are represented in the binary form 0 0 0 0 to 1 0 0 1, i.e. 
each BCD digit is represented as a 4-bit binary number. When we write BCD 
number say 526, it can be represented as 

 

Here, we should note that BCD cannot be greater than 9. 

The addition of two BCD numbers can be best understood by considering the 
three cases that occur when two BCD digits are added. 

Sum Equals 9 or less with carry 0 

Let us consider additions of 3 and 6 in BCD. 

https://www.electronicshub.org/wp-content/uploads/2015/06/4-bit-binary-multiplier.jpg
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The addition is carried out as in normal binary addition and the sum is 1 0 0 1, 

which is BCD code for 9. 

Sum greater than 9 with carry 0 

The sum 1 1 1 0 is an invalid BCD number. This has occurred because the 
sum of the two digits exceeds 9. Whenever this occurs the sum has to be 
corrected by the addition of six (0110) in the invalid BCD number, as shown 
below 

 

After addition of 6 carry is produced into the second decimal position. Sum 
equals 9 or less with carry 1 

Let us consider addition of 8 and 9 in BCD 

http://www.eeeguide.com/wp-content/uploads/2016/09/Decimal-Adder-2.jpg
http://www.eeeguide.com/wp-content/uploads/2016/09/Decimal-Adder-1.jpg


 

In this, case, result (0001 0001) is valid BCD number, but it is incorrect. To 
get the correct BCD result correction factor of 6 has to be added to the least 
significant digit sum, as shown below 

 

Going through these three cases of BCD addition we can summarise the BCD 
addition procedure as follows : 

1. Add two BCD numbers using ordina7 binary addition. 

2. If four-bit sum is equal to or less than 9, no correction is needed. The sum is in 
proper BCD form. 

3. If the four-bit sum is greater than 9 or if a carry is generated from the four-bit 
sum, the sum is invalid. 

4. To correct the invalid sum, add 01102 to the four-bit sum. If a carry results from 
this addition, add it to the next higher-order BCD digit. 

5. Thus to implement BCD adder we require : 

6. 4-bit binary adder for initial addition 

7. Logic circuit to detect sum greater than 9 and 

8. One more 4-bit adder to add 01102 in the sum if sum is greater than 9 or carry 
is 1. 

The logic circuit to detect sum greater than 9 can be determined by simplifying 
the boolean expression of given truth table. 
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With this design information we can draw the block diagram of BCD adder, as 
shown in the Fig. 3.32. 

 

 

 

 

 

 

 

 

 

 

 

As shown in the Fig. 3.32 , the two BCD numbers, together with input carry, are first 
added in the top 4-bit binary adder to produce a binary sum. When the output carry is 
equal to zero (i.e. when sum ≤ 9 and Cout = 0) nothing (zero) is added to the binary 
sum. When it is equal to one (i.e. when sum > 9 or Cout = 1), binary0110 is added to 
the binary sum through the bottom 4-bit binary adder. The output carry generated 
from the bottom binary adder can be ignored, since it supplies information already 
available at the output-carry terminal. 
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