UNIT-VI
EM Waves characteristics

Plane waves: Refraction & reflection

Normal and oblique incidences: for prefect conductors and perfect dielectrics
Brewster angle, critical angle and total internal reflection

Surface impedance, poynting vector & poynting theorem

Power loss in plane conductors, problems
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REFLECTION AND REFRACTION OF PLANE WAVES:

At Marmal Incidence:

When a plane wave from one medium meets a different medium, it is partly reflected and
partly transmitted. The proportion of the wave reflected or transmitted depends on (2,1, 0]

of the two medial invelved.

Suppose a plane wave propagating among the +z direction 15 meident normally on the
houndary # =0 between medium | {z < 0) with parameters £, o, oy and mediom 2 (2 < 0)
with parameters ,,6;, Uy The subscripts L rand t represent the incident, reflected and

transmirted waves.

Medium | (=, &1L,

T

i

HI * =

(incudent wave)

i

:lcﬂmtcd@ﬂ

Incident wave:

+:-*=

Medium | (oa 8. 1,)

" E

H —l—'ﬁ'
i

{transmitted wave)

W
P

L

(E, H) is travelling along +a, in medium, The time factor ¢ is suppressed and we have

E (z)=E_ " ax
then
H F EJ.cl £
u{f} = HEE_'?' ay =—Le " ay
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Reflected Wave:
(B, H.) iz travelling along a, in medium



1. If

i

E (z)=E ¢ ax=—""e"ay

Ihen
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H, {z)= H,qﬂ"“’l:— .:a_v:l =——L Mgy
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Where Ew has been assumed to be along a.

Tramsmitted wave:

(Ey, Hy) 15 fravelling along +a, in medium
2. If
E, (zh=E_ e " ax

Then
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Hizi=H e May= ”":' e ay

The tetal hields in medium | and medium 2 can be wrillen as follows:

E=E+EH =H, +H,

E,=E.H,=H,

Al the interface » =0, the boundary conditions reguire that the tangential compoenents of E

and H st be contimious.
Arz=10

E,(0)+E, (0)=E (0) > +E_+E, +E,
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T,0)+ T(0)T,(0) > —(E, )=
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From ihe above two eqns, we oblain

—_ f'ﬂ:l|-|'|_I

Fra = Fu —il)
n, +no,

sl

— 2 —

Fi 2 Fo (D)
n. +n,

We know define the rellection coeflicient I and the rransmission coelTicient © rem (1) and

(2).
I=E, ==—
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g 2n
and T =—=2 s’




We have
1. 1+'=%
2. Both T and 7 are dimensionless and may be complex.
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The above caze considered 12 a general on. When medium 1 12 perfect dielectric {logs less,
=0} and medium 2 is a perfect conductor (o, = 2 ) the wave 15 totally reflected and N2 =0,

I'=-1and t=0. Standing waves are formed in the medium | because of combination of
meident and reflected waves. The standing wave in medium 1 as

Ew=Eu+En =(Ene™z+ Eroe™ )a,
Bur

[N = %’“ = —1,..1'] - ﬂ,fxl = U,?_‘lh =J'ﬁ|

Hence, Eo, = -E_ [gf-'*ﬂ —1*—"’?"15*
or B =-2E, sin fiza.

Thus, FE;= Re( £, &™)

Or Ei = 2E, sin ff,zsin wra. — (3)

i

By takimg sinmlar steps, the magnetic field component of the wave 1z given by

H = 2E,, cos f 7 eos w:rEJ. —3 (4)
™
i - ion (3) i . TT3TT
The standing wave in equation (33 is presented in Ogure below for =0, EETE and s
o, where T =E_
w

When both the media are loss less 1.e &) = 72 =0, Inthis case, n; and n; are real and so are [
aml T

Case (i):

[fn2 = nl, I'<0. There is a standing wave in medium 1 and a transmitted wave in medium
2, The amplitudes of incident and reflected waves are not equal in magniude, The

c
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The minimum values of |E ,| ogeur at

[ Zmin ~(2n w2

Zmin = -{2“2;1}” = —(2n+ I]ilm = 0,1,2.... = (6)
|

Case (ii):

If 1y <y, T <0, the locations of |E,
locations are given by eqn {6). All these are illustrated in graph below:

Standing waves
E=2E  sinf},Z
aun Wi a,

minimum are given by egn (5) and the maximum
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|H:| l5 mindnmm oceurs whenever there is |L-| maximum and vice versa.

The transmitted wave in medium 2 is a pure travelling wave and there are no maxima or

minima in this region.

L O L e o
|E|||||_'| |l“r| |:|i: ]-lrl
s=1

o ||_5r1



OBLIQUE INCEDANCE

Caonsider a umiform plane wave in the general form.
Elr, =&, cos{ K r=ui}
_ JZ"..':'[.I[_'-.:ll’J”T:_HI I
Whtrc; = xa, + _:fE_-, + za, is theradius or pogition vectorand K. = Kj;. + KIE_-, + K ‘E‘
is the propagation vector. K is alwavs i the direction o wave propagation, we have
K = K + KK = wiue
Thue, for lossless media, k is the =ame az [ in the previous, derivations,
Maxwell's cqns are
K*E= widH
K*H=—weE
KH=0
K E=1
Showing Ih,a.tf, H and K are mutually orthogonal,
Er =ky"+k, "k, = constant
The corresponding H field
— — 4 *E
el gsp_2E
Wi 7}

The plane defined by the propagation vector and a unit normal vector . 1o the houndary

i5 called the plane of incidence. The amgle &) between K and @, iz the angle of
incidence.
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H’i.r= ﬁﬁmﬁﬂi

Kizin 8, = k, sin 8, === {i}
And K; sin 8, =k, sin 8, -——-—-
For loss less media




k =k = fi = w5 ———(i)
ko= By =i, &, ————(iv)

From equations (i) and (iii) we have
=M

b K g (me .,
snf, K, wu Ve,

The Spell’s law can be written as

1y 20, =np S0 -eeeeeeeae (Vi)

a. paralle]l Polarization:
The E hield hes in the xz-plane, the plane of incidence. This can be undersiood from the
figure below;

'r rz;\ 7 K

H,

By, = Ei(cos Bia,  Ba)-jp(xsinf-zcosh;ja,

H —= Em g TALTRE, —pan g, )

T &,
i '
Where B, = wﬁl',u, e,
We define E, such that
VE.=0or K.E,=0andthen H, is obigined from
H, =2 oF, =a L
Wi n

The transmitted fields exist in medium 2 and are given by
Fi = o, (cos Ba,-sinfa,).—f(xsion zcost)a,
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v:i'nzr?lﬁnz =
|+ =
E!
= sin &, = I
Ve
or tandf = \IE ::_1
1

b, perpendicular polarization:
The E ficld is perpendicular to the plane of incidence over here. The incident and
reflected helds n medium 1 are given by
E,, = Ehe—.-'.ﬂlimn#.ﬂmﬁ::lE}_

_ E _ - N ) _
H.‘; E—le—ﬂtﬁﬂaag +21m 'E'_.I'?;."E" Ay i e )
My ¥

E,., = Em!,—jﬁllqn-a-'.—: we )
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E - . = N —i [rwn btz |
Hey=—T l:—cn.:-sﬁ'_m +&in i, m:Lr ol !
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The transmitted fields in medium 2 are given by
E” . EHE_J'_&!';'-!II&"‘EQ"FH:‘;*

— E _ _ — N rieean
i, =—":[—Cuﬁ|5'| dy + 8in E’,a;}g yhreint - resad,
"




Az the tangential components of £ and H are continuous at z -~ 0 and sefting 8, equal to
By, we get

1 |
E,+E_ =E, —E,—E,_Jcos8 =—FE,_cosd,
m

n,
Expressing Ey, and E,, in terms of E,. leads to
r =fn _meos B —mn, cos b,

- E, n,cosf +ncosé
and T £

E, 2n, cosH,
E, n,cosf +ncosé

Ko we fove

14T,

Ty

For no reflection, I' =0 {or E,=0]

This is the same case of total transmission [T_ —1). By replacing 81 with Brewster angle
0 g

nyoost 7 =n cosb,

nal l-sin™® 80 =o' 1-sin 8y

1—th =

For non magnetic media 1y = Lz = Ly

sin® @, — oo+ du = p, and €=,  then

Toral Internal Reflection:

The reflection coefficient of parallel and perpendicular polarizations becomes complex
whien

i =
51 ﬂl -

V&

L) )

When this happens total inter reflection rakes place

TR "N A ™I .



Surface impedance:

The surface impedance 1s defined as,

Where, By, 18 the electnie field component parallel to the surface of the conductor,

I, 15 the linear current density due 10 Eyy,

From the definmion of current density, 1t 18 the conduction current per meter width
flowing in the thin sheet. 111 is assumed that the conductor is fat with s surface at y
{1, the current distribution m this direction 15 given by

J=Je™
Where 1, 15 the current density at the surface.

It 15 assumed that the conductor thickness 15 very much greater than the depth of
Penetration. Then there i po reflection from the back surface of the conductor

we know that J, = all_

E_r :
.I. EJ =il_‘I1-_- F}=1hlljw"’-£lﬂ-1?’ - :_
I, o S

For a good conductor

Z, =, 2L r45
i



Pointing vector and pointing theorem

Proof:

Poynting theorem:

Statement: It states that the vector product of Electric field intensity vector E and
magnetic field intensity vector H at any point is a measure of the rate of energy flow per
unit area at that point. The dissection of power flow is perpendicular to E and H in the
direction of the vector E*H.

Symbolically, the theorem is expressed as
P =E*H V A.m" or Watts/m’

Where P = Poynting’s radiation vector

start with Maxwell’s eqn:
vii =g+ L

ot

an

J=VEH - (1)

ol

This is a relation having dimension of current density and it multiplied by E the resultant
would be having dimensions o power per unit volume so by taking dot product of
equation (1).

EJ=E(V*H)= P
ot

But by the vector identity equation we have

V(IE*H)=H(V*E)-E(V*H)
= E(V*H)=H(V*EW(E*H)—>(2)

Putting equation (2} in (1)

oD

it

EJ=H(V*E)-V(E*H)-E.

AB oE
EJ= H|:— ‘ }—V.{E*H]—E e =
it of
=] =]
EJ=p £ _v(E+H)
o ot
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Integrating throughout the volime we have

- A d ot e .
[Eds = arﬂlrz er Jd#f‘v’.l:ﬁ‘ﬂ}w

¥

Applving now Divergence Theorem to the last term to chanpe it form a volume integral
tis surface integral, we gt

77 S
E*Hds = |Edd+ == 43
e ki [ 2§44 <E
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Alternatively

—}[E-H}ﬁ js:.u.p [—+E}|

T

Ingoing power  lotal dissipated Time rate of increase
flox over smface  OF gencrated of total alectric

g power magnetic energy
within volome WV wathin the vohme W
at any enclosed by the
mstant surfaces at amy

WISTALE.

Pointing vector:

From powmting theorem, the vector product of electric field mtensity E and magnetic Tield
mtensity H 15 anether vector which iz denoted by P, This vector P is known as pointing
vector, It measures the rate of flow of energy and its direction is the direction of power

flow and 15 pegpendicular to the plane containing the ¢ and H vectors.

Complex pointing vector:



Complex Pointing Vector:

Maxwell’s curl equations in phasor form are:

V*H =(o+ jwe)E+J
and VxE=-jwuH

These equations are used to prove the theorem. Consider the identity
VIE*H")=H'(V*E)-E(V*H)

The asterisk indicates the complex conjugate.

So we have

V(EH")=H (- jwutt) - Ello— jwe)E + "]

VIEH )= —jwuH H' —(o - jwe)E £ —EJ’

Integrating above eqn over the volume V, surrounded by surface S and by using
divergence theorem, we get

d(£* H)ds = jw [(uH H - e EE' ki ~[o E'd9~ [E°d9 )

5 v

P, =%RE(E*E')= j%JSmel

R (1 E )=R(ctE)=wE
From(1)

%JIM(E*H'}& =-2w]{”qf' _EE }19

4

&

1, 1 (E* H M =~aw [, —u, 119

¥

1 . . .
u,= 7 e H.H = Average stored energy in electric field

1 . . .
u, = 1 pH H == Average stored energy in magnetic field
The imaginary part of pointing flow through the surface is the reactive power flowing
back and forth to supply the instantaneous changes in net stored energy in the volume.

1 .
v =—ekk
2
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Equating Real and Imaginary

P =E|Rr|j B ds =—;_[a£_,u"d.51——;fa{ ﬂ AL
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Applications of Povating Theorem:

1

2,

Pointing vector specifies a coordinate free way of specifying the direction of propagation

It iz also uzed o derermine the direction of fields if the direction of propagation s
unknawn.

It iz applicable to the power flow which is associated with a wire carrying direct current
ar to a plane wave which is in a loss or conductive region.



Power loss in a plane conductor:

The pawer flow per unit area through the surface and power loss in conductor can be
found out by using pointing vector.
E and H's product gives the power.

| wedt

Surface resistance, R, = 120
o

For a good conductor B, leads Hee by 457 in time phase
.= l|J-;,,,,||.n',,|.:c:..+: 45°
P
TR
L

1 |H |

tan

L
232 |

n,=2,2,
(N

Z, =R, +jX,

The linear current density I, is equal in magnitude 1o the tangential magnetic Geld
grrength at the surface, so

|

=z |H_|
Ve 11‘:1 JI |.||:|
L_:—:; 1|
22
Then P L_z,|hr,{e,g.f'_‘f
V2

=R J. eff Wart { Sg=ri



Questions:

(a) Derive the expression ‘m attennation and phase constants of uniform plane

WA

[8]

(b) If &, = 9, = ub for the medium in which a wave with frequency f = 0.3
(GHz is propag. ting. determine propagation constant and intrinsic impedance

of the medivm when
i o =0 and

ii. & =10 mho/m.

(a) Starting from Maxwell’s equations, deri = the wave equations for an e.m wave

in free space. (8]

(b) A uniform plane wave is incident uormally on a plane surface separating two
loss less dielectric media. Duscvss quantitatively the phenomena that takes

place. 8]

(a) Define surface impedance and explain how it exists? (5]

{b) Derive expression for reflection and transmission coeflicients of an EM wave
when it is incident normally on a dielectric. [5]

(¢) The reflected magnetic field H, = —v/2mA/m, and the incident electric field
in medinm 1 (free space) os 1.0 mv/m. The medium2 has £, = 18.0 and
oy = 0. Determine the permeability of medium2. 6]

Write short notes on
(a) Surface impetan-e

(b) Brewster angw
(¢) Uniform plane wave characteristics
(d) Total internal reflection.

(a
(b

watts/m?. Find the average energy density.

[8]

[16]

State and Prove Poynting Theorem, [10]

A Plane wave traveling in a free space has an average povnting vector of 5

[6]

(a) Define complex pointing vector and explain how to obtain an average power.

[8]

(a) Define reflection and transmission coefficients of a plane wave? 8]

(b) Obtain an expression for reflection coefficient when a wave is incident on a

(b)

dielectric with oblique incident parallel polarization. (8]

A plane wave of frequency = 2 MHz is incident upon a copper conductor
normally. The wave has an electric field amplitude of E =2 mV/m. The
copper has p, = 1,5, = 1 and ¢ = 5.8 10" mho/m. Find out average power
density absorbed by the copper. (8]



(a) Define plane of incidence and reflection coefficient”

(b) Derive an expression for reflection when a wave is incident on a dielectric
abligquely with parallel polarization.
Bits:
1. E . H of a Uniform plane wave is zero
2. Velocity of the wave in an ideal conductor is zero
1
—A/m
If E=2V/m of a wave in free space ,(H) is 01

The velocity of EM wave in free space is independent of f

If E is a vector then U J0OEiSzerg

o a0 &~ W

For a uniform plane wave propagating in z-direction_Ez=0 and Hz=0

7. The velocity of propagation of EM wave is Vo /o
The Intrinsic impedance of a medium is given by 0oon.no.n. Dli_smmﬂ 0

Electric field just above a conductor is always normal to the surface

10.  Intrinsic impedance of free space is 1201

i
11.  Dissipation factor, Df = Ul

no,/Hdd

12.  Phase constant in good conductors is 2

gm

13. [ in good dielectricis 0= 2V
Transmittievave

14.  Transmission coefficient= Incidentwa
Reflecteddwe
15.  Reflection coefficient = Incidentwa
Sil’ﬂi 0 &
sinf, V[

16.  Snell’s law is given by

17.  Unitof U and Uare the same (yes/no)
18.  The solution of uniform plane wave propagating in x direction is_E= f (x-vot)



19. Propagation constant is il \/D 0°0005000

20.  Propagation constant is oo \/DDZDDDjDDD

21.  Poynting vector P=ELIH




