

 P a g e | 1

UNIT-5

8051 MICROCONTROLLER

INTRODUCTION
The microcontroller incorporates all the features that are found in microprocessor. The microcontroller has

built in ROM, RAM, Input Output ports, Serial Port, timers, interrupts and clock circuit. A microcontroller is

an entire computer manufactured on a single chip. Microcontrollers are usually dedicated devices

embedded within an application. For example, microcontrollers are used as engine controllers in

automobiles and as exposure and focus controllers in cameras. In order to serve these applications, they

have a high concentration of on-chip facilities such as serial ports, parallel input output ports, timers,

counters, interrupt control, analog-to-digital converters, random access memory, read only memory, etc.

The I/O, memory, and on-chip peripherals of a microcontroller are selected depending on the specifics of

the target application. Since microcontrollers are powerful digital processors, the degree of control and

programmability they provide significantly enhances the effectiveness of the application. The 8051 is the

first microcontroller of the MCS-51 family introduced by Intel Corporation at the end of the 1970s. The

8051 family with its many enhanced members enjoys the largest market share, estimated to be about 40%,

among the various microcontroller architectures.

The microcontroller has on chip peripheral devices. In this unit firstly we differentiate microcontroller from

microprocessor then we will discuss about Hardware details of 8051 and then introduce the Assembly level

language in brief.

Microcontrollers
Microcontroller (MC) may be called computer on chip since it has basic features of microprocessor with

internal ROM, RAM, Parallel and serial ports within single chip. Or we can say microprocessor with memory

and ports is called as microcontroller. This is widely used in washing machines, VCD player, microwave

oven, robotics or in industries.

Why the name Micro controller?
Basically used for control actions. It is used to control the operation of machine using fixed program that

is stored in ROM/EPROM and that does not change over the life time.

Microcontrollers Vs Microprocessors

 A microprocessor requires an external memory for program/data storage. Instruction execution

requires movement of data from the external memory to the microprocessor or vice versa. Usually,

microprocessors have good computing power and they have higher clock speed to facilitate faster

computation.
 A microcontroller has required on-chip memory with associated peripherals. A microcontroller can

be thought of a microprocessor with inbuilt peripherals.
 A microcontroller does not require much additional interfacing ICs for operation and it functions as

a standalone system. The operation of a microcontroller is multipurpose, just like a Swiss knife.
 Microcontrollers are also called embedded controllers. A microcontroller clock speed is limited only

to a few tens of MHz. Microcontrollers are numerous and many of them are application specific.

Development/Classification of microcontrollers

Microcontrollers have gone through a silent evolution (invisible). The evolution can be rightly termed as

silent as the impact or application of a microcontroller is not well known to a common user, although

microcontroller technology has undergone significant change since early 1970's. Development of some

popular microcontrollers is given as follows.

Intel 4004 4 bit (2300 PMOS trans, 108 kHz) 1971

Intel 8048 8 bit 1976

 P a g e | 2

Intel 8031 8 bit (ROM-less) .

Intel 8051 8 bit (Mask ROM) 1980

Microchip PIC16C64 8 bit 1985

Motorola 68HC11 8 bit (on chip ADC) .

Intel 80C196 16 bit 1982

Atmel AT89C51 8 bit (Flash memory) .

Microchip PIC 16F877 8 bit (Flash memory + ADC) .

We use more number of microcontrollers compared to microprocessors. Microprocessors are primarily

used for computational purpose, whereas microcontrollers find wide application in devices needing real

time processing/control. Applications of microcontrollers are numerous. Starting from domestic

applications such as in washing machines, TVs, air conditioners, microcontrollers are used in automobiles,

process control industries, cell phones, electrical drives, and robotics and in space applications.

Features of Modern Microcontrollers

 Built-in Monitor Program
 Built-in Program Memory
 Interrupts
 Analog I/O
 Serial I/O
 Facility to Interface External Memory
 Timers

DIFFERENCE BETWEEN MICROCONTROLLER AND MICROPROCESSOR

Fig. Structure of Microprocessor and Microcontroller

It is very clear from figure that in microprocessor we have to interface additional circuitry for providing the

function of memory and ports, for example we have to interface external RAM for data storage, ROM for

program storage, programmable peripheral interface (PPI) 8255 for the Input Output ports, 8253 for

timers, USART for serial port. While in the microcontroller RAM, ROM, I/O ports, timers and serial

communication ports are in built. Because of this it is called as ͞systeŵ oŶ Đhip͟. So iŶ ŵiĐro-controller

there is no necessity of additional circuitry which is interfaced in the microprocessor because memory and

input output ports are inbuilt in the microcontroller. Microcontroller gives the satisfactory performance for

small applications. But for large applications the memory requirement is limited because only 64 KB

 P a g e | 3

memory is available for program storage. So for large applications we prefer microprocessor than

microcontroller due to its high processing speed.

Advantages of microcontroller:

• Low cost
• Small size of product
• Easy to troubleshoot and maintain
• More reliable
• Additional memory, I/o can also be added
• Software security feature
• All features available with 40 pins.

• Useful for small dedicated applications and not for larger system designs which may require

many more I/O ports.
• Mostly used to implement small control functions.

CRITERIA FOR SELECTION OF A MICROCONTROLLER IN EMBEDDED SYSTEM

Criteria for selection of microcontroller in any embedded system is as following:

(a) Meeting the computing needs of task at hand efficiently and cost effectively

• Speed of operatioŶ

• PaĐkiŶg

• Poǁer ĐoŶsuŵptioŶ

• AŵouŶt of RAM aŶd ROM oŶ Đhip

• No. of I/O piŶs aŶd tiŵers oŶ Đhip

• Cost

(b) Availability of software development tools such as compiler, assembler and debugger.

INTERNAL STRUCTURE OF A MICROCONTROLLER

Fig. Internal Structure of a Microcontroller

 P a g e | 4

At times, a microcontroller can have external memory also (if there is no internal memory or extra memory

interface is required). Early microcontrollers were manufactured using bipolar or NMOS technologies. Most

modern microcontrollers are manufactured with CMOS technology, which leads to reduction in size and

power loss. Current drawn by the IC is also reduced considerably from 10mA to a few micro Amperes in

sleep mode (for a microcontroller running typically at a clock speed of 20MHz).

Harvard vs. Princeton Architecture

Many years ago, in the late 1940's, the US Government asked Harvard and Princeton universities to come

up with a computer architecture to be used in computing distances of Naval artillery shell for defense

applications. Princeton suggested computer architecture with a single memory interface. It is also known as

Von Neumann architecture after the name of the chief scientist of the project in Princeton University John

Von Neumann (1903 - 1957 Born in Budapest, Hungary).

Harvard suggested a computer with two different memory interfaces, one for the data / variables and the

other for program / instructions. Although Princeton architecture was accepted for simplicity and ease of

implementation, Harvard architecture became popular later, due to the parallelism of instruction

execution.

Princeton Architecture (Single memory interface)

Harvard Architecture (Separate Program and Data Memory interfaces)

 P a g e | 5

Some of the microcontrollers of 8051 family are given as follows:

DEVICE ON-CHIP ON-CHIP 16-BIT NO. OF FULL

 DATA PROGRAM TIMER/COUNTER VECTORED DUPLEX I/O

 MEMORY MEMORY INTERUPTS

 (bytes) (bytes)

8031 128 None 2 5 1

8032 256 none 2 6 1

8051 128 4k ROM 2 5 1

8052 256 8k ROM 3 6 1

8751 128 4k EPROM 2 5 1

8752 256 8k EPROM 3 6 1

AT89C51 128 4k Flash Memory 2 5 1

AT89C52 256 8k Flash memory 3 6 1

INTEL 8051 MICROCONTROLLER

Introduction:

The Intel MCS-51 (commonly referred to as 8051) is a Harvard architecture, single chip microcontroller (µC)

series which was developed by Intel in 1980 for use in embedded systems. Intel's original versions were

popular in the 1980s and early 1990s. Intel's original MCS-51 family was developed using NMOS technology,

but later versions, identified by a letter C in their name (e.g., 80C51) used CMOS technology and consume less

power than their NMOS predecessors. This made them more suitable for battery-powered devices. The 8051

architecture provides many functions (CPU, RAM, ROM, I/O, interrupt logic, timer, etc.) in a single package.

The basic architecture of 8051 is given in fig below
Features:

Various features of 8051 microcontroller are given as follows.

 8-bit ALU, Accumulator, 8-bit Registers and 8-bit data bus; hence it is an 8-bit microcontroller16-bit

Program Counter.

 8-bit Processor Status Word (PSW)
 8-bit Stack Pointer
 Internal RAM of 128bytes
 On chip ROM is 4KB
 Special Function Registers (SFRs) of 128 bytes
 32 I/O pins arranged as four 8-bit ports (P0 - P3)
 Two 16-bit timer/counters : T0 and T1
 Two external and three internal vectored interrupts
 UART (serial port)

http://en.wikipedia.org/wiki/Harvard_architecture
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/NMOS_logic
http://en.wikipedia.org/wiki/CMOS
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Read-only_memory
http://en.wikipedia.org/wiki/Read-only_memory
http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/Timer
http://en.wikipedia.org/wiki/Integrated_circuit_packaging
http://en.wikipedia.org/wiki/Arithmetic_logic_unit
http://en.wikipedia.org/wiki/Data_bus
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/Serial_port

 P a g e | 6

Simple Block Diagram of 8051:

Internal Architecture of 8051 Microcontroller

 P a g e | 7

Block Diagram Description:

Accumulator (Acc):

• Operand register
• Implicit or specified in the instruction
• Has an address in on chip SFR bank

B Register: Used to store one of the operands for multiplication and division, otherwise, scratch pad

considered as a SFR.

Program Status Word (PSW): Set of flags contains status information.

Stack Pointer (SP): 8 bit wide register. Incremented before data is stored on to the stack using PUSH or CALL

instructions. Stack defined anywhere on the 128 byte RAM
Data Pointer (DPTR): 16 bit register contains DPH and DPL Pointer to external RAM address. DPH and DPL

allotted separate addresses in SFR bank

Port 0 To 3 Latches & Drivers: Each I/O port allotted a latch and a driver Latches allotted address in SFR. User

can communicate via these ports P0, P1, P2, and P3.

Serial Data Buffer: Internally had TWO independent registers, TRANSMIT buffer (parallel in serial out – PISO)
and RECEIVE buffer (serial in parallel out –SIPO) identified by SBUF and allotted an address in SFR.

Timer Registers: for Timer0 (16 bit register – TL0 & TH0) and for Timer1 (16 bit register – TL1 & TH1) four

addresses allotted in SFR

Control Registers: Control registers are IP, IE, TMOD, TCON, SCON, and PCON. These registers contain control

and status information for interrupts, timers/counters and serial port. Allotted separate address in SFR.

Timing and Control Unit: This unit derives necessary timing and control signals for internal circuit and

external system bus

Oscillator: generates basic timing clock signal using crystal oscillator.

Instruction Register: decodes the opcode and gives information to timing and control unit.

EPROM & program address Register: proǀide oŶ Đhip EPROM aŶd ŵeĐhaŶisŵ to address it. All ǀersioŶs doŶ͛t

have EPROM.
Ram & Ram Address Register: provide internal 128 bytes RAM and a mechanism to address internally

ALU: Performs 8 bit arithmetic and logical operations over the operands held by TEMP1 and TEMP 2.User

cannot access temporary registers.

SFR Register Bank: set of special function registers address range: 80 H to FF H. Interrupt, serial port and

timer units control and perform specific functions under the control of timing and control unit

REGISTER SET OF 8051

 P a g e | 8

Accumulator

ACC is the Accumulator register. The mnemonics for accumulator-specific instructions, however, refe

to the accumulator simply as A.

B Register

The B register is used during multiply and divide operations. For other instructions it can be treated a

another scratch pad register.

Program Status Word

The PSW register contains program status information as detailed in Table
below Table .PSW: Program Status Word Register

Stack Pointer

The Stack Pointer register is 8 bits wide. It is incremented before data is stored during PUSH and CAL

executions. While the stack may reside anywhere in on-chip RAM, the Stack Pointer is initialized to 07

after a reset. This causes the stack to begin at location 08H.

Data Pointer

The Data Pointer (DPTR) consists of a high byte (DPH) and a low byte (DPL). Its intended function is t

hold a 16-bit address. It may be manipulated as a 16-bit register or as two independent 8-bit registers.

Ports 0 to 3

P0, P1, P2 and P3 are the SFR latches of Ports 0, 1, 2 and 3, respectively.

Serial Data Buffer

The Serial Data Buffer is actually two separate registers, a transmit buffer and a receive buffer

register. When data is moved to SBUF, it goes to the transmit buffer where it is held for serial

transmission. (Moving a byte to SBUF is what initiates the transmission.) When data is moved from

SBUF, it comes from the receive buffer.

Timer Registers

Register pairs (TH0, TL0), (TH1, TL1), and (TH2, TL2) are the 16-bit counting registers for Timer/Counte

0, 1, and 2, respectively.

Capture Registers

The register pair ;RCAPϮH, RCAPϮLͿ are the Đapture register for the Tiŵer Ϯ ͚Đapture ŵode͛. IŶ this

 P a g e | 9

ŵode, iŶ respoŶse to a traŶsitioŶ at the 80C5Ϯ͛s TϮEX piŶ, THϮ aŶd TLϮ are Đopied iŶto RCAPϮH aŶd
RCAP2L. Timer 2 also has a 16-bit auto-reload mode, and RCAP2H and RCAP2L hold the reload value

for this mode.
Control Registers: Special Function Registers IP, IE, TMOD, TCON, T2CON, SCON, and PCON contain
control and status bits for the interrupt system, the timer/counters, and the serial port.

Special Function Registers (SFR)

The set of Special Function Registers (SFRs) contains important registers such as Accumulator, Register B, I/O

Port latch registers, Stack pointer, Data Pointer, Processor Status Word (PSW) and various control registers.

Some of these registers are bit addressable. Addresses from 80H to FFH of all Special Function Registers

• PSW, P0-P3, IP, IE, TCON,SCON
– Bit addressable, 8bit each, 11 in number

• SP, DPH,DPL,TMOD,TH0,TL0,TH1,TL1,SBUF,PCON
– Byte addressable, 8bit each.

– DPTR – data pointer, accesses external memory. DPH + DPL = DPTR
• Starting 32 bytes of RAM – general purpose registers, divided into 4 register banks of 8 registers each.

Only one of these banks accessible at one time. RS1 and RS0 of PSW used to select bank.

• TH0-TL0 and TH1-TL1

– 16 bit timer registers

• P0-P3 – port latches
• SP, PSW, IP – Interrupt Priority, IE – enable
• TCON – timer/counter control register to turn on/off the timers, interrupt control flags for

external interrupts like INT1 and INT0
• TMOD – modes of operation of timer/counter
• SCON – serial port mode control register
• SBUF – serial data buffer for transmit and receive
• PCON – Power control register – power down bit, idle bit

 P a g e | 10

8051 Clock and Instruction Cycle:

In 8051, one instruction cycle consists of twelve (12) clock cycles. Instruction cycle is sometimes called as

Machine cycle by some authors.

Fig 5.2 : Instruction cycle of 8051

In 8051, each instruction cycle has six states (S 1 - S 6). Each state has two pulses (P1 and P2)

MEMORY ADDRESSING

• Program memory - EPROM

– Intermediate results, variables, const

– 4KB internal from 0000 – 0FFFH

– 64KB external with PSEN, till FFFFH

– Internal –external difference PSEN

• Data Memory – RAM

– 64KB of external with DPTR signal

– Internal memory two parts - 128 bytes Internal RAM and secondly set of addresses from 80-

FFH for SFR͛s

– 128 bytes from 00 – 7FH direct or indirect

SFR addresses – only direct addressing mode

 P a g e | 11

• Lower 128 bytes in three sections

– 00-1F – 32 bytes 4 banks 00,01,10,11 each containing 8 registers of 8 bits each. Only one

accessible at a time with PSW bits.

– 20-2FH – 16bytes is bit addressable with addresses 0F to 7FH, 20.7 or 20.0, or 0-7

– 30-7F – 80 bytes of general purpose data memory. It is byte addressable, used for stack

• RAM memory space allocation in the 8051

 P a g e | 12

128 bytes of Internal RAM Structure (lower address space)

Fig: Internal RAM Structure

The lower 32 bytes are divided into 4 separate banks. Each register bank has 8 registers of one byte each. A

register bank is selected depending upon two bank select bits in the PSW register. Next 16bytes are bit

addressable. In total, 128bits (16X8) are available in bitaddressable area. Each bit can be accessed and

modified by suitable instructions. The bit addresses are from 00H (LSB of the first byte in 20H) to 7FH (MSB of

the last byte in 2FH). Remaining 80bytes of RAM are available for general purpose.

Internal Data Memory and Special Function Register (SFR) Map

Fig: Internal Data Memory Map

The special function registers (SFRs) are mapped in the upper 128 bytes of internal data memory address.

Hence there is an address overlap between the upper 128 bytes of data RAM and SFRs. Please note that the

upper 128 bytes of data RAM are present only in the 8052 family. The lower128 bytes of RAM (00H - 7FH) can

be accessed both by direct or indirect addressing while the upper 128 bytes of RAM (80H - FFH) are accessed

by indirect addressing. The SFRs (80H - FFH) are accessed by direct addressing only. This feature distinguishes

the upper 128 bytes of memory from the SFRs, as shown in figure above.

TIMERS / COUNTERS

8051 has two 16-bit programmable UP timers/counters. They can be configured to operate either as timers

or as event counters. The names of the two counters are T0 and T1 respectively. The timer content is

available in four 8-bit special function registers, viz, TL0, TH0, TL1 and TH1 respectively.

 P a g e | 13

In the "timer" function mode, the counter is incremented in every machine cycle. Thus, one can think of it

as counting machine cycles. Hence the clock rate is 1/12
th

 of the oscillator frequency.

In the "counter" function mode, the register is incremented in response to a 1 to 0 transition at its
corresponding external input pin (T0 or T1). It requires 2 machine cycles to detect a high to low transition.

Hence maximum count rate is 1/24
th

 of oscillator frequency.

The operation of the timers/counters is controlled by two special function registers, TMOD and TCON

respectively.

Timer Mode control (TMOD) Special Function Register:
TMOD register is not bit addressable.

TMOD Address: 89 H

Various bits of TMOD are described as follows -

Gate: This is an OR Gate enabled bit which controls the effect of on START/STOP of Timer. It is set to

one ('1') by the program to enable the interrupt to start/stop the timer. If TR1/0 in TCON is set and signal
on pin is high then the timer starts counting using either internal clock (timer mode) or external

pulses (counter mode).

It is used for the selection of Counter/Timer mode.

Mode Select Bits:

M1 and M0 are mode select bits.

Timer/ Counter control logic:

 P a g e | 14

Timer control (TCON) Special function register:

TCON is bit addressable. The address of TCON is 88H. It is partly related to Timer and partly to interrupt.

The various bits of TCON are as follows.

TF1: Timer1 overflow flag. It is set when timer rolls from all 1s to 0s. It is cleared when processor vectors to
execute ISR located at address 001BH.
TR1: Timer1 run control bit. Set to 1 to start the timer / counter.

TF0: Timer0 overflow flag. (Similar to TF1)

TR0: Timer0 run control bit.

IE1: Interrupt1 edge flag. Set by hardware when an external interrupt edge is detected. It is cleared
when interrupt is processed.
IE0: Interrupt0 edge flag. (Similar to IE1)

IT1: Interrupt1 type control bit. Set/ cleared by software to specify falling edge / low level triggered
external interrupt.

IT0: Interrupt0 type control bit. (Similar to IT1)

As mentioned earlier, Timers can operate in four different modes. They are as follows

INTERRUPTS

8051 provides 5 vectored interrupts. They are -

1.
2. TF0

3.
4. TF1

5. RI/TI

Out of these, and are external interrupts whereas Timer and Serial port interrupts are generated

internally. The external interrupts could be negative edge triggered or low level triggered. All these

interrupt, when activated, set the corresponding interrupt flags. Except for serial interrupt, the interrupt

flags are cleared when the processor branches to the Interrupt Service Routine (ISR). The external interrupt

flags are cleared on branching to Interrupt Service Routine (ISR), provided the interrupt is negative edge

triggered. For low level triggered external interrupt as well as for serial interrupt, the corresponding flags

have to be cleared by software by the programmer.

Interrupt Enable register (IE):

Address: A8H

 P a g e | 15

EX0 interrupt (External) enable bit

ET0 Timer-0 interrupt enable bit

EX1 interrupt (External) enable bit

ET1 Timer-1 interrupt enable bit

ES Serial port interrupt enable bit

ET2 Timer-2 interrupt enable bit

EA Enable/Disable all

Setting '1' Enable the corresponding interrupt

Setting '0' Disable the corresponding interrupt

Priority level structure:

Each interrupt source can be programmed to have one of the two priority levels by setting (high priority) or

clearing (low priority) a bit in the IP (Interrupt Priority) Register . A low priority interrupt can itself be

interrupted by a high priority interrupt, but not by another low priority interrupt. If two interrupts of

different priority levels are received simultaneously, the request of higher priority level is served. If the

requests of the same priority level are received simultaneously, an internal polling sequence determines

which request is to be serviced. Thus, within each priority level, there is a second priority level determined

by the polling sequence, as follows.

Interrupt Priority register (IP)

'0' low priority

'1' high priority

SERIAL INTERFACE

The serial port of 8051 is full duplex, i.e., it can transmit and receive simultaneously.

The register SBUF is used to hold the data. The special function register SBUF is physically two registers.

One is, write-only and is used to hold data to be transmitted out of the 8051 via TXD. The other is, read-only

and holds the received data from external sources via RXD. Both mutually exclusive registers have the same

address 099H.

Serial Port Control Register (SCON):

 P a g e | 16

Register SCON controls serial data communication.

Address: 098H (Bit addressable)

Mode select bits

SM2: multi processor communication bit

REN: Receive enable bit

TB8: Transmitted bit 8 (Normally we have 0-7 bits transmitted/received)

RB8: Received bit 8

TI: Transmit interrupt flag

RI: Receive interrupt flag

Power Mode control Register(PCON):

Register PCON controls processor power down, sleep modes and serial data baud rate. Only one bit of

PCON is used with respect to serial communication. The seventh bit (b7) (SMOD) is used to generate the

baud rate of serial communication.
Address: 87H

SMOD: Serial baud rate modify bit

GF1: General purpose user flag bit 1

GF0: General purpose user flag bit 0

PD: Power down bit

IDL: Idle mode bit
Data Transmission

Transmission of serial data begins at any time when data is written to SBUF. Pin P3.1 (Alternate function bit

TXD) is used to transmit data to the serial data network. TI is set to 1 when data has been transmitted. This

signifies that SBUF is empty so that another byte can be sent.
Data Reception

Reception of serial data begins if the receive enable bit is set to 1 for all modes. Pin P3.0 (Alternate

function bit RXD) is used to receive data from the serial data network. Receive interrupt flag, RI, is set after

the data has been received in all modes. The data gets stored in SBUF register from where it can be read.

 P a g e | 17

PIN DIAGRAM OF 8051

Pin out Description:

Pins 1-8: Port 1 Each of these pins can be configured as an input or an output.

Pin 9: RS A logic one on this pin disables the microcontroller and clears the contents of most registers. In

other words, the positive voltage on this pin resets the microcontroller. By applying logic zero to this pin,

the program starts execution from the beginning.

Pins10-17: Port 3 Similar to port 1, each of these pins can serve as general input or output. Besides, all of

them have alternative functions:

Pin 10: RXD Serial asynchronous communication input or Serial synchronous communication output.

Pin 11: TXD Serial asynchronous communication output or Serial synchronous communication clock output.

Pin 12: INT0 Interrupt 0 input.

Pin 13: INT1 Interrupt 1 input.

Pin 14: T0 Counter 0 clock input.

Pin 15: T1 Counter 1 clock input.

Pin 16: WR Write to external (additional) RAM.

 P a g e | 18

Pin 17: RD Read from external RAM.

Pin 18, 19: X2, X1 Internal oscillator input and output. A quartz crystal which specifies operating frequency

is usually connected to these pins. Instead of it, miniature ceramics resonators can also be used for

frequency stability. Later versions of microcontrollers operate at a frequency of 0 Hz up to over 50 Hz.

Pin 20: GND Ground.

Pin 21-28: Port 2 If there is no intention to use external memory then these port pins are configured as

general inputs/outputs. In case external memory is used, the higher address byte, i.e. addresses A8-A15 will

appear on this port. Even though memory with capacity of 64Kb is not used, which means that not all eight

port bits are used for its addressing, the rest of them are not available as inputs/outputs.

Pin 29: PSEN If external ROM is used for storing program then a logic zero (0) appears on it every time the

microcontroller reads a byte from memory.

Pin 30: ALE Prior to reading from external memory, the microcontroller puts the lower address byte (A0-A7)

on P0 and activates the ALE output. After receiving signal from the ALE pin, the external register (usually

74HCT373 or 74HCT375 add-on chip) memorizes the state of P0 and uses it as a memory chip address.

Immediately after that, the ALU pin is returned its previous logic state and P0 is now used as a Data Bus. As

seen, port data multiplexing is performed by means of only one additional (and cheap) integrated circuit. In

other words, this port is used for both data and address transmission.

Pin 31: EA By applying logic zero to this pin, P2 and P3 are used for data and address transmission with no

regard to whether there is internal memory or not. It means that even there is a program written to the

microcontroller, it will not be executed. Instead, the program written to external ROM will be executed. By

applying logic one to the EA pin, the microcontroller will use both memories, first internal then external (if

exists).

Pin 32-39: Port 0 Similar to P2, if external memory is not used, these pins can be used as general

inputs/outputs. Otherwise, P0 is configured as address output (A0-A7) when the ALE pin is driven high (1) or

as data output (Data Bus) when the ALE pin is driven low (0).

Pin 40: VCC +5V power supply.

 P a g e | 19

8051 ADDRESSING MODES

8051 has four addressing modes.

 Immediate Addressing

 Bank Addressing or Register Addressing

 Direct Addressing

 Register Indirect Addressing

Immediate Addressing: Data is immediately available in the instruction.

For example -

ADD A, #77; Adds 77 (decimal) to A and stores in A

ADD A, #4DH; Adds 4D (hexadecimal) to A and stores in A

MOV DPTR, #1000H; Moves 1000 (hexadecimal) to data pointer

Bank Addressing or Register Addressing: This way of addressing accesses the bytes in the current register

bank. Data is available in the register specified in the instruction. The register bank is decided by 2 bits of

Processor Status Word (PSW).

For example-

ADD A, R0; Adds content of R0 to A and stores in A

Direct Addressing: The address of the data is available in the instruction.

For example -

MOV A, 088H; Moves content of SFR TCON (address 088H)to A

Register Indirect Addressing: The address of data is available in the R0 or R1 registers as specified in the

instruction.

For example -

MOV A, @R0 moves content of address pointed by R0 to A

External Data Addressing: Pointer used for external data addressing can be either R0/R1 (256 byte access) or

DPTR (64kbyte access).
For example -

MOVX A, @R0; Moves content of 8-bit address pointed by R0 to A MOVX A,

@DPTR; Moves content of 16-bit address pointed by DPTR to A

External Code Addressing: Sometimes we may want to store non-volatile data into the ROM e.g. look-up

tables. Such data may require reading the code memory. This may be done as follows -

MOVC A, @A+DPTR; Moves content of address pointed by A+DPTR to

A MOVC A, @A+PC; Moves content of address pointed by A+PC to A

8051 INSTRUCTIONS

8051 has about 111 instructions. These can be grouped into the following categories
1. Arithmetic Instructions

2. Logical Instructions

3. Data Transfer instructions

4. Boolean Variable Instructions

5. Program Branching Instructions

 P a g e | 20

The following nomenclatures for register, data, address and variables are used while write instructions.
A: Accumulator

B: "B" register

C: Carry bit

Rn: Register R0 - R7 of the currently selected register bank

Direct: 8-bit internal direct address for data. The data could be in lower 128bytes of RAM (00 - 7FH) or it
could be in the special function register (80 - FFH).

@Ri: 8-bit external or internal RAM address available in register R0 or R1. This is used for indirect
addressing mode.

#data8: Immediate 8-bit data available in the instruction.

#data16: Immediate 16-bit data available in the instruction.

Addr11: 11-bit destination address for short absolute jump. Used by instructions AJMP & ACALL. Jump
range is 2 kbyte (one page).

Addr16: 16-bit destination address for long call or long jump.

Rel: 2's complement 8-bit offset (one - byte) used for short jump (SJMP) and all conditional jumps.

bit: Directly addressed bit in internal RAM or SFR

Arithmetic Instructions:

Mnemonics Description Bytes Instruction Cycles

ADD A, Rn A A + Rn 1 1

ADD A, direct A A + (direct) 2 1

ADD A, @Ri

A A + @Ri

1

1

ADD A, #data A A + data 2 1

ADDC A, Rn A A + Rn + C 1 1

ADDC A, direct AA + (direct) + C 2 1

ADDC A, @Ri A A + @Ri + C 1 1

ADDC A, #data A A + data + C 2 1

DA A Decimal adjust accumulator 1 1

DIV AB Divide A by B
 A quotient 1 4

 B remainder

DEC A

A A -1

1

1

DEC Rn Rn Rn - 1 1 1

DEC direct (direct) (direct) - 1 2 1

DEC @Ri @Ri @Ri - 1 1 1

INC A A A+1 1 1

INC Rn Rn Rn + 1 1 1

 P a g e | 21

INC direct (direct) (direct) + 1 2 1

INC @Ri @Ri @Ri +1 1 1

INC DPTR DPTR DPTR +1 1 2

MUL AB Multiply A by B
 A low byte (A*B) 1 4

 B high byte (A* B)

SUBB A, Rn A A - Rn - C 1 1

SUBB A, direct A A - (direct) - C 2 1

SUBB A, @Ri A A - @Ri - C 1 1

SUBB A, #data A A - data - C 2 1

Logical Instructions:

 Mnemonics Description Bytes Instruction Cycles

 ANL A, Rn A A AND Rn 1 1

 ANL A, direct A A AND (direct) 2 1

ANL A, @Ri A A AND @Ri

1

1

 ANL A, #data A A AND data 2 1

 ANL direct, A (direct) (direct) AND A 2 1

 ANL direct, #data (direct) (direct) AND data 3 2

 CLR A A 00H 1 1

 CPL A A A 1 1

 ORL A, Rn A A OR Rn 1 1

 ORL A, direct A A OR (direct) 1 1

 ORL A, @Ri A A OR @Ri 2 1

 ORL A, #data A A OR data 1 1

 ORL direct, A (direct) (direct) OR A 2 1

 ORL direct, #data (direct) (direct) OR data 3 2

 RL A Rotate accumulator left 1 1

 RLC A Rotate accumulator left through 1 1

 carry

RR A Rotate accumulator right

1

1

 RRC A Rotate accumulator right through 1 1

 carry

 SWAP A Swap nibbles within Acumulator 1 1

 XRL A, Rn A A EXOR Rn 1 1

 XRL A, direct A A EXOR (direct) 1 1

 XRL A, @Ri A A EXOR @Ri 2 1

 XRL A, #data A A EXOR data 1 1

 XRL direct, A (direct) (direct) EXOR A 2 1

 XRL direct, #data (direct) (direct) EXOR data 3 2

Data Transfer Instructions:

 Mnemonics Description Bytes Instruction

 Cycles

 MOV A, Rn A Rn 1 1

 MOV A, direct A (direct) 2 1

 P a g e | 22

 MOV A, @Ri A @Ri 1 1

 MOV A, #data A data 2 1

MOV Rn, A

Rn A

1

1

 MOV Rn, direct Rn (direct) 2 2

MOV Rn, #data

Rn data

2

1

MOV direct, A

(direct) A

2

1

 MOV direct, Rn (direct) Rn 2 2

 MOV direct1, (direct1) (direct2) 3 2

 direct2

MOV direct, @Ri

(direct) @Ri

2

2

 MOV direct, #data (direct) #data 3 2

 MOV @Ri, A @Ri A 1 1

MOV @Ri, direct

@Ri (direct)

2

2

 MOV @Ri, #data @Ri data 2 1

MOV DPTR,

DPTR data16

3

2

 #data16

 MOVC A, A Code byte pointed by A + DPTR 1 2

 @A+DPTR

MOVC A, @A+PC

A Code byte pointed by A + PC

1

2

MOVC A, @Ri

A Code byte pointed by Ri 8-bit address)

1

2

MOVX A, @DPTR

A External data pointed by DPTR

1

2

 MOVX @Ri, A @Ri A (External data - 8bit address) 1 2

MOVX @DPTR, A

@DPTR A(External data - 16bit address)

1

2

 PUSH direct (SP) (direct) 2 2

POP direct

(direct) (SP)

2

2

 XCH Rn Exchange A with Rn 1 1

 XCH direct Exchange A with direct byte 2 1

 XCH @Ri Exchange A with indirect RAM 1 1

 XCHD A, @Ri Exchange least significant nibble of A with 1 1

 that of indirect RAM

Boolean Variable Instructions:

 Mnemonics Description Bytes Instruction Cycles

 CLR C C-bit 0 1 1

 CLR bit bit 0 2 1

 SET C C 1 1 1

 SET bit bit 1 2 1

 CPL C C 1 1

 CPL bit bit 2 1

 ANL C, /bit C C . 2 1

ANL C, bit

C C. bit

2

1

 ORL C, /bit C C + 2 1

 ORL C, bit C C + bit 2 1

 MOV C, bit C bit 2 1

 MOV bit, C bit C 2 2

 P a g e | 23

Program Branching Instructions:

Mnemonics Description Bytes Instruction

 Cycles

ACALL addr11

PC + 2 (SP) ; addr 11 PC

2

2

AJMP addr11 Addr11 PC 2 2

CJNE A, direct, rel Compare with A, jump (PC + rel) if not 3 2

 equal

CJNE A, #data, rel Compare with A, jump (PC + rel) if not 3 2

 equal

CJNE Rn, #data, rel Compare with Rn, jump (PC + rel) if not 3 2

 equal

CJNE @Ri, #data, rel Compare with @Ri A, jump (PC + rel) if not 3 2

 equal

DJNZ Rn, rel Decrement Rn, jump if not zero 2 2

DJNZ direct, rel

Decrement (direct), jump if not zero

3

2

JC rel Jump (PC + rel) if C bit = 1 2 2

JNC rel Jump (PC + rel) if C bit = 0 2 2

JB bit, rel Jump (PC + rel) if bit = 1 3 2

JNB bit, rel Jump (PC + rel) if bit = 0 3 2

JBC bit, rel Jump (PC + rel) if bit = 1 3 2

JMP @A+DPTR A+DPTR PC 1 2

JZ rel If A=0, jump to PC + rel 2 2

JNZ rel If A ≠ 0 , juŵp to PC + rel 2 2

LCALL addr16 PC + 3 (SP), addr16 PC 3 2

LJMP addr 16 Addr16 PC 3 2

NOP No operation 1 1

RET (SP) PC 1 2

RETI (SP) PC, Enable Interrupt 1 2

SJMP rel PC + 2 + rel PC 2 2

JMP @A+DPTR

A+DPTR PC

1

2

JZ rel If A = 0. jump PC+ rel 2 2

JNZ rel If A ≠ 0, juŵp PC + rel 2 2

NOP No operation 1 1

 P a g e | 24

EXTERNAL MEMORY AND I/O INTERFACING

Interfacing External Memory:

If external program/data memory are to be interfaced, they are interfaced in the following way.

Fig 6.1: Circuit Diagram for Interfacing of External Memory

External program memory is fetched if either of the following two conditions are satisfied.

1. (Enable Address) is low. The microcontroller by default starts searching for program from

external program memory.
2. PC is higher than FFFH for 8051 or 1FFFH for 8052.

tells the outside world whether the external memory fetched is program memory or data memory.
is user configurable. is processor controlled.

INTRODUCTION TO ASSEMBLY LEVEL LANGUAGE

[Label:] mnemonic [operands] [;comment]

MŶeŵoŶiĐs → asseŵďly leǀel iŶstruĐtioŶs are Đalled ŵŶeŵoŶiĐ like MOV
R5 OperaŶds → oŶ ǁhiĐh the operatioŶ is performed.

Example:

Loop: MOV R1, #25H; transfer 25H into R1

↑ ↑ ↑ ↑

Label mnemonics operand comments

→ two instructions which are used to start and terminate program.

• ORG → this iŶstruĐtioŶ iŶdiĐate the origiŶ of prograŵ ORG ϯ000H

→ means program starts from 3000H locn.

→ this iŶstruĐtioŶ hasŶ͛t take aŶy ŵeŵory spaĐe. It is used to shoǁ the

 P a g e | 25

starting address of program.

• END → this instruction show the END of program or it is used to

terminate the program.
Example:
ORG 0H;
Again: MOV R5, # 25H; transistor 25H to

R5 ADD A, R5; Add the R5 with Acc
SJMP
Again; END;

