In embedded system development context, Integrated Development E“‘*’"‘Dnmem

(IDE}_;

nds for an mtegrated environment for developing and debugging the target processo,

bedded firmware. IDE is a software package which bundles a “Text Editor (Sﬂun:e Qﬁ
utur) ‘Cross-compiler (for cross platform develnpmﬂﬂt and compiler for same Platfyp
velopment)’, ‘Linker’ and Debugger’. Some IDEs may provide interface to targe bogg
nulators, Target processor’s /controller’s Flash memory programmer, etc. and incorporate othe '
ftware development utilities like ‘Version Control Tool’, ‘Help File for the Developmey!
anguage’, etc. IDEs can be either command line based or GUI based. Command line ha_
DEs may include little or less GUI support. The old version of TURBO CIDE for developi
pplications in C/C++ for x86 processor on Windows platform is an example for a generic ID

vith command line interface. GUI based IDEs provide a Visual Development Environment wif

=

nouse click support for each action. Such IDEs are generally known as Visual IDEs. Visual IDE
ire very helpful in firmware development. A typical example for a Visual IDE is Micrasqﬂ.
Visual Studio for developing Visual C++ and Visual Basic programs. Other examples art Nl

Beans and Eclipse.

IDEs used in embedded firmware development are slightly different from

the generic IDEs used for high level language based development for desktop application’ In?

embedded applications, the IDE is either supplied by the target processor/controller manufﬂﬂ"'“

fof
or by third party vendors or as open source. MPLAB is an IDE tool supplied by microchi? "

developing embedded firmware using their PIC family of microcontrollers. Keil pV ision’ (spels

as micro vision three) from Keil software is an example for a third party IDE, which i used

developing embedded firmware for 8051 family microcontrollers, Code Warrior by Matrﬂudded_
is an example of IDE for ARM family of processors. It should be noted that in emb®

icati L mily
firmware development applications each IDE ig designed for a specific fam!

controllers/processors and it may not_be possible to develop firmware for ful'ﬂl

" controllers/processors using a single IDE (as of now there is no known IDE with support _
e - = = ——— S = i — ; o FHEE;

Scanned by CamScanner

in system programming (ISP) interface (Seri ;
e (Serial/USB/Parallel/TCP-IP)

integrated development
smvironment (IDE) tool

Signal source
(Function gencrator)

Emulator-Target Board
interface (JTAG/BDM/Pin fo
pin socket)

Development PC
(Host)

- Target board

PCRB fabrication
filas

Logic analyser

B

Hardware debugging tools

family of pr cessnrsfccntrollers) Hou:'eve.r there is a rapid move happening towards the op
amily of pro

IDE. E IIPSE for embedded development. Most of the prncessoﬂcontrol manufacturers ar
source , Ec

e s pmwders |:r1trly]:l:';gt::sed on Eclipse for embedded system development in th
lrzz Fl;::r:a};’:::: t:lh; sbfok is primarily focusing on 8051 based enﬂ:'chdEfi ﬁ:'m'}w?r
development, the IDE chosen for demonstration is Keil p Vision3. A demo version of the tool fo
ased development is availa

suild the IDE around the popular Echpse open Sourc

ble for free download from the Kei

Microsoft Windows OS b

: i next sections.
Software website, Please install the same (1 your machine before proceeding to the
Site, Plea

Scanned by CamScanner

.
. .

Cross-Compilation is the process of converting a source code written in higy N

target process or €O

nguage (like ‘Embedded C’) to 2 |
ﬁM processor or 8051 microcontroller specific machine code). The conversion of the (o

one by software running on'a processor / controller
ifferent from the target processor. The software performing this operation is referred s,

ntroller understandable machip, coge|
i b
(e:{: x86 processor based pc) Which ;

Cross-compiler’. Cross assembling is similar to erss—cnmpiling; the unlyl difference is tha
-ode written in a target, processor / controller specific Assembly code is converted it f
corresponding machine code. The application converting Assembling instruction to i
processor / controller specific machine code is known as Cross-assembler. Cross-compilatin’

Cross-Assembling is carried out in different steps and the process generated various Hps®
e —

Scanned by CamScanner

jntﬂl‘madiat . .

o € files. Various files generated during the crﬂss-cumpilatidn / cross-assembling
are:

T List File (.Ist), Hex File(.hex), pre-processor out put file, Map file (File extension
Pendent), Object file (.obj).

List File (.]s¢ file):

—— inf;‘:::liﬁle : generated during the cross-compilation process and is contains an
ERI— {LC:’! about' the cross compilation process, like cross compiler details,

. code), assembly code generated from the source file, symbol tables,
CITOrS and warning$ detected during the cross- cﬁmpl]atmn process. The type of information

contained in the list file is cross- -compiler specific..

Source Code:
The Source code listing outputs the liné number as well as the source code on that

line. Spec:ﬁc cross compiler directive can be used to include or exclude the conditional codes

(code in # if blocks) in the source code listings.

Void main (*)

i
1

Printf (“Hello world!\n)

|
I

Assembly listing:
: ’ ' . the cross compiler for
Assembllyl

the *C* source code. Assembly

y code generated by

isting contains the assembl
luded from the list file by using special

code generatad can be exc

‘“Ompiler directives.

ENERATED OBJECT CODE

ASSEMBLY LISTING OF G

: FUNCTION main (BEGIN)
SOURCE LINE #5

. SOURCE LINE #6

Scanned by CamScanner

w ' T

. SOURCE LINE #7
00007 BFF MOV R3,#OFF H
0002 7A00 R MOVR2, # HIGH? SC-0
00047900 R MOVRI. # LOW? SC-0
- FUNTCTION main (END) ‘

Preprocessor Output file: '
The Preprocessor output file generated during Cross-compil,

contain the preprocessor autpu;: for the preprocessor instructions used ‘in the sourcc i

Preprocessor output file is used for verifying the operation of macros and condifion
preprocessor directives. The preprocessor output file is a valid C source file. File extension

preprocessor output file is cross complier dependent.

Objective File (.OBJ File):
Cross-compiling / assembling each source module (written inC

Assembly) converts the various Embedded C / Assembly instructions and other directives prese!

in the module to an object (.OBJ) file. The format (internal representation) of the .OBJ fik i

cross compiler dependent. OMF51 or OMF2 are the two objects file formats supported by sl

cross compiler. The object file is a specially formatted file with data ‘records for symbol
information, object code

>, debugging i“fﬂrmatiﬂfl, library references, etc. The list of some o
details stored in an nbjeﬁﬂle Is given below, |

-

1) Reserved memory for global variables,

2) Public symbol (variable and function) names.

3) External symbol (variable and functiun) references,
4) Library files with which to link.

5) Debugging i onit
) Debugging information to help Synchronijes Source lines with ob; d
' ' Ith object code.

Scanned by CamScanner

Jap File (MAP):

The Cross-compiler ¢onye

e€rts each
pbject (OBJ) file. Crnss-cumpiling source code module into g re-

locatab
¢ach source code module: ge

nerates_lts own list file. [p

st in s cod reated are re locatable codes, meaning the
€
loca memory is not fixed. It is the responsibility of a linker to link all these objec

files. The locater is responsible for locating absolute address to each module in the code memory

Lmi-:lng and locating of re-locatable object files will also generate a list file called ‘linker list file
or ‘map file’. Map file contains iformation about the link / locate process and is composed of ¢

number of sections. The different sections listed in a map file are cross compiler dependent.

HEX File (HEX):

Hex file is the bihat:y executable file created from the source code. The
absolute object file created by the linker / locater is converted into processor understandable
binary code. The utility used for converting an object file to-a hex file is known as object to hex
file converter. Hex files embed the machine mldc in particular format. The format of Hex file
varies across the family of processors / controllers, Intel Hex and Motorola HEX are the two
commonly used hex file formats in embedded applications. Intel Hex file is an ASCII text file in
which the HEX data is represented in ASCII format in lines. Each record is made up of hex a
decimal numbers.. that represent -machine. Language code and / or constant data. Individual
records are terminated with a carriage return and a linefeed. Intel HEX file is used for

transferring the prugrammingand data to a ROM or EPROM which is used as code memory

storage.

Disassemble is a utility program which converts machine codes into target

processor specific Assembly codes / instructions, The process of converting machine codes into

Assembly code is known as ‘Disassembling’. In operation, disassembling is complementary to

Scanned by CamScanner

assembling / cross-assembling. De compiler is the utility i:-rngr am for translating machine co
into corresponding high level language instructions. De compiler performs the reverse operati
of compiler / cross- Cﬂt‘l‘lpl]&l‘ The dis-assemblers / de compilers for different fam“}' of processg
/ controllers: are different. Disassemblers / de compliers are deployed in reverse engineerin
Reverse engineering is the process of revealing the technology behind the working of a produ
Reverse engineering in embedded product development is employed to find out the secret behi
the working of popular proprietary products. Disassemblers / decompilers help the rever

engineering process by translating the embedded firm ware into Assembly / high level languag

instructions. . ' '

| Disassemblers / decompilers are powerful tools for analyzing the presence o
malicious codes (virus information) in an executable image. Disassemble/decompilers ar
available as either free ware tools readily available for free download from internet or &
commercial tools. It is not possible for a disassembler / decompiler to generate an éxact replica o
the original assembly code/high level source code in terms of the symbolie constants and

comments used. However disassemble / decompilers generates a source code which is some-what

matching to the original source code from which the binary code is generated.

Simulators and emulators are two important tools used in embedded sys'€"

development. Both the terms sound a like and are little confusing, Simulator is software tool

used for simulating the various conditions for checking the functmnahty of the appjmﬂilﬂ

firmware. The Integrated Development Environment (IDE) itself will be pmwdmg simular”
support and they help in debugging the firmware for

i) A . v |0
. checking its required functionality:
certain scenarios, simulator refers

[
10 a soft mode] (GUI model) ﬂf the embedded product. For &% |
the product can be developed in snﬁwara Soft phone is an example for such a gimulat? ator

Scanned by CamScanner

F"
e ————

real IME debugging of the embedded firmware in a hardw
; are environment,

141 SIMULATORS

Sim . i -
ulators simulate the target hardware and the firmware execution can, be

inspected using simulators. The features of simulator based debugging are listed below.

1) Purely software based

2) Doesn’t require & real target system

3) Very primitive (Lack of featured [/O support. Everything is simulated one).

4) Lack of real-time behavior.

ased Debugging:
Simulator based debugging techniques are simple and

are debugging techniques are

Advantages of Sim ulator B

ges of simulator based firinw

straight forward. The major advanta

explained below.

get Board

1) No Need for original Tar
Simulator based debug

ging technique is purely soft ware

it simulates the CPU of the target ward. User only needs to know

oriented. IDE’S software suppo
t board, and the firmware should be

ous devices within the targe

real hardware is not required,
e interface and memory maps are

firmware development can start
finalized. This

about the memory map of varl

written on the basis of it. Since the

mediately after the devic

well in advance im

saves development time.

Scanned by CamScanner

2) -Simulate I/0 Peripherals
Simulator prgvidﬂs the Dptiﬂl’l to simulate Variﬁus
peripherals. Using simulator’s /O support you can edit the values for /O registers apq Ca
used as the input / output value in the firmware execution. Hence it eliminates the need

connecting I/0 devices for debugging the firmware.

3) Simulates Abnormal Conditions

With simulator’s simulation support you can input
desired value for any parameter during debugging the firmware and can observe the control f]

of firmware. It really helps the developer in simulating abnormal operational environment

firmware and helps the firmware developer to study the behavior of the firmware under abnor

input conditions.

Limitations of simulator based Debugging

Though simulation based firmware debuggr

technique is very helpful in embedded appllcatmns Some of the. limitations of simulator bas
debugging are explained below.

— Deviation from Real Behaviour

Simulation based firmware debugging is always car
ere the developer may not be able to debug the frmi”

particular result and it need not be the

.
Same when the firmware runs in a production environ™

— Lack of real timelines

i

The major Ilmltatsu. it 5%
N of simulator is that !
real-time in behavior, The debuggfﬂg is de‘h"ﬂlup based debugging

ating
el
er driven ang i is no way capable of CF

Scanned by CamScanner

| time behavior. Moreover in 3 teal application the 10

condition may be varvi
p,edactable Simulation goes for simulating those con ditions i Y rying c

known values.

142 EMULATORS AND DEBUGGERS

| Debugging process in embedded.appiicatinn is broadly classified into
o, namely, hardware debugging and firmware debugging. Hardware debugging deals with the

IIm:mitut:rring of various bus signals and checking the status lines of the target hardware. Firm ware

| ' - |
ﬁebugging deals with examining the firmware execution, execution flow, changes to various

tPU registers and status registers on execution of the firmware to ensure that the firmware 1s

unning as per the design.

Flrm ware debugging is preformed to figure the bug or the error m the

havior. Firmware is analogous to the human body in

tes the unexpected be
Wit days of embedded system

ﬁEVEl(I |h weIE [10 dEbug [0015 akallahls &Ild ﬂ"l}’ “'a}'s was Bu”] [hE I’:Ddt In an

EEPROM”.

-

1lowing section describes the improvements OVer firmware
0

el g to the most sophisticated on chip

debuggin
debugging starting from the most prlmltwe type of debugg

debugging (OCD).

Scanned by CamScanner

pebugger application RS-232/USB cable Cmulator POD

-——ﬂ-—-l—.-.—...,...

Target board interface
(Device adaptor)

L Signal lines
L PC COM/USB port (Flat Cable)
} .
Fig.7.3

5 EMULATION DEVICE
| h receives

Emula’ﬁun device 1s 2 replica of the target CPU whic
m the tﬁrget board through 2 device ad daid
tion of ﬁrmﬁfarf: under the control of debug
rd chip same a
d to function as the target CPU.

aptor connected to the target boa

ous signals fro |
commands from the debug

orms the execu
s the target processor (ex.

lication. The emul
89C51) or a pmgrammable logic de

e either 2 standa

ation device can b
(PLD) configure

viCcE

s Memory (RAM) incorporated in the

d’s EEPROM where the code is

et boar
fication. Hence the original EEPROM

‘ROM Emulation’.

R
| 1t is the Random Acces
ement to the targ

Emulator device. It acts as 2 replac
d after €3¢

o be downloade
the RAM of em

h firmware modi

supposed 1
ulator. This is known as

memory 18 emulated by

|

Scanned by CamScanner

Embedded System Development

Emulator Control Logic:

Emulator control logic is the logic circuits useq ¢
implementing complex hardware break points, trace butter, trigger detection, trace by
controller, etc.. Emulator control logic circuits are also end for implementing logic analy,

functions in advanced emulator devices.

Device Adaptors:

Device adaptors act as an interface between the target board and emulat
POD. Device e.udapturs are normally pin to pin compatible sockets which can be inserted
plugged into the target board for routing the various singles from the pin assigned for the targ
processor. The device adaptor is usually connected to the emulator POD using ribbon cables. Ti

adaptor type varies depending on the target processor’s chip postage. DIP, PLCC, etc. are son
commonly used adaptors. -

7.46 ON CHIP FIRMWARE DEBUGGING(OCD) -

Advances in semiconductor technology has brought out new dimensior
to target firmware debugging. Today almost all Processors / controllers in. coflaorate built 1

debug modules could On Chip Debug(OCD) support. Thou

gh OCD adds silicon complexity af
cost factor, from a developer perspective it is a very good .

feature supporting fast and efficie!
firmware debugging.

Group. JTAG is the alternate name for IEEE 1149 1 'a
. -1 Standard. Lijke BD ‘< also a Sl
interface. The signal lin M. JTAG is

*5 of JTAG protocol are explained below

Scanned by CamScanner

In (TDI):

It is use ' '
d for sending debug commands serially from remote debugger tc

st pata

plarge! processor.

st Data Out (TDO):.

Transmit debug response to the remote debugger from target CPU.

e

L

Test Clock (TCKi: :

Synchronizes the serial data transfer.

lest Mode Select (TMS):

- Sets the mode of testing.

Test Reset (TRST):

It js an optiona
r rate for JTAG debugging is chip

arget CPU.

] signal line used for resetting the t
dependent. It is usually

- The serial data transfe

Within the range of 10 to 1000 MHEz.

Jebugging involves {he monitoring of various signals of the

cking the inter connection among various
d in

Hardware
/ data lines, port pins, etc.) che

target board (address
hecking etc. the various

Circuit continuity ¢

cnmpﬂﬁcnts. hardware debugging tools use

Embedded product Development are explained below.

Scanned by CamScanner

_ﬂ"—-___

.

Magnifying Glass (Lans)ﬁ

Magnifying glass is the primary hardware dﬁbugging o
embedded hardware debugging professional. A magnifying glass is a powerfy| Visug| g
tool. With a magnifying glass (lens), the surface of the target board can be €Xamingq thor
for dry soldering track (PCB connection) damage, short of tracks, etc.. Now a days hipy qu;

magnifying stations are available for visual inspection. The magnifying station Incor
magnifying glasses attached to a stand with CFL tubes for providing proper llumina,

inspection. The statin usually incorporates multiple magnifying lenses.

Multi meter:

Multi meter is used for measuring various electrical quantities like voltage |
Ac and DC), current (DC as well as AC) resistance, ¢

apacitance, continuity ché::king, frars
checking, cathode and mode :identiﬁcatinn of diode. In embedded hardware debuggin

. . 1,.]":"
IS a typical —— : £ CRO for? ;
; . ple of the usage o !
captuning and analysis in target boarg is a typical ex _ g ¢ CRO for '.1,-:IR"I
capturing and analysis i target boarq . ample of the usage of a I
versions. Though digital CR:D are

applications, Modern digitg) CRO’

d:‘l”;l
S More thap

" - D
various signals channe] and it ig o =

n
re &5y
Channe] and it is easy to captt e’ lH
o 1af%

Scanned by CamScanner

LogiC Analyzer:

or capturing digital data (log; ,
Bic 1 and 0) fro CRO Logic anal

| m a digital circuj 4
try w

here as CRO is en

oturing all kin _
(apturing ds of waves including logle sien
otal number of logic signals / wave gnals. Another major

o the target boa
rd . S 3
= for capturing digital data. In target board debuggi
analyzer captures the states of vari _ ebugging applications
SNl arious port pins, address bus and data bus to the target
. MOSt m : . 3 et pro
odern logic analyzers contain provisions for storing cabtured data el
= [

desired regi W
d regilo :
g ' n ﬂf the Eapturgd are form, zooming selected region of the captured ware for

Function Generator:
Function generator is not debugging tool. It is an input signal simt

nerator is capable of producing various periodic wave forms like sine W

tool. A function ge
etc., with different frequencies and amplitude. The target b

square wave, saw tooth wave,

nd of periodic waveform with a particular frequency as input to some pal

may require some ki
the board. This In a debugging environmen

~ generating and suppl

t the function generator SErves the purpose

ying required signals.

miniature to reduce tf

kages used in the PCB become

Itiple layers may be requi
d multiple layers for th
meter to check the

The device pac
them and mu

k miniature device packages an

hardware using magnifying glass,
is a technique used for testing the

AG interface, present in the board,

S Page: 7-35
canned by CamScanner

red to route the inie

a1 board space occupied by
e PC i

e.chips wit

1ol
connections among th

multi

fficult to debug the
ous chips. Boundary scan

s chips, which support JT

will be very di
n among the vari

interconnectiu
et variou

——

chips which support boundary scan associate a boundary scan cell with each pin of the devige,
JITAG port which contains the five signal lines namely TDI, TDO, TCK, TRST and Tvgg,
the Test Access Port (TAP) for a JTAG supported chip. Each device will have its own TAp T
PCB also contains a TAP for connecting the JTAG signal lines to the external world. A boundy,
scan path is formed inside the board by inter connecting the devices through JTAG signal ir
The TDI pin of the TAP of the PCB is connected to the TDI pin of the first device. The TDO
of the first device is connected to the TDI pin of the 2" device. In this way all devices:

interconnected and the TBO pin of the last JTAG device is connected to the TBO pin of the T4
of the PCB.

Bound Sgan Cells Bound Scan Path

i . l-u-

comice2 TN |l peyicet TCKTDL

#????“: - L-w—w—?”’l
[!JIB‘!J ' TCK

sl s TQ - Test Port)
')

= TDO
- B . N i

Scanned by CamScanner

