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2.1 Losses in Prestress (Part I) 
This section covers the following topics. 

• Introduction 

• Elastic Shortening 

The relevant notations are explained first.   

 
Notations   
Geometric Properties 

The commonly used geometric properties of a prestressed member are defined as 

follows.

Ac  = Area of concrete section 

= Net cross-sectional area of concrete excluding the area of   

   prestressing steel. 

Ap  = Area of prestressing steel 

   = Total cross-sectional area of the tendons. 

A  = Area of prestressed member 

  = Gross cross-sectional area of prestressed member. 

= Ac + Ap 

At  = Transformed area of prestressed member  

= Area of the member when steel is substituted by an equivalent   

   area of concrete. 

= Ac + mAp 

= A + (m – 1)Ap 

Here, 

m  = the modular ratio = Ep/Ec 

Ec  = short-term elastic modulus of concrete 

Ep  = elastic modulus of steel. 

 

The following figure shows the commonly used areas of the prestressed members. 
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= + ≡

A Ac Ap At

= + ≡

A Ac Ap At  
Figure 2-1.1    Areas for prestressed members  

CGC   = Centroid of concrete 

  = Centroid of the gross section.  The CGC may lie outside the  

     concrete (Figure 2-1.2). 

CGS    = Centroid of prestressing steel 

= Centroid of the tendons.  The CGS may lie outside the tendons or   

   the concrete (Figure 2-1.2). 

I  = Moment of inertia of prestressed member  

= Second moment of area of the gross section about the CGC. 

It  = Moment of inertia of transformed section  

= Second moment of area of the transformed section about the  

   centroid of the transformed section. 

 

e     = Eccentricity of CGS with respect to CGC  

= Vertical distance between CGC and CGS. If CGS lies below CGC,  

   e will be considered positive and vice versa (Figure 2-1.2). 
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Figure 2-1.2    CGC, CGS and eccentricity of typical prestressed members 

 

Load Variables  

 Pi  = Initial prestressing force  

   = The force which is applied to the tendons by the jack. 
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P0   = Prestressing force after immediate losses  

= The reduced value of prestressing force after elastic shortening,   

   anchorage slip and loss due to friction. 

Pe  = Effective prestressing force after time-dependent losses  

= The final value of prestressing force after the occurrence of creep,   

   shrinkage and relaxation. 

 

2.1.1  Introduction 
 
In prestressed concrete applications, the most important variable is the prestressing 

force.  In the early days, it was observed that the prestressing force does not stay 

constant, but reduces with time.  Even during prestressing of the tendons and the 

transfer of prestress to the concrete member, there is a drop of the prestressing force 

from the recorded value in the jack gauge.  The various reductions of the prestressing 

force are termed as the losses in prestress. 

 

The losses are broadly classified into two groups, immediate and time-dependent.   The 

immediate losses occur during prestressing of the tendons and the transfer of prestress 

to the concrete member.  The time-dependent losses occur during the service life of the 

prestressed member.  The losses due to elastic shortening of the member, friction at the 

tendon-concrete interface and slip of the anchorage are the immediate losses.  The 

losses due to the shrinkage and creep of the concrete and relaxation of the steel are the 

time-dependent losses.  The causes of the various losses in prestress are shown in the 

following chart.  

Losses 

Immediate  Time dependent 

 
Elastic 

shortening 
Friction  Anchorage 

slip
Creep  Shrinkage Relaxation 

Figure 2-1.3    Causes of the various losses in prestress 
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2.1.2 Elastic Shortening  
 

Pre-tensioned Members  
When the tendons are cut and the prestressing force is transferred to the member, the 

concrete undergoes immediate shortening due to the prestress.  The tendon also 

shortens by the same amount, which leads to the loss of prestress.  

 

Post-tensioned Members 
If there is only one tendon, there is no loss because the applied prestress is recorded 

after the elastic shortening of the member.  For more than one tendon, if the tendons 

are stretched sequentially, there is loss in a tendon during subsequent stretching of the 

other tendons.  

 

The elastic shortening loss is quantified by the drop in prestress (∆fp) in a tendon due to 

the change in strain in the tendon (∆εp).  It is assumed that the change in strain in the 

tendon is equal to the strain in concrete (εc) at the level of the tendon due to the 

prestressing force.  This assumption is called strain compatibility between concrete 

and steel.  The strain in concrete at the level of the tendon is calculated from the stress 

in concrete (fc) at the same level due to the prestressing force.  A linear elastic 

relationship is used to calculate the strain from the stress. 

 

The quantification of the losses is explained below.  

 

                     

 

 
⎛ ⎞
⎜ ⎟
⎝ ⎠

p p p

p c

c
p

c

p c

∆f = E ∆ε
      = E ε

f      = E
E

∆f = mf (2-1.1) 
For simplicity, the loss in all the tendons can be calculated based on the stress in 

concrete at the level of CGS. This simplification cannot be used when tendons are 

stretched sequentially in a post-tensioned member.  The calculation is illustrated for the 

following types of members separately. 

• Pre-tensioned Axial Members 

• Pre-tensioned Bending Members 

• Post-tensioned Axial Members    
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• Post-tensioned Bending Members  
 

Pre-tensioned Axial Members 
The following figure shows the changes in length and the prestressing force due to 

elastic shortening of a pre-tensioned axial member. 

Original length of member at transfer of prestress

Length after elastic shortening

Pi

P0

Original length of member at transfer of prestress

Length after elastic shortening

Pi

P0

 
Figure 2-1.4    Elastic shortening of a pre-tensioned axial member  

 

The loss can be calculated as per Eqn. (2-1.1) by expressing the stress in concrete in 

terms of the prestressing force and area of the section as follows.  

 

 

 

 

(2-1.2) 
 

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞ ⎛ ⎞≈ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

p c

c

i i
p

t

∆f = mf

P      = m
A

P P∆f = m m
A A

0

Note that the stress in concrete due to the prestressing force after immediate losses 

(P0/Ac) can be equated to the stress in the transformed section due to the initial 

prestress (Pi /At).  This is derived below.  Further, the transformed area At of the 

prestressed member can be approximated to the gross area A. 

 

The following figure shows that the strain in concrete due to elastic shortening (εc) is the 

difference between the initial strain in steel (εpi) and the residual strain in steel (εp0).    
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Pi

P0

Length of tendon before stretching
εpi

εp0 εc

Pi

P0

Length of tendon before stretching
εpi

εp0 εc

 
Figure 2-1.5    Strain variables in elastic shortening  

 

The following equation relates the strain variables. 

εc = εpi - εp0                                                     (2-1.3) 
The strains can be expressed in terms of the prestressing forces as follows. 

c
c c

Pε =
A E

0                                                            (2-1.4) 

i
pi

p p

Pε =
A E

                                                          (2-1.5) 

p
p p

Pε =
A E

0
0

                                                    (2-1.6) 

Substituting the expressions of the strains in Eqn. (2-1.3)  

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
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⎝ ⎠
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P P      =
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0

0

0

1 1or

or,

or, 

 

0or   i

c t

P P=
A A

                                                       (2-1.7) 

 

Thus, the stress in concrete due to the prestressing force after immediate losses (P0/Ac) 

can be equated to the stress in the transformed section due to the initial prestress (Pi 

/At).  
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The following problem illustrates the calculation of loss due to elastic shortening in an 

idealised pre-tensioned railway sleeper. 

 

Example 2-1.1 
 
A prestressed concrete sleeper produced by pre-tensioning method has a 
rectangular cross-section of 300mm × 250 mm (b × h).  It is prestressed with 9 
numbers of straight 7mm diameter wires at 0.8 times the ultimate strength of 1570 
N/mm2.  Estimate the percentage loss of stress due to elastic shortening of 
concrete. Consider m = 6.                      

250 

40 

                                      300 

40 

Solution 

 

a) Approximate solution considering gross section 

 

The sectional properties are calculated as follows.   

Area of a single wire,                         Aw  = π/4 × 72  

                                                           = 38.48 mm2 

 

Area of total prestressing steel,        Ap   = 9 × 38.48  

                                                         = 346.32 mm2

 

Area of concrete section,                  A  = 300 × 250  

                                                          = 75 × 103 mm2

 

Moment of inertia of section,             I   = 300 × 2503/12  

                                                          = 3.91 × 108 mm4

 

Distance of centroid of steel area (CGS) from the soffit, 
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( )4×38.48× 250 - 40 +5×38.48×40y =
9×38.48

=115.5 mm

 

 
                                                      

Prestressing force,               Pi  = 0.8 × 1570 × 346.32 N   

                                   = 435 kN 

 

Eccentricity of prestressing force,  

                                                e  = (250/2) – 115.5  

                          = 9.5 mm 

 

The stress diagrams due to Pi are shown. 

 

Since the wires are distributed above and below the CGC, the losses are calculated for 

the top and bottom wires separately.  

 

Stress at level of top wires (y = yt = 125 – 40) 

 

 

 

 

 

 

 

 

115.5

e

= + 

iP-
A

i iP P .e- ± y
A I

iP .e± y
I

( )

( )
3 3

3 8

2

435×10 435×10 ×9.5       = - + × 125 - 40
75×10 3.91×10

       = -5.8+0.9
= -4.9 N/mm

i i
c tt

P P .ef = - + y
A I
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Stress at level of bottom wires (y = yb = 125 – 40), 

 ( )

( )
3 3

3 8

2

435×10 435×10 ×9.5       = - - × 125 - 40
75×10 3.91×10

       = -5.8 - 0.9
= -6.7 N/mm

i i
c bb

P P .ef = - - y
A I 

 

 

 

 

Loss of prestress in top wires    = mfcAp

(in terms of force)                      = 6 × 4.9 × (4 × 38.48)  

                   = 4525.25 N 

 

Loss of prestress in bottom wires  = 6 × 6.7 × (5 × 38.48) 

                         = 7734.48 N 

 

Total loss of prestress            = 4525 + 7735  

               = 12259.73 N  

                                                      ≈ 12.3 kN 

 

Percentage loss                            = (12.3 / 435) × 100% 

                                                      = 2.83% 

b) Accurate solution considering transformed section. 

 

Transformed area of top steel,        

                                                A1  = (6 – 1) 4 × 38.48 

                             = 769.6 mm2

 

Transformed area of bottom steel,  

                                                A2  = (6 – 1) 5 × 38.48 

          = 962.0 mm2

 

Total area of transformed section, 

                                               AT  = A + A1 + A2

        = 75000.0 + 769.6 + 962.0 

                  = 76731.6 mm2
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Centroid of the section (CGC)                     

 A× + A × + A ×y =
A

1 2125 (250 - 40) 40

 

                                            = 124.8 mm from soffit of beam 

 

Moment of inertia of transformed section, 

                                      IT  = Ig + A(0.2)2 + A1(210 – 124.8)2 + A2(124.8 – 40)2

               = 4.02 × 108mm4

 

Eccentricity of prestressing force,  

                                                  e  = 124.8 – 115.5 

           = 9.3 mm 

 

Stress at the level of bottom wires,  
3 3

3 8

2

435×10 (435×10 ×9.3)84.8= - -
76.73×10 4.02×10

= -5.67 - 0.85
= -6.52 N/mm

c b(f ) 

 

 

 

Stress at the level of top wires, 

 3 3

3 8

2

435×10 (435×10 ×9.3)85.2= - +
76.73×10 4.02×10

= -5.67+0.86
= -4.81 N/mm

c t(f )
 

 

 

Loss of prestress in top wires        = 6 × 4.81 × (4 × 38.48)  

               = 4442 N  

 

Loss of prestress in bottom wires  = 6 × 6.52 × (5 × 38.48)  

               = 7527 N 

 

Total loss               = 4442 + 7527 

               = 11969 N  

                                                      ≈ 12 kN 

 

Percentage loss              = (12 / 435) × 100% 

               = 2.75 % 
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It can be observed that the accurate and approximate solutions are close.  Hence, the 

simpler calculations based on A and I is acceptable. 

 
Pre-tensioned Bending Members 
The following figure shows the changes in length and the prestressing force due to 

elastic shortening of a pre-tensioned bending member.  

Pi

wsw (self-weight)

Pi

wsw (self-weight)

 
Figure 2-1.6    Elastic shortening of a pre-tensioned bending member 

  

Due to the effect of self-weight, the stress in concrete varies along length (Figure 2-1.6).  

The loss can be calculated by Eqn. (2-1.1) with a suitable evaluation of the stress in 

concrete.  To have a conservative estimate of the loss, the maximum stress at the level 

of CGS at the mid-span is considered.  

                        

(2-1.8) 
 

swi i
c

M eP Pe.ef = - - +
A I I

Here, Msw is the moment at mid-span due to self-weight.  Precise result using At and It in 

place of A and I, respectively, is not computationally warranted.  In the above 

expression, the eccentricity of the CGS (e) was assumed to be constant.  

 
For a large member, the calculation of the loss can be refined by evaluating the strain in 

concrete at the level of the CGS accurately from the definition of strain. This is 

demonstrated later for post-tensioned bending members. 

   
Post-tensioned Axial Members 
For more than one tendon, if the tendons are stretched sequentially, there is loss in a 

tendon during subsequent stretching of the other tendons.  The loss in each tendon can 
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be calculated in progressive sequence.  Else, an approximation can be used to 

calculate the losses. 

 

The loss in the first tendon is evaluated precisely and half of that value is used as an 

average loss for all the tendons.  

 

 

 

(2-1.9) 
 

∑

p p

c

n i,j

j=

∆f = ∆f

mf

P
      = m

A

1

1

2

1
2
1      =
2
1
2

Here, 

Pi,j  = initial prestressing force in tendon j 

 n  = number of tendons 

The eccentricity of individual tendon is neglected.  

 

Post-tensioned Bending Members  
The calculation of loss for tendons stretched sequentially, is similar to post-tensioned 

axial members.  For curved profiles, the eccentricity of the CGS and hence, the stress in 

concrete at the level of CGS vary along the length.  An average stress in concrete can 

be considered. 

 

For a parabolic tendon, the average stress (fc,avg) is given by the following equation.  

( )=c,avg c c cf f + f - f1 2
2
3 1

                                                  (2-1.10) 

Here, 

fc1  = stress in concrete at the end of the member 

fc2  = stress in concrete at the mid-span of the member. 

 

A more rigorous analysis of the loss can be done by evaluating the strain in concrete at 

the level of the CGS accurately from the definition of strain.  This is demonstrated for a 

beam with two parabolic tendons post-tensioned sequentially.  In Figure 2-1.7, Tendon 

B is stretched after Tendon A.  The loss in Tendon A due to elastic shortening during 

tensioning of Tendon B is given as follows.         

 

[ ]
p p c

p c c

∆f = E ε

      = E ε + ε1 2
(2-1.11) 
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Here, εc is the strain at the level of Tendon A.  The component of εc due to pure 

compression is represented as εc1.  The component of εc due to bending is represented 

as εc2.  The two components are calculated as follows. 

 

∫

∫

B
c

c

c

L
B B A

c

L
B

B A
c

Pε
AE
δLε
L

P .e (x).e (x)                  = dx
L IE
P e (x).e (x) dx

E LI

1

2

0

0

 =

=

1

                  =

 

 

 

 

 
(2-1.12) 

 

Here, 

A  = cross-sectional area of beam 

PB  = prestressing force in Tendon B 

Ec  = modulus of concrete 

L  = length of beam 

eA(x), eB(x) = eccentricities of Tendons A and B, respectively, at distance x  

     from left end 

I  = moment of inertia of beam  

δL  = change in length of beam 

 

The variations of the eccentricities of the tendons can be expressed as follows. 

 

(2-1.13) ⎛ ⎞+ −⎜ ⎟
⎝ ⎠
⎛ ⎞+ −⎜ ⎟
⎝ ⎠

A A A

B B B

x xe (x) = e ∆e
L L
x xe (x)= e ∆e
L L

1

1

4 1

4 1

 

(2-1.14) 

 

 

 

−
−

2 1

2 1

Where A A A

B B B

,   ∆e = e e
               ∆e = e e

 

eA1, eA2 = eccentricities of Tendon A at 1 (end) and 2 (centre), respectively.  

eB1, eB2 = eccentricities of Tendon B at 1 and 2, respectively. 
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Substituting the expressions of the eccentricities in Eqn. (2-1.12), the second 

component of the strain is given as follows.  

 

(2-1.15) 
 

( )⎡ ⎤+ + +⎢ ⎥⎣ ⎦
B

A B A B A B A B
c

P = e e e e e e e e
E I 1 1 1 2 2 1 2 2

1 2 8
5 15 15
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2.2 Losses in Prestress (Part II) 
This section covers the following topics 

• Friction 

• Anchorage Slip 

• Force Variation Diagram 

 

2.2.1 Friction
 

The friction generated at the interface of concrete and steel during the stretching of a 

curved tendon in a post-tensioned member, leads to a drop in the prestress along the 

member from the stretching end.  The loss due to friction does not occur in pre-

tensioned members because there is no concrete during the stretching of the tendons.  

 

The friction is generated due to the curvature of the tendon and the vertical component 

of the prestressing force.  The following figure shows a typical profile (laying pattern) of 

the tendon in a continuous beam.  

 
Figure 2-2.1    A typical continuous post-tensioned member 

(Reference: VSL International Ltd.)  

 

In addition to friction, the stretching has to overcome the wobble of the tendon.  The 

wobble refers to the change in position of the tendon along the duct.  The losses due to 

friction and wobble are grouped together under friction. 

 

The formulation of the loss due to friction is similar to the problem of belt friction. The 

sketch below (Figure 2-2.2) shows the forces acting on the tendon of infinitesimal length 

dx.  
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R
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N
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N
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P + dP

N

P dα/2

Force triangle

 
Figure 2-2.2    Force acting in a tendon of infinitesimal length    

 

In the above sketch,  

P  = prestressing force at a distance x from the stretching end 

R  = radius of curvature 

dα  = subtended angle. 

 

The derivation of the expression of P is based on a circular profile. Although a cable 

profile is parabolic based on the bending moment diagram, the error induced is 

insignificant. 

 

The friction is proportional to the following variables.  

• Coefficient of friction (µ) between concrete and steel.  

• The resultant of the vertical reaction from the concrete on the tendon (N) 

generated due to curvature.  

 

From the equilibrium of forces in the force triangle, N is given as follows. 

 

 
dαN = Psin

dα    » P = Pdα

2
2

2
2

(2-2.1) 
 

The friction over the length dx is equal to µN = µPdα.  

 

Thus the friction (dP) depends on the following variables. 

• Coefficient of friction (µ) 

• Curvature of the tendon (dα)  

• The amount of prestressing force (P) 



 Prestressed Concrete Structures Dr. Amlan K Sengupta and Prof. Devdas Menon  

 

 

 

 

 

 

 

 

 

 

 Indian Institute of Technology Madras  

The wobble in the tendon is effected by the following variables.  

• Rigidity of sheathing  

• Diameter of sheathing 

• Spacing of sheath supports 

• Type of tendon  

• Type of construction 

 

The friction due to wobble is assumed to be proportional to the following.  

• Length of the tendon 

• Prestressing force 

 

For a tendon of length dx, the friction due to wobble is expressed as kPdx, where k is 

the wobble coefficient or coefficient for wave effect. 

 

Based on the equilibrium of forces in the tendon for the horizontal direction, the 

following equation can be written. 

P = P + dP + (µPdα + kPdx) 

or, dP = – (µPdα + kPdx)                                            (2-2.2) 
 

Thus, the total drop in prestress (dP) over length dx is equal to – (µPdα + kPdx). The 

above differential equation can be solved to express P in terms of x.  

( )

( )

( )

⎛ ⎞
∫ ∫ ∫⎜ ⎟

⎝ ⎠

x

x

P α x

P

P
P

x

- µα+kx
x

dP = - µ dα+ k dx
P

 lnP = - µα+ kx

P ln = - µα+ kx
P

     P = P e

0

0

0 0

0

0

or,

or,

or,

 

 

 

 

 

(2-2.3) 
Here, 

P0 = the prestress at the stretching end after any loss due to elastic shortening.  

For small values of µα + kx, the above expression can be simplified by the Taylor series 

expansion.  

Px = P0 (1– µα – kx)                                            (2-2.4) 
 

Thus, for a tendon with single curvature, the variation of the prestressing force is linear 

with the distance from the stretching end.  The following figure shows the variation of 
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prestressing force after stretching.  The left side is the stretching end and the right side 

is the anchored end.  

Px
P0 Px
P0

 
Figure 2-2.3    Variation of prestressing force after stretching  

 

In the absence of test data, IS:1343 - 1980 provides guidelines for the values of µ and k.  

Table 2-2.1    Values of coefficient of friction 

Type of interface µ

For steel moving on smooth concrete 0.55. 

For steel moving on steel fixed to duct 0.30. 

For steel moving on lead 0.25. 

 

The value of k varies from 0.0015 to 0.0050 per meter length of the tendon depending 

on the type of tendon.  The following problem illustrates the calculation of the loss due 

to friction in a post-tensioned beam.  

 

Example 2-2.1 
 

A  post-tensioned beam 100 mm × 300 mm (b × h) spanning over 10 m is stressed 

by successive tensioning and anchoring of 3 cables A, B, and C respectively as 
shown in figure. Each cable has cross section area of 200 mm2 and has initial 
stress of 1200 MPa. If the cables are tensioned from one end, estimate the 
percentage loss in each cable due to friction at the anchored end.  Assume µ = 
0.35, k = 0.0015 / m.   
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Cable A
Cable B
Cable C

CL

50
50 CGC

Cable A
Cable B
Cable C

CL

50
50 CGC

 
Solution 
 

Prestress in each tendon at stretching end  = 1200 × 200 

                                                                            = 240 kN. 

 

To know the value of α(L), the equation for a parabolic profile is required. 

 
md y y= ( L -

d x L 2
4 2 x )

 

ym

y

L

x

α(L)

ym

y

L

x

α(L)
 

Here,  

ym  = displacement of the CGS at the centre of the  beam from the ends 

 L  = length of the beam 

 x  = distance from the stretching end 

 y  = displacement of the CGS at distance x from the ends. 

 

An expression of α(x) can be derived from the change in slope of the profile.  The slope 

of the profile is given as follows.   

  md y y= ( L -
d x L 2

4 2 x )
                                    

At x = 0, the slope dy/dx = 4ym/L.  The change in slope α(x) is proportional to x. 

 

The expression of α(x) can be written in terms of x as α(x) = θ.x,  

where, θ = 8ym/L2.  The variation is shown in the following sketch. 
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8ym/L

4ym/L

α

0 L/2 L x

θ

8ym/L

4ym/L

α

0 L/2 L
θ

x 
The total subtended angle over the length L is 8ym/L. 

 

The prestressing force Px at a distance x is given by  

                                 

                                  Px = P0e–(µα + kx) = P0e–ηx

where,                       ηx = µα + kx 

 

For cable A, ym = 0.1 m. 

For cable B, ym = 0.05 m. 

For cable C, ym = 0.0 m. 

 

For all the cables, L = 10 m.   

 

Substituting the values of ym and L   

 ⎧
⎪
⎨
⎪⎩

0.0043x  for cable A
= 0.0029x  for cable B 

0.0015x  for cable C
ηx 

 

 

The maximum loss for all the cables is at x = L = 10, the anchored end.  

 
⎧
⎪
⎨
⎪⎩

0.958 for cable A     
= 0.971 for cable B    

0.985 for cable C     

-ηLe
 

 

 

Percentage loss due to friction = (1 – e–ηL) × 100% 

 
⎧
⎪
⎨
⎪⎩

4.2% for cable A      
= 2.9% for cable B      

1.5% for cable C       
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Cable A
Cable B
Cable C

CL

CGC

240 kN

Cable A
Cable B
Cable C

CL

CGC

240 kN

 
Variation of prestressing forces 

 

The loss due to friction can be considerable for long tendons in continuous beams with 

changes in curvature. The drop in the prestress is higher around the intermediate 

supports where the curvature is high.  The remedy to reduce the loss is to apply the 

stretching force from both ends of the member in stages.  

 
2-2.2 Anchorage Slip 
 

In a post-tensioned member, when the prestress is transferred to the concrete, the 

wedges slip through a little distance before they get properly seated in the conical space.  

The anchorage block also moves before it settles on the concrete. There is loss of 

prestress due to the consequent reduction in the length of the tendon.  

 

The total anchorage slip depends on the type of anchorage system. In absence of 

manufacturer’s data, the following typical values for some systems can be used. 

Table 2-2.2    Typical values of anchorage slip  

Anchorage System Anchorage Slip (∆s) 

Freyssinet system 

12 - 5mm Φ strands 

12 - 8mm Φ strands 

 

4 mm 

6 mm 

Magnel system 8 mm 

Dywidag system 1 mm 

(Reference: Rajagopalan, N., Prestressed Concrete)  
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Due to the setting of the anchorage block, as the tendon shortens, there is a reverse 

friction.  Hence, the effect of anchorage slip is present up to a certain length (Figure 2-

2.4).  Beyond this setting length, the effect is absent.  This length is denoted as lset. 

Px

P0

Px

P0

 
Figure 2-2.4    Variation of prestressing force after anchorage slip  

 

2.2.3 Force Variation Diagram 
  

The magnitude of the prestressing force varies along the length of a post-tensioned 

member due to friction losses and setting of the anchorage block. The diagram 

representing the variation of prestressing force is called the force variation diagram. 

Considering the effect of friction, the magnitude of the prestressing force at a distance x 

from the stretching end is given as follows. 

(2-2.5) -ηx
xP = P e0

 

Here, ηx = µα + kx denotes the total effect of friction and wobble. The plot of Px gives 

the force variation diagram. 

 

The initial part of the force variation diagram, up to length lset is influenced by the setting 

of the anchorage block. Let the drop in the prestressing force at the stretching end be 

∆P.  The determination of ∆P and lset are necessary to plot the force variation diagram 

including the effect of the setting of the anchorage block.  

 

Considering the drop in the prestressing force and the effect of reverse friction, the 

magnitude of the prestressing force at a distance x from the stretching end is given as 

follows.  

(2-2.6) ( )' η'x
xP = P - ∆P e0
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Here, η’ for reverse friction is analogous to η for friction and wobble.  

At the end of the setting length (x = lset), Px = P’x 

∆P

P0

Px Px
’

lset x

Px

Px after stretching
P’x after setting
Px beyond lset

∆P

P0

Px Px
’

lset x

Px

∆P

P0

Px Px
’

lset x

Px

Px after stretching
P’x after setting
Px beyond lset

 
Figure 2-2.5    Force variation diagram near the stretching end  

 

Substituting the expressions of Px and Px’ for x = lset 

 

Since it is difficult to measure η’ separately, η’ is taken equal to η.  The expression of 

∆P simplifies to the following.  

( )
( )

( )

( )

⎡ ⎤⎣ ⎦
⎛ ⎞
⎜ ⎟
⎝ ⎠

set set

set

-ηl η'l

- η+η' l

set

set set

P e = P - ∆P e

P e = P - ∆P

P - η+η' l = P - ∆P

η'∆P = P η+η' l = P ηl +
η

0 0

0 0

0 0

0 0

1

1

⎛ ⎞
⎜ ⎟
⎝ ⎠

s set
p p

set
s set

p p

∆P∆ = l
A E

l η'∆ = P ηl +
A E η0

1
2

1 1
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

p p
set s

s p p

A E
l = ∆

η'P η +
η

∆ A E
      = η' = η

P η

2

0

0

2

1

for 

 

 

 

 

 

 

 

 

 

 

(2-2.7) 
 

∆P = 2P0ηlset                                                                                              (2-2.8) 
 

The following equation relates lset with the anchorage slip ∆s.  

(2-2.9) 
 

Transposing the terms,  
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Therefore,  

 
s p p

set

∆ A E
l =

P η0

(2-2.10) 
 

The term P0η represents the loss of prestress per unit length due to friction.  

 

The force variation diagram is used when stretching is done from both the ends. The 

tendons are overstressed to counter the drop due to anchorage slip. The stretching from 

both the ends can be done simultaneously or in stages. The final force variation is more 

uniform than the first stretching. 

 

The following sketch explains the change in the force variation diagram due to 

stretching from both the ends in stages. 

a) After stretching from right end

b) After anchorage slip at right end

a) After stretching from right end

b) After anchorage slip at right end  

c) After stretching from left end

d) After anchorage slip at left end

c) After stretching from left end

d) After anchorage slip at left end

c) After stretching from left end

d) After anchorage slip at left end  
Figure 2-2.6    Force variation diagrams for stretching in stages 
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The force variation diagrams for the various stages are explained.  

a)  The initial tension at the right end is high to compensate for the anchorage  

slip.  It corresponds to about 0.8 fpk initial prestress. The force variation   

diagram (FVD) is linear. 

b)  After the anchorage slip, the FVD drops near the right end till the length lset.  

c) The initial tension at the left end also corresponds to about 0.8 fpk initial  prestress. 

The FVD is linear up to the centre line of the beam.  

d)  After the anchorage slip, the FVD drops near the left end till the length lset.  It is 

observed that after two stages, the variation of the prestressing force over the length 

of the beam is less than after the first stage.  

 

Example 2-2.2  
 
A four span continuous bridge girder is post-tensioned with a tendon consisting 
of twenty strands with fpk = 1860 MPa.   Half of the girder is shown in the figure 
below.  The symmetrical tendon is simultaneously stressed up to 75% fpk from 
both ends and then anchored.  The tendon properties are Ap = 2800 mm2, Ep = 
195,000 MPa, µ = 0.20, K = 0.0020/m.  The anchorage slip ∆s = 6 mm.   
 
Calculate  
a) The expected elongation of the tendon after stretching,  
b) The force variation diagrams along the tendon before and after anchorage. 

     
 
 
 

13.7 13.7 3 3.7 15.2 15.2 3.7 

0.76 0.6 0.76 

All dimensions are in metres 

0.6 
CL 

 Inflection points 
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Solution  
 

Initial force at stretching end  

         0.75fpk  = 1395 MPa 

      P0  = 0.75fpk Ap

                 = 3906 kN 

 

The continuous tendon is analysed as segments of parabola.  The segments are 

identified between the points of maximum eccentricity and inflection points.  The 

inflection points are those where the curvature of the tendon reverses.  The different 

segments are as follows: 1-2, 2-3, 3-4, 4-5, 5-6, 6-7 and 7-8.    

      

CL 

3 5 7
621 4 8

The following properties of parabolas are used.  For segment 1-2, the parabola in the 

sketch below is used. 

                               
The change in slope from the origin to the end of the parabola is same as the slope at 

the end of the tendon which is α = 2e/L, where  

L = length of the segment 

e = vertical shift from the origin. 

 

For segments 2-3 and 3-4 and subsequent pairs of segments, the following property is 

used.   

y 

e

L α 

x 0 
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λL

                 
For the two parabolic segments joined at the inflection point as shown in the sketch 

above, the slope at the inflection point α = 2(e1 + e2)/λL. 

Here,  

e1, e2 = eccentricities of the CGS at the span and support respectively  

L = length of the span  

λL = fractional length between the points of maximum eccentricity  

 

The change in slope between a point of maximum eccentricity and inflection point is 

also equal to α.  

 

The change in slope (α) for each segment of the tendon is calculated using the above 

expressions.  Next the value of µα + kx for each segment is calculated using the given 

values of µ, k and x, the horizontal length of the segment.  Since the loss in prestress 

accrues with each segment, the force at a certain segment is given as follows.         

 

 

The summation ∑ is for the segments from the stretching end up to the point in the 

segment under consideration.  Hence, the value of ∑(µα + kx) at the end of each 

segment is calculated to evaluate the prestressing force at that point (Px, where x 

denotes the point).          

e2

e1

α 

L

-Σ(µα+kx)
xP = P e0



 Prestressed Concrete Structures Dr. Amlan K Sengupta and Prof. Devdas Menon  

 

 

 

 

 

 

 

 

 

 

 Indian Institute of Technology Madras  

0.163  α 0.111  0.163 0.144  0.144  0.144  0.144 

µα +kx 0.039
0.050  0.060  0.059 0.059  0.036 0.036 

 
The force variation diagram before anchorage can be plotted with the above values of 

Px.  A linear variation of the force can be assumed for each segment.  Since the 

stretching is done at both the ends simultaneously, the diagram is symmetric about the 

central line. 

   

a) The expected elongation of the tendon after stretching 

First the product of the average force and the length of each segment is summed up to 

the centre line.    

 

 

0.050  
Σ(µα +kx) 0.149 
k ) 0.110 0.185 0.244 0.303  0.339

e-Σ(µα + kx)

0.738 
0.712 

0.7830.952 1.000 0.896 
0.861

0.831

Px (kN)
3906 3718 3500 

3363 
3246 3058 2883 

2781 

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ]

av
1 1P L = 3906+3718 ×13.7+ 3718+3500 ×13.7
2 2
1 1+ 3500+3363 ×3+ 3363+3246 ×3.7
2 2
1 1+ 3246+3058 ×15.2+ 3058+ 2883 ×15.2
2 2
1+ 2883+ 2718 ×3.7
2

= 227612.2 kN
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The elongation (∆) at each stretching end is calculated as follows. 

3227612×10=
2800×195000

= 0.417 m 

av

P P

P L∆=
A E

 

b) The force variation diagrams along the tendon before and after anchorage 

 

After anchorage, the effect of anchorage slip is present up to the setting length lset.  The 

value of lset due to an anchorage slip ∆s = 6 mm is calculated as follows.  

 

6×2800×195000=
13.7

=15.46 m 

s P P
set

0

∆ A El =
P µ 

 

 

 

 

The quantity P0µ is calculated from the loss of prestress per unit length in the first 

segment.  P0µ = (3906 – 3718) kN /13.7 m = 13.7 N/mm.  The drop in the prestressing 

force (∆p) at each stretching end is calculated as follows.  

 
02

= 2×13.7×15464
= 423.7 kN 

p set∆ = P µl
 

 

 

Thus the value of the prestressing force at each stretching end after anchorage slip is 

3906 – 424 = 3482 kN.  The force variation diagram for lset = 15.46 m is altered to show 

the drop due to anchorage slip.   

 

The force variation diagrams before and after anchorage are shown below.  Note that 

the drop of force per unit length is more over the supports due to change in curvature 

over a small distance. 
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2.3 Losses in Prestress (Part III) 
This section covers the following topics. 

• Creep of Concrete  

• Shrinkage of Concrete  

• Relaxation of Steel 

• Total Time Dependent Losses 

 

2.3.1 Creep of Concrete 
 

Creep of concrete is defined as the increase in deformation with time under constant 

load.  Due to the creep of concrete, the prestress in the tendon is reduced with time. 

  

The creep of concrete is explained in Section 1.6, Concrete (Part II).  Here, the 

information is summarised.  For stress in concrete less than one-third of the 

characteristic strength, the ultimate creep strain (εcr,ult) is found to be proportional to the 

elastic strain (εel). The ratio of the ultimate creep strain to the elastic strain is defined as 

the ultimate creep coefficient or simply creep coefficient θ. 

 

The ultimate creep strain is then given as follows.  

(2-3.1) 
cr,ult elε = θε

 
IS:1343 - 1980 gives guidelines to estimate the ultimate creep strain in Section 5.2.5. It 

is a simplified estimate where only one factor has been considered. The factor is age of 

loading of the prestressed concrete structure. The creep coefficient θ is provided for 

three values of age of loading. 

 

Curing the concrete adequately and delaying the application of load provide long term 

benefits with regards to durability, loss of prestress and deflection.  

In special situations detailed calculations may be necessary to monitor creep strain with 

time.  Specialised literature or international codes can provide guidelines for such 

calculations. 

 

The loss in prestress (∆fp ) due to creep is given as follows. 

 ∆fp = Ep εcr, ult                                                                                          (2-3.2) 
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Here, Ep is the modulus of the prestressing steel.  

 

The following considerations are applicable for calculating the loss of prestress due to 

creep.  

1)  The creep is due to the sustained (permanently applied) loads only.   

     Temporary loads are not considered in the calculation of creep.  

2)  Since the prestress may vary along the length of the member, an average value 

of the prestress can be considered.  

3) The prestress changes due to creep and the creep is related to the 

instantaneous prestress. To consider this interaction, the calculation of creep can 

be iterated over small time steps.  

 

2.3.2 Shrinkage of Concrete  
 

Shrinkage of concrete is defined as the contraction due to loss of moisture. Due to the 

shrinkage of concrete, the prestress in the tendon is reduced with time.  

The shrinkage of concrete was explained in details in the Section 1.6, Concrete (Part II). 

  

IS:1343 - 1980 gives guidelines to estimate the shrinkage strain in Section 5.2.4. It is a 

simplified estimate of the ultimate shrinkage strain (εsh).  Curing the concrete adequately 

and delaying the application of load provide long term benefits with regards to durability 

and loss of prestress.  In special situations detailed calculations may be necessary to 

monitor shrinkage strain with time. Specialised literature or international codes can 

provide guidelines for such calculations.  

 

The loss in prestress (∆fp ) due to shrinkage is given as follows. 

∆fp = Ep εsh                                                                                      (2-3.3) 
Here, Ep is the modulus of the prestressing steel.  

 

2.3.3  Relaxation of Steel 
  

Relaxation of steel is defined as the decrease in stress with time under constant strain. 

Due to the relaxation of steel, the prestress in the tendon is reduced with time.  The 

relaxation depends on the type of steel, initial prestress (fpi) and the temperature.  To 
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calculate the drop (or loss) in prestress (∆fp), the recommendations of IS:1343 - 1980 

can be followed in absence of test data.  

 
Example 2-3.1 
 

A concrete beam of dimension 100 mm × 300 mm is post-tensioned with 5 
straight wires of 7mm diameter.  The average prestress after short-term losses is 
0.7fpk = 1200 N/mm2 and the age of loading is given as 28 days.  Given that     Ep = 

200 × 103 MPa, Ec = 35000 MPa, find out the losses of prestress due to creep, 

shrinkage and relaxation.  Neglect the weight of the beam in the computation of 
the stresses.  

300

100

50 CGS

300

100

50 CGS

 
Solution 
 

Area of concrete                        A  = 100 × 300 

                                                 = 30000 mm2

 

Moment of inertia of beam section  

                                                  I   = 100 × 3003 / 12 

                                                     = 225 × 106 mm4  

 

Area of prestressing wires      Ap   = 5 × (π/4) × 72  

                                                     = 192.42 mm2

 

Prestressing force after short-term losses 

                                                 P0  = Ap.fp0

                                   = 192.4 × 1200  

                                                      = 230880 N                                           
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Modular ratio                            m  = Ep / Ec  

                                 = 2 × 105 / 35 × 103  

                                                     = 5.71 

 

Stress in concrete at the level of CGS  

 

                                                      

                                                  

                                                     

0 0

2
4 6

230880 230880= - - ×50
3×10 225×10

c
P P ef = - - e
A I

                                                 = – 7.69 – 2.56  

                                                 = – 10.25 N/mm2

 

Loss of prestress due to creep  

                                        (∆fp)cr  = Ep εcr, ult  

                                                    = Ep θεel

                                                    = Ep θ (fc/Ec) 

                                                   = m θ fc             

             = 5.71 × 10.25 × 1.6  

             = 93.64 N / mm2

 

Here, θ = 1.6 for loading at 28 days, from Table 2c-1 (Clause 5.2.5.1, IS:1343 - 1980). 
 

Shrinkage strain from Clause 5.2.4.1, IS:1343 - 1980 
                                              εsh  = 0.0002 / log10(t + 2) 

                                               = 0.0002 / log10 (28 + 2)  

                                               = 1.354 × 10-4

 

Loss of prestress due to shrinkage 

                                   (∆fp)sh = Epεsh

                                    = 2 × 105 × 1.354 × 10-4  

                                    = 27.08 N/mm2
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From Table 2c-2 (Table 4, IS:1343 - 1980)  
Loss of prestress due to relaxation  

                                                 (∆fp)rl = 70.0 N/mm2

 

Loss of prestressing force    = ∆fp Ap

 

Therefore,  

Loss of prestressing force due to creep  = 93.64 × 192.42 

                                                                = 18018 N 

 

Loss of prestressing force due to shrinkage   

                                                               = 27.08 × 192.42 

                                                                = 5211 N 

 

Loss of prestressing force due to relaxation 

                                                                = 70 × 192.42   

                                                              = 13469 N 

 

Total long-term loss of prestressing force (neglecting the interaction of the losses and 

prestressing force) 

                                                       = 18018 + 5211 + 13469 

                                                       = 36698 N  

 

Percentage loss of prestress     = 36698 / 230880 × 100% 

                                                       = 15.9 % 

 

2.3.4 Total Time-dependent Loss  
 

The losses of prestress due to creep and shrinkage of concrete and the relaxation of the 

steel are all time-dependent and inter-related to each other. If the losses are calculated 

separately and added, the calculated total time-dependent loss is over-estimated.  To 

consider the inter-relationship of the cause and effect, the calculation can be done for 

discrete time steps. The results at the end of each time step are used for the next time 

step. This step-by-step procedure was suggested by the Precast / Prestressed 
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Concrete Institute (PCI) committee and is called the General method (Reference: PCI 

Committee, “Recommendations for Estimating Prestress Losses”, PCI Journal, PCI, Vol. 

20, No. 4, July-August 1975, pp. 43-75).  

 

In the PCI step-by-step procedure, a minimum of four time steps are considered in the 

service life of a prestressed member.  The following table provides the definitions of the 

time steps (Table 2-3.3).  

Table 2-3.3    Time steps in the step-by-step procedure 

Step Beginning End 

1 Pre-tension: Anchorage of steel 

Post-tension: End of curing 

Age of prestressing 

2 End of Step 1 30 days after prestressing or 

when subjected to superimposed 

load 

3 End of Step 2 1 year of service 

4 End of Step 3 End of service life 

 

The step-by-step procedure can be implemented by a computer program, where the 

number of time steps can be increased. 

  

There are also approximate methods to calculate lump sum estimates of the total loss. 

Since these estimates are not given in IS:1343 - 1980, they are not mentioned here.  


