. Vable Advanced Mechanses of Matenals: Stress and Strain

Stress and Strain

(a) Inadequate Strength (b) Adequate Stiffness
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The learning objectives in this chapter are:

» To understand the concepts of stress and strain.

+ To understand stress and strain transformations in three dimensions,

* To understand the relationship of stress to internal forces and
moments,
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Internally Distributed Force System

Wormal to plane

» The mtensity of internal distributed forces on an imaginary cut surface
of a body is called the stress on a surface.

» The intensity of internal distributed force that 18 normal to the surface
of an imaginary cut 1s called the rormal siress on a surface.

» The intensity of internal distributed force that is parallel to the surface
of an imagmary cul surface is called the shear stress on the surface.
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Stress at a Point

Inbersial fovee AR
=TRN L
/ %\ﬂ‘}(m
direction of direction of the

outward normal tothe  internal force component,
Imaginary cut surface,

« AA; will be considered positive if the outward normal to the surface 15
in the positive 1 direction,

= A siress component 1s positive if numerator and denominator have the
same sign. Thus oy 1s positive if: (1) AF; and AA; are both positive. (2)
AF; and AA,; are both negative.

o Tz -"-'.1_1.' Tz
 Stress Matix mn3-D: |1 &, =,

Table 1.1. Comparison of number of components

Criantity 1-D 1-D 3-D
Scaler 1=1 1= 1=3
Vector 1=1" 2= 33
Stress 1=1* 4=22 4=3°
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Stress Element

* Stress element i1s an imaginary object that helps us visualize stress at a
point by constructing surfaces that have outward normal in the coordi-
nate directions,

Stress Element in Cartesian Coondinates
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Stress Element in Cylindrical Coordinates
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Stress Element in Spherical Coordinates

Symmetric Shear Stresses: 1, = = T, = T T, =1

¥y ¥ L = Az

« A pair of symmetric shear stress points towards the comer or away
from the comer.

14
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Cl.1 Show the non-zero stress components on the A B. and C faces of the
cube shown below.

g, =0 Ty = —13ksi T =0
- — L A
i = o 14 G = 1Esi{ ) T = 23k=i
T, —10 T,, = 23ksi 8., = 20k5i(T)|
Fig. P1.1

Class Problem 1.1

Show the non-zero stress components on the A B, and C faces of the cube
shown below.

e T = ~15ksi . =
£ = —15ksi Sy = ez {C) Teg = 25ksi
e, —0 25kt o, = 20ksi(T)
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Stress transformation in two dimension

»

Srress Wadlge

O

. 3
Oy, = 0,50 B +a

Fomer Wedpe

ygyy Ll o)

Bl 40 Constd o]

Ty Ll costh i)

(at s )

3y (el 9 ]

2 P i
G008 B + o, 8070+ 2y, smbeost

T = —O,cosBeind +a sinﬂmsﬁ+tﬂ|;.um3ﬂ—siniﬂ}

ry

H,cnszﬂ - 2, costiaint)
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b, Vable
Matrix Notation
n, = cosb By = sin bl I, = cogd b= gin b
Trueonlvin2D:h = 904020, =, 1 =n,
?‘i'_.|lI i'_!. t_1.-1' G_I-','F'
The symmetry of shear stresses [a] - [a]
r
|ﬂm = in} [ﬂ]fﬂ]|
=

T = 11 |o6]{n}

o, = (1) [a]{1)

Traction or Stress vector
Mathematically the stress vector {5} 15 defined as:
{5t = laling
Sy = Gl Ty

Sy, = A tELR

- pressure is a scaler quantity,
* fraction 1s a vector quantity.
 stress 1s a second order tensor.

Statically equivalent force wedge.
8, (a4}

; {40

Ty | 01y A4 T {d-f“.::l‘,:.q L'J.l.'d"“' ¥y (e}
]
Ty (72 Al ' ¥ Uty A
Ty, Gy ) Ty A1ty )
Oy (g i) Oy Ly el
()

Tep

Stress vector in different coordinate systems, {5} = o {n} + 1,0}

{e}
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Principal Stresses and Directions

{5} = [altp} = a,{p)

OR
" Ty Tl P a Ol p
(R = [T TR o | 1
|:tpr ﬁf.‘] Py !ﬂ “r;| Py
OR
(0, —Ty) T T 0
T_]-l.'r {U_ﬂ- k U_p} .F_‘-

Characteristic equation

2 2
OO (0T ﬁ_ﬂ,} TS T = il

Roots: o, ; = [(5,,+6,)¢ J;u# +8,,) - 4(8,,08,, ~7,)]/2
OR

gt o —ﬁ,!,l 2
L2 = [( nz w)iJ[ Hz 1] +trr:|

* The eigenvalnes of the stress matrix are the principal stresses,
« The eigenvectors of the stress matnx are the principal directions.

1.4
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Stress Transformation in 3-D

Direction cosines of a unit normal Equilibrating shear stress
¥
¥

iy S!' Cyr I.'I'_:l T
fn} = m, f =981 [e] = |x,, T
ﬂ: SI tn tz}' U""'r"
r
|'=‘,,., = {4} [ﬂ]f:ﬂ]|
1

T = £} [S]Hin}
o — (0 [0]11]
15} = [alim}
Equilibrium condition: {8} = &, {#} +t, {1} inplies 1% = &2 + 1,
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Principal Stresses and Directions

= Planes on which the shear stresses are zero are called the principal
planes.
* The normal direction to the principal planes is referred to as the princi-
pal direction or the principal axis.
» The angles the principal axis makes with the global coordinate svstem
ar¢ called the principal angles.
181 = [olipl = o,ip}

OR
_ T
|
Oy t.w_n.- ez | Px "Tp 0 My
t.l'-I U.'-'.I-' 1.I-'£= P.'*' =~ | Y G.!? 4 £ ¥
Tox 1:.|.' ﬂ::J P 0 & np £
OR
'l:ﬁr.'c = "-'I'-,l_:l::I ty_p l='r.;. Fy
Ty (T — T ¥ya pyf =10
T t.!,u' ':ﬂrz i #,::-} P

» The eigenvaines of the stress matrix are the principal stresses.
+ The eigenveciors of the stress matnx are the principal directions,

2 2 2
Pty e = )

Principal stress convention

Ordered principal stresses in 3-D; G| > 0y > 0y
Ordered principal stresses in 2-D: &) > 6,
Principal Angles 0" <0,,0,,0,<180°

Characteristic equation

3 24 0 =
oy ~hes el =0
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Stress Invariants

Y
S = N | P, o
;2 - e tap || T e | 4| Tax Taz
T T Yo For Ton Oz
Ty I_'I'.:Iu' Tz
I
3 Tat  Tha By
Tm Ty Yn

ol Al =1y = 0

== r == 3 3
Bools Xy = 2dcosa+1/3 Xy = ~2dcos{a 607 ) +1,./3

4 = i3 -5y73
cos3a = [20F, /37 — (I, 3y + L]/(247)

o, i =8 +o+oy

Principal Stress Matrix [o] - o, Iy = 0,6, + 0,0, + 040,

oy ly = ajo,a,

Maximum Shear Stress

W) | 0 e
Plane Stress ke f E o
©) b | (n

ﬁj-ﬂ

U

« maximum shear stress exists on two planes, each of which are 43
away from the principal planes.
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rotation about principal axis 1

P

rotation about principal axis 2

P2
rotation about principal axis 3
(In-plane)
P1
-
Ty — 1y
T Tiy = -
= * 2

3
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Octahedral stresses

» A plane that makes equal angles with the principal planes is called an

octahedral plane.

» The stresses on the octahedral planes are the octahedral stresses.

AL
{5} = qon,
Tty

oy = Gynf + 804 + o3

t = ST —02, = Jf(oint +olnd + oind) -,
Pl = b = |nof = 1743

= [, + 0, + 0,03 = 173
1 d k] I

Foer

1 2 2 2
i = i.f{ﬁ,—n'zﬁ +H{mz,— o3} +(o3—0))
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Stress Deviators

Experiments have shown that hydrostatic pressure has neghigible effect

on the vield point until extreme high pressures are reached! (=360 ksi).
The high hydrostatic pressure does not effect the stress-strain curve in the
elastic region but increase the ductility of the matenial, 1e.. permits large
plastic deformation before fracture,
Stress deviatoric matrix is the siress matrix from which the hvdrostatic
state of stress has been removed. The hvdrostatic pressure (p) is given by
g.to, ta.,. oyto,tay I

= 3 : 3 3
where. I, 1s the first stress invariant.
The stress deviatoric matrix in Cartesian coordinate principal coordinates
is given by

Stress deviatoric matrices

I
| =
Ty~ T "xy Tz ) - th ‘3 ] ]
T.. 0 — == L
pr o S WE {} ] d'}--fl-'E
'!5
':.'I: T:‘ n-- ; 'j.

The deviatoric stress invariants are as given below

s |ens o o;-473 0 | |e-n/3 0
1 1 r) 1 a 3y 1
Jy =1 '31% - '{2;}““1 —0p) tlay—ay) Hoy-0)] = '('i]‘c-.:e
Jomp Ly (o Eeo L ) 2
3= hoghihtEh - Al Oy — Gy~ G020y — O3 ~ O Wi0; -0 —Ga)

1. Mendelson A “Plasticy: Theory and Apphcations™, Macmillan Co., Mew York, [1968) szction 2-5
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C1.2 The stress at a point 15 given by the stress matrix shown. Determine:

() the normal and shear stress on a plane that has an outward normal at 37°%, 120,
and 7043, to x, v, and z direction respectively. (b) the principal stresses (¢) the sec-
ond principal direction and (d) the magmtude of the octahedral shear stress. (e)
maximum shear stress () the deviatoric stress invanants.

18 12 9
12 12 —g|ksi
9 6 6

1-1&
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Strain

» The total movement of a pomnt with respect to a fixed reference coordi-
nates is called displacement.

» The relative movement of a point with respect to another point on the
body is called deformation.

«  Lagrangian strain1s computed from deformation by using the origmal
undeformed geometry as the reference geometry,

« Fulerian sirain 1s computed from deformation by using the final
delformed geometry as the reference geometry.

» Relating strains to displacements is a problem in geometry.

» Elongations (Ly = L) result in posiiive normal strains. Contractions
(Ly = L) result in negative normal strans.
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Average shear strain
Undeformed grd Deformed grid

:"n.‘-"nn;rlc:a'l Bar w?ith Haﬁkiﬁg ]q-p:f -

Wooden Bar with Masking Tape
i TS i W I S

Wooden Bar with Masking Tape Woaoden Bar with Masking Tape

W

L —

=

» Decreases in the angle (a0 < m / 2) result in positive shear strain
Increase in the angle (o = w/ 2) result in negative shear stram

Units of average strain

« To differentiate average strain from strain at a point.
« in/in, or cm/em, or m/m (for normal strains)

« rads (for shear strains)

« percentage, 0.3% is equal to a strain of 0,003

» prefix: =10 1000 p in/in is equal to a strain 0.001 in /

1-148
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Small Strain Approximation

Ly= JL2+ D" +2L Deosé

i Jj f[ﬂ‘-‘:—szﬁjmn. :

E, Ly "\L,
atl J:Ju;ﬂiﬁ
ol

B mall £ Y error

1.0 1.23607 19.1

0.5 058114 14.0

0.1 0. 10454 4.3

(.05 _ 0005119 2.32

(.01 f 0.01003 (.49

0.00% | 000501 (.25

» Small-strain approximation may be used for strains less than (.01

+ Small normal strains are calculated by using the deformation compo-
nent in the original direction of the line element regardless of the on-
entation of the deformed line element.

» Insmall shear straimn (y) calculations the following approximation may
be used for the trigonometnc functions: tany=1y siny =y cosy = |

« Small-strain calculations result in lincar deformation analvsis,

» Drawing approximate deformed shape 1s very important in analysis of
small straimns,
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13 A roller at P slides in a slot as shown. Determine the deformation in
bar A and bar 5P by using small strain approximation.
6= 10,23 mm

Fig. C13

Class Problem 1.2

Draw an approximate exaggerated deformed shape.
Using small stram approximation write equations relating & yp and 8gp

to 5;.!.

Op = 11.25 mm
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Engineering strain at a point

_ B o
gz a8y

= lim (@j =
2 Ax— A, E‘JE'
m(5) - %
Jr—H:l "1'5!*' ay
ﬂ.'ﬂ-‘} (5l
S = I Y= =il
L Az 0% AZ dz
o 29 8
L _u__,,.:. -’_t,,J' 1% '51' 'E"T
Ay 0
o A .':'..'I-'I-')
= = l el
Ty Tz ._-,_.:T..D Az Ay
-l
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Strain Transformation

Strain transformation is relating strains in two coordinate systems.

x = noosd — tsind ¥ = nsind + teost

%, = necosf +vsind v, = —usinb + veosh

Strain transformation equations in 2-D
Ean = B chslﬁ ¥ sﬂsiniﬂ' 7y Sinteos
By = EIA_EiI'IIH"'ﬂ.I..‘.GW P Tyysinticost

Toe = — 28, sinboosth + 28, sinbcosh + *gr“{mszﬂ ~ sin’B)

Stress transformation equations in 2-D
t;snm-aiﬂ + 5,5 0+ Zn, smbeost

y o ;
o, = o, sinl+ :r}._pcnszﬂ' — 11, costsintl

D e

> i so B
Ty = — Ty 005 05ind + o sinBoos® + 1, (coslB—s5in0)

» tensor normal strains = engineering normal strains
» tensor shear strains = (engincering shear strains)/ 2

122
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Tensor strain matrix from engineering strains

By ";_-r_g.- B T.::_v'r.z' Bz T.I'_T"lr.l
[l = T £ By Byr = Tye &
Boy = Tox 2 E::_'|-- - T_—_p"rhz Boz

B = {1} el {7}
f:ll.l' = lijr[ﬂliﬁi lllr”.r = IEEI

g, = (1) [e]4}

Characteristic equation

3 a o
ﬁF X ’l EP + f:EP—f3 = ﬂ

Strain invariants

"rJ - Exr+a_v_r+5::=ﬂl+ﬂﬁ+ﬁj
=" ﬂ.I'J' E.TL' E'I- E}'.E EII EIJ =
Iz = 1 L [t 7| T BBt BgBa T BaEy
Syw By Ery B Bry Bry

E.w: E.‘I.'_I.' H.r.

Iy = e Bgy Beg | T E1Eyy
EZI E:'I' E:I

Maximum shear strain
Tmar _ ,,ml{|*=| | 8 Ez‘“sL E‘}_Bl]
2 | 2 2 2

1.23
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Material Description

[y CnCnt it sl | e, |
By CraCalntalCuCx|| o,
8| _ [CrCaCnCululy|| o,
szp . CatCaCaCaCuCal|| =, |
Y Ca1CapCanlsCaCss|| 1.
LYy | CalanCaCailasConl| t,, |

Co = Ly
The most general linear anisotropic material requires 21 independent constants,

Monoclinic material

Has 1 plane of symmetry.
If xy is the plane of symmetry then stress-strain relations m +ve & -ve = direction are the same.
Requires 13 independent material constants.

B, CCpla 0 o ":'Ju.'r a,,
B,y Cialnlnl 0 Cyll o,
B CisCnCanl 0 Gyl o,
e |oo pte.o g
T 00 0 CuCss || x,
; £ CgCCap @ 0 Cﬁa_L L 30

x, 1, T are the material coordinate system.
The zero's in the T matrix can become non-2ers in coordinate svstems other than maferial

conrdimate sVEiem.

1-24
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Orthotropic material
*  Has two axis of symmetry,

*  Requires 92 independent constants in 3 1

rEJ.'I:- -E-l |C12C13 ﬂ U U ] G.‘I:'.t
EJ-’_J" |:.-| 1C21E]3 {:' 'I:' I::] G_}'_l'
| _ [CsCaCs0 0 0 | g, |
Ty_’ 600 Cuo 0 ||,
- 000 0 C .
I.T_i:p _ﬂ ¢ 0 0 0 Clﬁﬁ_ r':lt_p

* x ¥ 2 are the material coordinate sistem,

®  The zero's in the C matnx can become non-zero in coordmate systems other than material
coordinate system.
For plane stress problems (requires 4 independent constants)

g8 =E_\"_”U £ =E£:—Elfq ¥ =E".l :E:v_"-!'
I E_.'. E.p vy Ef -E_.._. XX Xy G_‘j_. EJ,. E':.
Long Fiber C'omposite

* FEach lamina is an orthotropic material.

* A symmetnic stacking about mid surface creates an ortholropic composite plate.

125
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Transversely isotropic material

Material is isoiropic in a plane.

Requires 5 independent material constants,

CiCpCi0 0 0 7| s,
CppCpyCys 0 0 L
- [CaCibyt ! | o |
00 0 Cyd 0 .,

6 080y t,,
(00 0 0 0 %C,;-Cil| «,

*  The zero's n the C matrix can become non-zero m coordinate systems other than material

coardimate sVEtem.,

Short Fiher Composite
Chopped fiber is sprayed on {o 4 epoxy produces a transversely isofropic material. 1t is isotropic in

the plans.
Isotropic Material

*  An isofropic matenal has a stress-strain relationships that are mdependent of the orientation of
the coordimate svatem at & point,
*  Anisotropic body requires only two independent material constants

2, 120 2 i) 0 0 1| s,
By Cialnlie 0 0 9 Dy
Be|  |C12€1%n 0 0 0 o
415:5' o oaeE =ty 0 0 : . -
v D0 D 0 20, -Cp) T
v, Lo 00 0 0 Ao -Cpf| x,

Engineering Constants: Cy) = 1/E, O, = —w/'E and T\ -Cp) = 176G
* E = Modulus of Elasticity
* (G = Shear Modulus of Elasticity
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* v = Poisson’s Ratio

Generalized Hooke's Law
Bry T I.ﬁ:x_\'rl:.ql'}'+ﬁ::.}lr.£ Fry = Ty &
— 7 T -. = E
E,'r_v 1 ['T_Ev_v{ﬁ:-rﬁn}l'fg T.W I} ‘-5"‘_‘. £ e 2{14-”1'
'Eﬂ = Iﬁ;:: = \'{"3_1-.: +'|3.:-_!-"”"'-E T:.t = 1:J'IG
B |1y || T
o (T E[ 1Y} o
e, v ¥ 1]]| o

*  Generahred Hooke's Law is valid for any orthogonal coordinate system.
*  Principal direction for stress mwd strain are same (NLY for isotropic materials.

* A material is said to be homogencous if the matenal properties arc the same at all points on
the body. Alternatively, if the material constants C;, are functions of the coordinates X v, or 2

then the material is called non-homogeneous.

Plane Stress and Plane Strain.

—— Ty By O Generalized . . i
TERS - v, 6, O Hooke's Law . |v. =, B
0 ¢ 0 0 k.= ;iﬁﬂ +@T,,0
Generalized I g
B Ty 0 Hooke's Law & B2 i
. B 0 Fa T
Plane Strain =™ 'f;" E‘-" g =l B 8- vio, ta,l

Feaction Fores | & # 0}

Crefommati U}
Free Surface (@, = 0) o e

A Rigicl Surface (£, = 0

Free Surface (0, = 0) Dcﬁ:u‘rrﬁ:ﬁmm____-ﬂ':l iRaactimemm_.?:m

1T
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Non-linear material models

*  Elastic-perfecily plastic in which the non-hinearity 15 approximated by a constant.

*  Linear straun hardening model (Bi-hnear model) in which the non-linearity is approximated
by a linear function.

*  Power law model in which the non-linearity is approximatad by one term non-linear function.

We will assuene material behavior is same in fension and compression.

Elastic-perfectly plastic

Il*lll:l' { - -
Tyiatd -~ ! —
: o= Fx
Eitidd !
L el
- 1
s l-ﬂ_l.'h.'!# iuld
Lo
il
Tield B 28 g Tield L
- Es _E_I-'I'EHE E= E_pl’g.!.p' e 'GT _T_'pu.fu"i ¥ 5 T_l.'iinr.l:l'
" piald ES “Binld ~Fyindd 1= “Vyield

*  The set of points forming the boundary between the elastic and plastic region on a body, is
called the elastic-plastic boundary:
1. On the elastic-plastic boundary the strain must be equal to the vield strain, and stress equal to

vield stress.

2. Deformations and strmns are contmuous at all points meluding points at the elastic plastic
boundary.

3 In beam bending. the location of neutral axis depends material property. peometry, and load-
g

1.28
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Linear strain hardening material model

.E'la

_'|::'-_'|.lu'.|'.|:1 +'EJ{:E 4 E_pr'e{.:!j

Power Law

|

i > | —soft rubber, muscles, and organic materals.,

—E{ —E}”

n < | —metals and plastics

=3 o g A
z_ﬂﬁl'fi_ L= E_P.ru I

B2 B yhald

ﬁl ——
5
£ b -
- wald
a = 'ﬂ'yl_ﬂd + EI'I'E— l}.w.l i
i b Gl'r
"ma:!d i T
: Yvteld
:
1 = —E +iFLF+T § !
wield weld® . - Tl
n -
™)
LRy
ey P I o ©2E g
edeld 2 viedd

i)

gl
g<{)

L

l:y'-m'r ﬂzi :"_-"'!.'Iﬂ-d"

1.24




. Vable Advanced Mechanses of Materiala- Stress and Strain

Effects of Temperature

Test performed of T, _"*-\

= o Test performed at T_+4T

[ wa® —fa—i—s Mool Strin

o
£ = =+ AT
E

a is linear coefficient of thermal expansion that has units of w*F or wC

*  Nothermal stresses are produced in a homogeneous, isotropic, unconstrained body due to uni-
form temperature changes.

B l':rr-vr_ ﬁ“_v_r-r U:;“"JE ta AT

By = [Ty V(o + o )] E+a AT

Ber ~ lﬂ'ﬂ - w:ﬂ.n - EF.F’J')]"'?-E +o AT

Top = tx,v’.G

T = TG Thermal Strain
T = F::’!G

|
Mechanical Strain
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Cl1.4 The stress at a point, material properties, and change m temperature are
as given below. Calculate 8y, Byy. Yyy Bzp. 8Nd 05, (a) assuming plane stress, and (b)
assurmmng plane stram.

G =300 MPalC) &

vy =
(8]

M MPa(T) Ty = 130 MPa

15 (GPa v =02 a = 260w C AT = 75°C

1-3]
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Failure Theories

* A failure theory is a statement on relationship of the stress components to material failure
characteristics values,

Ductile Material Brittle Matenal
Charactenistic failure Yield stress LTHimate stress
siress
Theories 1. Maxinum shear stress 1. Maximum normal stress
2. Maximum octahedral shear 2. Maodified Mokr
Siress

Maximum shear stress theory

For ductile materials the theory predicts
A material will fail when the maximum shear stress exceeds the shear stress at vield that is

obtaied from uninxaal tensile test.
The failure criterion 1=

L
Comar = Tyiold

* Iﬁﬂu | )= E_wﬂ'u'

x|y — Gal, |Gy — 0y

Maximum octahedral shear stress theory (Maximum distortion
strain energy or von-Mises criterion)

For ductile materials the theory predicis
A material witl faill when the maxmum octahedml] shear stress exoeeds the octahedral shear

stress at vield that 18 oblamed from umaxial tensile test.
The failure criterion is

Toer = Cyteld

1 2 2 2
_hjr'(f‘l_ﬁz} g —o3) TS0y ) S0

L

Equivalent von-Mises Stress

1 2 2
il & _J{ui _ﬂ‘}j + {U! —U3.' T {ﬂ] _UL}I Y i ﬁﬂ_‘,”{

R ﬁ
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Failure Envelopes for ductile materials in plane stress

hdaxomum oclahedral shear siress.

“Ciald g

- Fe]
i Tvield L

Mlaximunm shear siress

Maximum normal stress theory

For brittle materials the theory predicts
A material will fail when the maximum normal stress at a point exceed the ultimate normal
stress (o, ;) obtained from uniaxial tension test.

Max( e, Ga, T} 20,4

*  can be wsed if principal stress one is tensile and the dominant principal stress,
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. Vable Advanced Mechanses of Materiala- Stress and Strain

Mohr’s theory

For bnttle matenals the theory predicts
A matcrial will fail if a stress staie 15 on the envelope that 15 tangent to the three Mohr s circles
corresponding to: uniaxial ultimate stress in tension, to umaxial uliimate stress in compres-
sion, and to pure shear.

*  If both principal stresses are tensile than the maximum normal siress has to be less than the
ultimate tensile strength.

¢ If both principal stresses are negative than the maximum normal stress must be less than the
ultimate compressive strength.

= If'the principal stresses are of different signs then for the Modified Mohr™s Theory the Failure

15 governed by
G, O
i :_‘51
o o

* 0, is the magnitude of the compressive strength.




. Vable Advanced Mechanses of Materiala- Stress and Strain

Cl.5 On a free surface of aluminum (£ = 10,000 ksi. v =025,
Tyietd = 24 ksi), the strains recorded by the three strain gages shown below are
g, =—000 p min, g, = 300 pinfin, and £, = 400 p infin. By how much can the loads
be scaled without exceeding the vield stress of alumimum at the point? Use the max-
imum shear stress theory,
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Theories of Failure

Strength of a material or failure of the material is deduced
generally from uni-axial tests from which stress strain
characteristics of the material are obtained.

The typical stress-strain curves for ductile and brittle materials
are shown below.

Material Strength parametersare S, OR §

Theories of Failure

In the case of multidimensional stress at a point we have a more
complicated situation present. Sinceit isimpractical to test every
material and every combination of stresses ¢,, c,, and o, a
failure theory is needed for making predictions on the basis of a
material’s performance on the tensile test., of how strong it will
be under any other conditions of static loading.

The “theory” behind the various failure theories is that whatever
Is responsible for failure in the standard tensile test will also be
responsible for failure under all other conditions of static

|loading.




Theories of Failure

The microscopic yielding mechanism in ductile materia is
understood to be due to relative diding of materials atoms within
their lattice structure. Thisdliding is caused by shear stresses and
Is accompanied by distortion of the shape of the part. Thus the
yield strength in shear S, is strength parameter of the ductile
material used for design purposes.

Generally used theoriesfor Ductile Materials are:
*Maximum shear stress theory
*Maximum distortion energy theory.

(von Mises-Hencky’s theory).

Theories of Failure

The Maximum - Shear - Stress Theory

The Maximum Shear Stress theory states that failure occurs when the
maximum shear stress from a combination of principal stresses equals
or exceeds the value obtained for the shear stress at yielding in the
uniaxial tensile test.

At yielding, in an uni-axial test, the principal stressesare
c,=S,; 0,=0and c,=0.
Therefore the shear strength at yielding

Sy, =lo; - (o, 0r 55, =0)]/2. Therefore S, = §/2




Theories of Failure

(I\/I aximum Shear Stress theory )

To use this theory for either two or three-dimensional static stressin
homogeneous, isotopic, ductile materials, first compute the three
principal stresses ( o,, ¢,, 63) and the maximum shear stress 1,5 as

r = (0-1_0-2) —_ (O-pmax _mein)
2 - 2
Then compare the maximum shear stress to the failure criterion.

T nax < S%’ OR (Upmax _O-pmin) < Ssy
2

The safety factor for the maximum shear-stress theory is given by

Theories of Failure
Distortion-Energy Theory OR The von Mises - Hencky Theory

It has been observed that a solid under hydro-static, external
pressure (e.g. volume element subjected to three equal normal
stresses) can withstand very large stresses.

When there is also energy of distortion or shear to be stored, asin the
tensile test, the stresses that may be imposed are limited.

Since, it was recognized that engineering materials could withstand
enormous amounts of hydro-static pressures without damage, it was
postulated that a given materia has a definite limited capacity to
absorb energy of distortion and that any attempt to subject the
material to greater amounts of distortion energy result in yielding
failure.




Total Strain Energy: Assuming that the stress-strain curveis
essentially linear up to the yield point, we can express the total
strain energy at any point in that range as.

U=trce {al 'S
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Let U, beenergy dueto volume change and U, be energy due to distortion.
Then we can express each of the principal stressesin terms of hydrostatic
component ( ), common to all the faces of volume element and distortion
component ( o;4) that is unique to each face.

U =1k =1y (el
Oy = Oy + )
0x = & + Oy L
= iy, + Ty

Akling mhe throe prncipal Siresses, gives
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For volumetric change with no distortion, the terms in the bracket of egn (g) must
be zero. Thus, we have
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Theories of Failure

“Distortion_energy theory states that failure by yielding under a
combination of stresses occurs when the energy of distortion equals
or_exceeds the energy of distortion in the tensile test when the yield
strength is reached.”

According to theory failure criteriais

S =[o,*+ 0,2+ 065> 6,0, — 6,0, — 050, |2

For two dimensional stress state ( o, = 0), the equations reduces to

Sy = [0, 05 040/]"?




Theories of Failure

It is often convenient in situationsinvolving combined tensile and shear
stresses acting at a point to define an effective stressthat can be used to
represent the stress combination.

Thevon-Miseseffective stress ( o) also sometimesreferred to as
equivalent stressis defined asthe uniaxial tensile stressthat would create
the samedistortion energy asis created by the actual combination of
applied stresses.

2 2 2 1/2
o,= [Gl +o0,+0; —0,0,—0,0;— 630'1]
2 2 1/2
O, = [O‘l +0; — 0'301}
In terms of applied stresses in coordinate directions

2 2 3 2 1/2
O'e—[axx+0yy—axxayy+ rxy]

S
Safety factor N =—2

e

Static Faillure Theories for Brittle Materials

* Brittle materials fracture than yield.

« Brittle Fracturein tension is considered to be due to normal tensile stress
alone and thus the maximum normal-stress theory is applicable.

* Brittle fracturein compression is due to some combination of normal
compressive stress and shear stress.

Even and Uneven Materials

*Some wrought materials, such as fully hardened tool steel, can be brittle.
These materials tend to have compressive strength equal to their tensile
strengths. They are called EVEN materials.

*Many cast materials, such as gray cast iron, are brittle but have compressive
strengths much greater than their tensile strengths. These are called
UNEVEN materials.




» For uneven materias; tensile strength is due to the presence of
microscopic flaws in the castings, which when subjected to
tensile loading, serve as nuclei for crack formation.

* when subjected to compressive stress, these flaws are pressed
together, increasing the resistance to dlippage from shear
stresses.

» Gray cast irons typically have compressive strengths 3 to 4 times
their tensile strengths and ceramics have even larger ratios.

» Another characteristics of some cast, brittle materialsis that their
shear strength can be greater than their tensile strength, falling
between their compressive and tensile strengths.

Mohr’s circles for both compression and tensile tests of an even and
uneven materials are shown below.
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The lines tangent to these circles constitute failure lines for all
combinations of applied stress between the two circles. The area
enclosed by the circles and the failure lines represent a safe zone.

In the case of even material, the failure lines are independent of the
normal stresses and are defined by the maximum shear strength of
the material. This is consistent with the maximum shear stress
theory.
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» For the uneven material, the failure lines are a function of both normal stresses and shear
stresses. For compressive regime, as the normal stress component becomes increasingly
negative (i.e. more compression) the material’s resistance to shear stress increases.

» The interdependence between shear and normal stress is confirmed by experiment for
cases where the compressive stress is dominant, specifically where the principal stress
having the largest absolute value is compressive.

» However, experiments also show that in tensile-stress-dominated situations with uneven,
brittle materials, failure is due to tensile stress alone. The shear stress appears not to be a
factor in uneven materialsif the largest absolute valueistensile.

Maximum Normal Stress Theory

The maximum normal stress theory, shown for even materials could be used as the
failure criterion for brittle materials in static loading if compressive and tensile
strengths were equal (even material).

The maximum-normal stress theory envelope for an uneven materia asthe
asymmetric square of half-dimensions S, - S,. isalso shown. Thisfailure envelope
isonly valid in the first and third quadrants as it does not account for the
interdependence of normal and shear stresses which affects second and fourth
quadrants.

Coudob - Noka Thadiy




Coulomb-Mohr theory

The coulomb-Mohr envelope attempts to account for the interdependence by
connecting opposite corners of these quadrants with diagonals.

The Figure shows some gray cast-iron Oypeog Mbw
experimental test data superposed on the T —— o
theoretical failure envelopes. et
-_m'qf‘ — - 300 ] }%ﬂn M0
» The failures in the first quadrant fit the /1
maximum normal-stress theory line. . R
« The failures in the fourth quadrant fall b ;"q\%
inside the maximum normal-stress line L I /A
(indicating its unsuitability) o
* Also experimental data fall outside the ol ®

Coulomb-Mohr  line  (indicating its
conservative nature).

This observation leads to a modification of the Coulomb-M ohr
theory to make it better fit the observed data.




The actual failure data in the above figure
follow the even material’ maximum normal
stress theory envelop down to a point S, -S;
below the o, axis and then follow a straight line
to 0, -S,.. The set of lines shown by a solid line
Isthe modified-M ohr failure theory envelop.

It isthe preferred failure theory for uneven,
brittle materiasin static loading.
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Point A represents any stress state in which the two non zero principal
stresses 6,, o5 are positive. Failurewill occur when the load line OA

crosses the failure envelop at A’ The safety factor for this situation can be
expressed as

N = Sy/o;
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If the two nonzero principal stresses have opposite sign, then two possibilities
exist for failure, as depicted by points B and C. The only difference between
these two pointsis the relative values of their two stress components ¢, and
o5 Theload line OB exits the failure envelop at B' above the point(S,,-S,, )
and the safety factor for this case is the same as the previous equation.
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If the stress state is as depicted by point C, then the intersection of the load line

OC and the failure envelop occurs atC' below the point (S;;, -S;;) The safety
factor can be found by solving for the intersection between the load line OC and

thefailureline and is given by 8.8,
B S0~ Si(o,+03)

If the stress state is in the fourth quadrant both of these equations should be
checked and the resulting smaller safety factor used.
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