

II B. Tech II Semester Regular Examinations, April/May – 2016 STRUCTURAL ANALYSIS-I

(Civil Engineering)

Tin	hours Max. Ma	Max. Marks: 70	
		Note: 1. Question Paper consists of two parts (Part-A and Part-B)	
		2. Answer ALL the question in Part-A	
		3. Answer any THREE Questions from Part-B	
		 PART – <u>A</u>	
1.	a)	Differentiate between cantiver and propped cantilever.	(2M)
	b)	Draw the B.MD for a fixed beam carrying an eccentric load.	(4M)
	c)	Write the equations of the Clapeyron's theorem for different moments of inertia.	(3M)
	d)	A point load of 12kN is placed at a distance of 5.5M from a 7m long cantilever	
		beam. If $E=2.1 \times 10^6 \text{N/cm}^2$ and $I=50000 \text{cm}^4$, determine the slope at the free end.	(5M)
	e)	A cantilever beam of length L carries a point load W at the free end. Find the	
		deflection at free end using energy theorem	(4M)
	f)	Draw I.L.D for the reaction at A for a simply supported beam AB.	(4M)
		<u>PART -B</u>	
2.	a)	A cantilever AB of length 2M is fixed at end A and B rests at the centre of	
		simply supported beam of span 4M. Find the support moment at A and deflection	
		at B when the cantilever is loaded with uniformly distributed load of $20,000$ N/m	(10) ()
	1.)	El for cantilever is 1 x 10' Nm ² and El for simply supported beam is 2 x10'Nm ²	(12M)
	D)	Write about moment area method	(4M)
3.		A fixed beam of length 12M carries two point loads at a distance of 4M and 8M	(16M)
		from left end respectively. Find the fixed end moments under the loads when the	
		beam is simply supported. Draw the B.M.D.	
4.		A continuous beam ABC of length 10M is simply supported ,AB and BC is of	(16M)
		length 5M each. Span AB carries an udl of 4kN/m and BC carries an udl of	
		5kN/m.Support B sinks down by 5Mm below the supports of A and B.The	
		moment of inertia of the beam is 10^8 mm^4 and E is 180kN/mm^2 . Find the support	
		moments and draw the B.M.D.	
5.		A Continuous beam is fixed at A and is supported over rollers at B and C.	(16M)
		AB=BC=14M.The beam carries a uniformly distributed load of 40kN/m over AB	
		and a point load of 260kN at a distance of 4M from B on span BC.B has an	
		settlement of $25m.E= 2 \times 10^5 \text{ N/mm}^2$, $I= 2 \times 10^9 \text{ mm}^4$. Analyse the beam by slope	
		deflection method.	
6.	a)	Derive the strain energy equation due to bending moment.	(6M)
	b)	Analyze a continuous beam simply supported at A,B and C. The span AB and BC	(10M)
		is 6M each. The two spans are carrying an udl of 32kN/m over entire span. Use	
		Strain energy method Draw the B.M.D.	
7.		A uniform load of 2000N/m,5M long crosses a girder of 20m span from left to	(16M)
		right.Calculate the maximum S.F and B.M at a section 8M from left support.	

Code No: RT22016

II B. Tech II Semester Regular Examinations, April/May – 2016 STRUCTURAL ANALYSIS-I

(Civil Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART -A

1.	a)	Differentiate between cantiver and propped cantilever.	(4M)				
	b)	Draw the B.MD for a fixed beam carrying U.D.L throughout the span.	(4M)				
	c)	State Clapeyron's three moment theorem	(4M)				
	d)	A point load of 10kN is placed at a distance of 5M from a 7m long cantilever	(4M)				
		beam. If $E=2.1 \times 10^6 \text{N/cm}^2$ and $I=50000 \text{cm}^4$, determine the deflection at the free					
	``	end.					
	e)	A simply supported beam of length L carries an eccentric load W. Find the deflection using energy theorem	(3M)				
	f)	Draw LL D for the reaction at B for a simply supported beam AB.	(3M)				
<u>PART -B</u>							
2.	a)	Find the support moment for the propped cantilever carrying uniformly varying	(12M)				
		load w/unit length from A to B. Draw B.M.D	. ,				
	b)	What are the steps involved in the analysis of propped cantilever.	(4M)				
3.		Derive the equation with the effect of rotation on one end of a fixed beam.	(16M)				
			()				
4		A continuous beam ABCD is simply supported over three spans. Span AB is 8M	(16M)				
		carrying an udl of 4kN/m, span BC is 12M carrying an udl of 3kN/m and span					
		CD is 5M carrying an udl of 6kN/m. Find the moment over supports B and					
		C.Draw B.M.D.					
5.		A Continuous beam is fixed at A and is supported over rollers at B and C.	(16M)				
		AB=BC=10M.The beam carries a uniformly distributed load of 20kN/m over AB	. ,				
		and a point load of 200kN at a distance of 4M from B on span BC.B has an					
		settlement of 20mm.E= 2×10^5 N/mm ² ,I= 2×10^9 mm ⁴ .Analyse the beam by slope					
		deflection method.					
6.	a)	Derive the strain energy equation due to axial loading.	(4M)				
	b)	Analyze a continuous beam simply supported at A,B and C. The span AB and BC	(12M)				
		is 8M each. The two spans are carrying a load of udl of 30kN/m over entire span.					
		Use Strain energy method Draw the B.M.D.					
7.		Draw the influence line diagrams for forces in the members of a Warren Truss	(16M)				
		1 of 1					

|"|""||"|||

Code No: RT22016

SET - 1

II B. Tech II Semester Regular Examinations, May/June - 2015 STRUCTURAL ANALYSIS-I (Civil Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART-A

1. a) What is the degree of indeterminacy of a propped cantilever?

b) What are the support moments when there is relative displacement at the supports?

- c) How Clapeyron's theorem of three moments can be applied to a overhanging beams?
- d) What are the sign conventions used in slope deflection equations and write the equations.
- e) State the Castigliano's first theorem.
- f) Define the influence line. Draw a I.L.D.
- g) Differentiate between determinate and indeterminate structures.

(2M+2M+3M+4M+3M+4M+4M)

PART-B

 a) Analyse the propped cantilever beam loaded as shown in the Figure 1.Draw the S.F.D and B.M.D. Assume EI constant throughout.

b) A cantilever of length4m carries a uniformly distributed load of 1kN/m length over the whole length .The free end of the cantilever is supported on a prop. If $E = 2 \times 10^5 \text{ N/ mm}^2$ and $I = 10^8 \text{ mm}^4$, then (i) find the prop reaction (ii) deflection at the centre of cantilever (8M+8M)

|"|"'||"||"||||

R13

4. Abeam ABCD 9.2m long is fixed at A and is supported at B and C at distances 4m and 7m from A with an overhang CD 2.2m long. The span AB carries a point load of 32kN at the mid span. A point load of 16kN acts at the end D. Find the moments and reactions at the supports.

(16M)

SET - 1

- 5. ABC is a continuous beam with constant EI throughout its length. The end supports A and C are fixed and beam is continuous over middle support B. Span BC is uniformly loaded with 10kN per metre length ,while a concentrated vertical load of 100kN acts at the mid span AB. Calculate the moments by slope deflection method. (16M)
- 6. a) State and prove Castigliano's first theorem.b) Derive the energy stored due to axial loading. (8M+8M)
- 7. a) Draw the influence line diagram for a shear force at any section of a simply supported beam.
 b) Find the maximum force in the member shown in the Figure 2, when a uniformly distributed load of 10kN/m longer than the span crosses the bridge. (6M+10M)

Figure 2

|"|"'||"||

II B. Tech II Semester Regular Examinations, May/June - 2015 STRUCTURAL ANALYSIS-I (Civil Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART-A

- 1. a) Draw the bending moment diagram for a propped cantilever of length *l* with u.d.l. over the whole span.
 - b) What is the equation for a fixed beam with ends at different levels?
 - c) What is the procedure for analysing the continuous beams using theorem of three moments?
 - d) What are the sign conventions used in slope deflection equations and write the equations.
 - e) State the Castigliano's first theorem.
 - f) Define the influence line. Draw I.L.D for a simply supported beam for finding the reactions at the supports. (3M+3M+4M+4M+3M+5M)

PART-B

2. a) Determine the reactions of the propped cantilever beam and draw SFD and BMD.

b) A cantilever of length 6m carries a uniformly distributed load of 2kN/m length over the whole length. The free end of the cantilever is supported on a prop. If $E = 2 \times 10^5 \text{ N/ mm}^2$ and $I = 10^8 \text{ mm}^4$, then (i) find the prop reaction (ii) deflection at the centre of cantilever

(8M+8M)

A continuous beam ABC is simply supported at A and C and continuous over support B with AB = 4m and BC = 6m. A uniformly distributed load of 10kN/m is acting over the beam. The moment of inertia is I throughout the span. Analyse the continuous beam and draw S.F.D and B.M.D.

|"|"||"||"||||

R13

4. Analyse the fixed beam shown in the Figure 2. (16M) $A = A = C \qquad D \qquad B$

Figure 2

- 5. ABC is a continuous beam with constant EI throughout its length. The end supports A and C are fixed and beam is continuous over middle support B. Span BC is uniformly loaded with 12kN per metre length ,while a concentrated vertical load of 120kN acts at the mid span AB. Calculate the moments by slope deflection method. (16M)
- 6. a) State Castigliano's first theorem.

- 7. a) Draw the influence line diagram for a shear force at any section of a simply supported beam.
 - b) A uniformly distributed load of 40kN/m and of length 3m transverse across the span of simply supported length of 18m.Compute the maximum bending moment at 4m from left support and absolute bending moment. (6M+10M)

SET - 3

II B. Tech II Semester Regular Examinations, May/June - 2015 STRUCTURAL ANALYSIS-I (Civil Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART-A

- 1. a) Name a method for deriving the compatibility equation for the propped cantilever.
 - b) Draw the shear force and bending moment diagrams for a fixed beam when one of its supports sinks.
 - c) What are the merits and limitations of the theorem of three moments?
 - d) What are the sign conventions used in slope deflection equations and write the equations.
 - e) State and prove Castigliano's first theorem.
 - f) Draw a I.L.D for a simply supported beam for finding the reactions at the supports.

(3M+4M+3M+3M+6M+3M)

PART-B

- 2. a) A propped cantilever beam of length l is subjected to uniformly distributed load of ω/m length over three fourth of its span from the fixed support.Determine the prop reaction and sketch the BMD.
 - b) A cantilever of length 5m carries a uniformly distributed load of 1kN/m length over the whole length. The free end of the cantilever is supported on a prop. If $E = 2 \times 10^5 \text{ N/ mm}^2$ and $I = 10^8 \text{ mm}^4$, then (i) find the prop reaction (ii) deflection at the centre of cantilever (iii) Magnitude and position of maximum deflection. (6M+10M)
- A continuous beam ABC is simply supported at A and C and continuous over support B with AB = 7m and BC = 6m. A uniformly distributed load of 14kN/m is acting over the beam. The moment of inertia is I throughout the span. Analyse the continuous beam and draw S.F.D and B.M.D.

1 of 2

|"|""||"||"||||

R13

- 4. Analyse the fixed beam shown in the Figure 1. (16M) $A = \underbrace{30 \text{ kN/m}}_{C} \underbrace{40 \text{ kN}}_{T} = B$ $A = \underbrace{3m}_{Figure 1} \underbrace{1.5 \text{ m}}_{Figure 1} = B$
- 5. ABC is a continuous beam with constant EI throughout its length. The end supports A and C are fixed and beam is continuous over middle support B. Span BC is uniformly loaded with 14kN per metre length ,while a concentrated vertical load of 140kN acts at the mid span AB. Calculate the moments by slope deflection method. (16M)
- 6. a) State and prove Castigliano's first theorem.
 - b) Compute the vertical deflection of joint E by unit load method Figure 2. (8M+8M)

- 7. a) Draw the influence line diagram for a bending moment at any section of a simply supported beam.
 - b) A uniformly distributed load of 50kN/m and of length 4m transverse across the span of simply supported length of 18m.Compute the maximum bending moment at 5m from left support and absolute bending moment.
 (6M+10M)

 $2 \ of \ 2$

|"|"||"||"||||

SET - 4

II B. Tech II Semester Regular Examinations, May/June - 2015 STRUCTURAL ANALYSIS-I (Civil Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any THREE Questions from Part-B

PART-A

- 1. a) What is a propped cantilever? What is the degree of indeterminacy?
 - b) Draw the shear force and bending moment diagrams for a propped cantilever when the prop sinks.
 - c) State and deduce the Clapreyon's three-moment equation.
 - d) What are the sign conventions used in slope deflection equations and write the equations.
 - e) State and prove Castigliano's first theorem.
 - f) Draw Influence line diagrams for a Pratt truss (4M+4M+3M+3M+3M+5M)

PART-B

- 2. a) A propped cantilever beam of length l is subjected to uniformly distributed load of ω/m length over three fourth of its span from the fixed support.Determine the prop reaction and sketch the BMD.
 - b) A cantilever of length 7m carries a uniformly distributed load of 3kN/m length over the whole length. The free end of the cantilever is supported on a prop. If $E = 2 \times 10^5 \text{ N/ mm}^2$ and $I = 10^8 \text{ mm}^4$, then (i) find the prop reaction (ii) Magnitude and position of maximum deflection. (8M+8M)
- A continuous beam ABC is simply supported at A and C and continuous over support B with AB = 7m and BC = 6m. A uniformly distributed load of 14kN/m is acting over the beam. The moment of inertia is I throughout the span. Analyse the continuous beam and draw S.F.D and B.M.D.

1 of 2

|"|""||"||"||||

(R13)

SET - 4

- 4. A fixed beam AB of length 3m carries a point load of 45kN at a distance of 2m from A. If the flexural rigidity is of the beam is 1 x 10⁴ kNm², determine (i) the fixed end moments at A and B. (ii) Deflection under the load and (iii) maximum deflection. (16M)
- 5. ABC is a continuous beam with constant EI throughout its length. The end supports A and C are fixed and beam is continuous over middle support B. Span BC is uniformly loaded with 8kN per metre length ,while a concentrated vertical load of 80kN acts at the mid span AB. Calculate the moments by slope deflection method. (16M)
- 6. a) State and prove Castigliano's first theorem.
 - b) Compute the vertical deflection of joint E by unit load method Figure 1. (4M+12M)

- 7. a) Draw the influence line diagram for a shearforce at any section of a simply supported beam.
 - b) A uniformly distributed load of 60kN/m and of length 4m transverse across the span of simply supported length of 20m.Compute the maximum bending moment at 5m from left support and absolute bending moment.
 (6M+10M)