
UNIT-6

Distributed File Systems

A distributed file system enables programs to store and access remote files exactly as

local ones, allowing users to access files from any computer on a network. The performance and

reliability experienced for access to files stored at a server should be comparable to that for files

stored on local disks. The sharing of stored information is the most important aspect of

distributed resource sharing. Web servers provide a restricted form of data sharing in which files

stored locally, in file systems at the server on a local network, are made available to clients

throughout the Internet. The design of large-scale wide area read-write file storage systems poses

problems of load balancing, reliability, availability and security.

File systems were originally developed for centralized computer systems and desktop

computers as an operating system facility providing a convenient programming interface to disk

storage. They acquired features such as access-control and file-locking mechanisms that made

them useful for the sharing of data and programs. Distributed file systems support the sharing of

information in the form of files. In organizations that operate web servers for external and

internal access via an intranet, the web servers often store and access the material from a local

distributed file system.

Characteristics of file systems:-

File systems are responsible for the organization, storage, retrieval, naming, sharing and

protection of files. They provide a programming interface that characterizes the file abstraction,

freeing programmers from concern with the details of storage allocation and layout.

Files are stored on disks or other storage media. Files contain both data and attributes.

The data consist of a sequence of data items, accessible by operations to read and write any

portion of the sequence. The attributes are held as a single record containing information such as

the length of the file, timestamps, file type, owner’s identity and access control lists. An attribute

record structure is given in Figure below

File attribute Record Structure

File systems are designed to store and manage large numbers of files, with facilities for creating,

naming and deleting files. The naming of files is supported by the use of directories. A directory

is a file, often of a special type, that provides a mapping from text names to internal file

identifiers. Directories may include the names of other directories, leading to the hierarchic file-

naming scheme and the multi-part pathnames for files used in operating systems. File systems

also take responsibility for the control of access to files, restricting access to files according to

users’ authorizations and the type of access requested (reading, updating, executing and so on).

The term metadata is used to refer to the extra information stored by a file system that is

needed for the management of files. It includes file attributes, directories and all the other

information used by the file system.

Below Figure shows a typical layered module structure for the implementation of a non-

distributed file system in a conventional operating system.

File System Modules

File system operations:-Below figure summarizes the main operations on files that are

available to applications in UNIX systems.

 These are the system calls implemented by the kernel; application programmers usually access

them through procedure libraries such as the C Standard Input/output Library or the Java file

classes.

Distributed file system requirements:-

Many of the requirements and potential pitfalls in the design of distributed services were

first observed in the early development of distributed file systems. The requirements are given as

follows:

Transparency

Concurrent file updates

File replication

 Hardware and operating system heterogeneity

Fault tolerance

Consistency

Security

Efficiency

Transparency: The file service is the most heavily loaded service in an intranet, so its

functionality and performance are critical. The following forms of transparency are partially or

wholly addressed by current file services:

Access transparency: Client programs should be unaware of the distribution of files. A

single set of operations is provided for access to local and remote files. Programs written

to operate on local files are able to access remote files without modification.

Location transparency: Client programs should see a uniform file name space. Files or

groups of files may be relocated without changing their pathnames.

Mobility transparency: Neither client programs nor system administration tables in client

nodes need to be changed when files are moved.

Performance transparency: Client programs should continue to perform satisfactorily

while the load on the service varies within a specified range.

Scaling transparency: The service can be expanded by incremental growth to deal with a

wide range of loads and network sizes.

Concurrent file updates: Changes to a file by one client should not interfere with the

operation of other clients simultaneously accessing or changing the same file. This is the well-

known issue of concurrency control.

File replication: In a file service that supports replication, a file may be represented by

several copies of its contents at different locations. This has two benefits –

i) It enables multiple servers to share the load of providing a service to clients accessing

the same set of files, enhancing the scalability of the service, and

ii) It enhances fault tolerance by enabling clients to locate another server that holds a

copy of the file when one has failed.

Hardware and operating system heterogeneity: The service interfaces should be defined so

that client and server software can be implemented for different operating systems and

computers.

Fault tolerance: The role of the file service in distributed systems makes it essential that the

service continue to operate in case of client and server failures. The servers can be stateless, so

that they can be restarted and the service restored after a failure without any need to recover

previous state. Tolerance of disconnection or server failures requires file replication.

Consistency: Conventional file systems such as in UNIX offer one-copy update semantics.

This refers to a model for concurrent access to files in which the file contents seen by all of the

processes accessing or updating a given file are those that they would see if only a single copy of

the file contents existed. When files are replicated or cached at different sites, there is a delay in

the propagation of modifications made at one site to all of the other sites that hold copies.

Security: All file systems provide access-control mechanisms based on the use of access

control lists. In distributed file systems, there is a need to authenticate client requests so that

access control at the server is based on correct user identities and to protect the contents of

request and reply messages with digital signatures and encryption of data.

Efficiency: A distributed file service should offer facilities that are same as those found in

conventional file systems and should achieve a comparable level of performance.

File service architecture:-

The file service is structured as three components:–

1) Flat file service,

2) Directory service and

 3) Client module.

The modules and their relationships are shown in Figure below.

The flat file service and the directory service each provide an interface for use by client

programs, and their interfaces provide a set of operations for access to files.

The client module provides a single programming interface with operations on files

similar to those found in conventional file systems.

File service architecture

Flat file service: The flat file service concerns with implementing operations on the contents of

files. Unique file identifiers (UFIDs) are used to refer to files in all requests for flat file service

operations. UFIDs are long sequences of bits chosen so that each file has a UFID that is unique

among all of the files in a distributed system. When the flat file service receives a request to

create a file, it generates a new UFID for it and returns the UFID to the requester.

Directory service: The directory service provides a mapping between text names for files and

their UFIDs. Clients may obtain the UFID of a file by giving its text name to the directory

service. The directory service provides the functions needed to generate directories, to add new

file names to directories and to obtain UFIDs from directories.

It is a client of the flat file service i.e., its directory files are stored in files of the flat file

service. When a hierarchic file-naming scheme is adopted, as in UNIX, directories hold

references to other directories.

Client module: A client module runs in each client computer, extending the operations of the flat

file service and the directory service under a single application programming interface that is

available to user-level programs in client computers. The client module also holds information

about the network locations of the flat file server and directory server processes.

Flat file service interface: The interface to the flat file service is given below.

Flat File service Operations

A Field is invalid if the file that it refers to is not present in the server processing the request or if

its access permissions are inappropriate for the operation requested.

All of the procedures in the interface except Create throw exceptions if the Field

argument contains an invalid UFID or the user doesn’t have sufficient access rights.

 The Read operation copies the sequence of n data items beginning at item i from the

specified file into Data, which is then returned to the client.

The Write operation copies the sequence of data items in Data into the specified file

beginning at item i, replacing the previous contents of the file at the corresponding position.

Create creates a new, empty file and returns the UFID that is generated.

Delete removes the specified file.

GetAttributes and SetAttributes enable clients to access the attribute record.

The interface to flat file service differs from the UNIX file system interface mainly for reasons of

fault tolerance:

Repeatable operations:- With the exception of Create, clients may repeat calls to which they

receive no reply. Repeated execution of Create produces a different new file for each call.

Stateless servers:- The interface is suitable for implementation by stateless servers. Stateless

servers can be restarted after a failure and resume operation without any need for clients or the

server to restore any state.

Directory service interface:-

 The primary purpose of the directory service is to provide a service for translating text

names to UFIDs. In order to do so, it maintains directory files containing the mappings between

text names for files and UFIDs. Each directory is stored as a conventional file with a UFID, so

the directory service is a client of the file service. The interface to the directory service is given

as follows:

Directory Service Operations

 The Lookup operation in the directory service performs a single Name UFID translation.

 AddName adds an entry to a directory and increments the reference count field in the

file’s attribute record.

 UnName removes an entry from a directory and decrements the reference count.

 GetNames operation enables users to determine the names of one or more files by giving

an incomplete specification of the characters in the names.

Access control:-In distributed implementations, access rights checks have to be performed at

the server. A user identity has to be passed with requests, and the server is vulnerable to forged

identities. Two alternative approaches can be adopted:

• An access check is made whenever a file name is converted to a UFID, and the results are

encoded in the form of a capability which is returned to the client for submission with

subsequent requests.

• A user identity is submitted with every client request, and access checks are performed by the

server for every file operation.

Hierarchic file system:- A hierarchic file system such as the one that UNIX provides

consists of a number of directories arranged in a tree structure. Each directory holds the names of

the files and other directories that are accessible from it. Any file or directory can be referenced

using a pathname. The root has a distinguished name, and each file or directory has a name in a

directory.

The UNIX file-naming scheme is not a strict hierarchy – files can have several names,

and they can be in the same or different directories. This is implemented by a link operation,

which adds a new name for a file to a specified directory.

A UNIX-like file-naming system can be implemented by the client module using the flat

file and directory services that we have defined. A tree-structured network of directories is

constructed with files at the leaves and directories at the other nodes of the tree. The root of the

tree is a directory with a ‘well-known’ UFID. Multiple names for files can be supported using

the AddName operation and the reference count field in the attribute record.

A function can be provided in the client module that gets the UFID of a file given its

pathname. The function interprets the pathname starting from the root, using Lookup to obtain

the UFID of each directory in the path.

 File groups:- A file group is a collection of files located on a given server. A server may hold

several file groups, and groups can be moved between servers, but a file cannot change the group

to which it belongs.

In a distributed file system that supports file groups, the representation of UFIDs includes

a file group identifier component.

File group identifiers must be unique throughout a distributed system. Since file groups

can be moved, the only way to ensure that file group identifiers will always be distinct in a given

system is to generate them with an algorithm that ensures global uniqueness. For example,

whenever a new file group is created, a unique identifier can be generated by concatenating the

32-bit IP address of the host creating the new group with a 16-bit integer derived from the date,

producing a unique 48-bit integer:

32 bits 16 bits

File group identifier: IP address date

PEER-TO-PEER SYSTEMS:-

 Peer-to-peer systems represent a paradigm for the construction of distributed systems and

applications in which data and computational resources are contributed by many hosts on the

Internet, all of which participate in the provision of a uniform service. Their emergence is a

consequence of the rapid growth of the Internet, including many millions of computers and

similar numbers of users requiring access to shared resources.

A key problem for peer-to-peer systems is the placement of data objects across many

hosts and provision for access to them in a manner that balances the workload and ensures

availability without adding overheads.

The goal of peer-to-peer systems is to enable the sharing of data and resources on a very

large scale by eliminating any requirement for separately managed servers and their associated

infrastructure.

Traditional client-server systems manage and provide access to resources such as files, web

pages or other information objects located on a single server computer or a small cluster of

tightly coupled servers. With such centralized designs, few decisions are required about the

placement of the resources or the management of server hardware resources.

Peer-to-peer systems provide access to information resources located on computers

throughout a network (whether it be the Internet or a corporate network). Algorithms for the

placement and retrieval of information objects are a key aspect of the system design. The aim is

to deliver a service that is fully decentralized and self-organizing, dynamically balancing the

storage and processing loads between all the participating computers as computers join and leave

the service.

Peer-to-peer systems share these characteristics:-

• Their design ensures that each user contributes resources to the system.

• Although they may differ in the resources that they contribute, all the nodes in a peer-

to-peer system have the same functional capabilities and responsibilities.

• Their correct operation does not depend on the existence of any centrally administered

systems.

Three generations of peer-to-peer system and application development can be identified.

The first generation was launched by the Napster music exchange service.

A second generation of file sharing applications offering greater scalability, anonymity and

fault tolerance quickly followed including Freenet Gnutella, Kazaa and Bit Torrent.

The Third Generation is Peer-to-peer middleware such as pasetry, tapestry.

Napster and its legacy:-

The first application in which a demand for a globally scalable information storage and

retrieval service emerged was the downloading of digital music files. Napster file sharing system

provided a means for users to share files. Napster became very popular for music exchange soon

after its launch in 1999. Several million users were registered and thousands were swapping

music files simultaneously. Napster’s architecture included centralized indexes, but users

supplied the files, which were stored and accessed on their personal computers. Napster’s

method of operation is illustrated by the sequence of steps shown in Figure below.

Napster: peer-to-peer file sharing with a centralized, replicated index

In step 5 clients are expected to add their own music files to the pool of shared resources by

transmitting a link to the Napster indexing service for each available file. Thus the motivation for

Napster and the key to its success was making available of a large, widely distributed set of files

to users throughout the Internet.

Napster was shut down as a result of legal proceedings instituted against the operators of the

Napster service by the owners of the copyright in some of the material (i.e., digitally encoded

music) that was made available on it.

Limitations: Napster used a (replicated) unified index of all available music files. The

requirement for consistency between the replicas was not strong, so this did not affect

performance, but for many applications it would constitute a limitation. Unless the access path to

the data objects is distributed, object discovery and addressing are likely to become a bottleneck.

Application dependencies: Napster took advantage of the special characteristics of the

application for which it was designed in other ways:

• Music files are never updated, avoiding any need to make sure all the replicas of files remain

consistent after updates.

• No guarantees are required concerning the availability of individual files – if a music file is

temporarily unavailable, it can be downloaded later. This reduces the requirement for

dependability of individual computers and their connections to the Internet.

Peer-to-peer middleware:-

The third generation is characterized by the emergence of middleware layers for the

management of distributed resources on a global scale. Several research teams have completed

the development, evaluation and refinement of peer-to-peer middleware platforms and deployed

them in a range of application services. The best-known and most fully developed examples

include Pastry, Tapestry, CAN, Chord and Kademlia.

Resources are identified by globally unique identifiers (GUIDs), usually derived as a

secure hash from the resource’s state. The use of a secure hash makes a resource ‘self certifying’

i.e., clients receiving a resource can check the validity of the hash.

A key problem in the design of peer-to-peer applications is providing a mechanism to enable

clients to access data resources quickly wherever they are located throughout the network.

Napster maintained a unified index of available files for this purpose, giving the network

addresses of their hosts. Second-generation peer-to-peer file storage systems such as Gnutella

and Freenet employ partitioned and distributed indexes, but the algorithms used are specific to

each system.

Peer-to-peer middleware systems are designed specifically to meet the need for the

automatic placement and location of the distributed objects managed by peer-to-peer systems and

applications.

Functional requirements: The function of the peer-to-peer middleware is to simplify the

construction of services that are implemented across many hosts in a widely distributed network.

To achieve this it must enable clients to locate and communicate with any individual resource

made available to a service, even though the resources are widely distributed amongst the hosts.

 Other important requirements include the ability to add new resources and to remove them

and to add hosts to the service and remove them. Peer-to-peer middleware should offer a simple

programming interface to application programmers that are independent of the types of

distributed resource that the application manipulates.

Non-functional requirements: To perform effectively, peer-to-peer middleware must also

address the following non-functional requirements.

 Global scalability: Peer-to-peer middleware must be designed to support applications that

access millions of objects on hundreds of thousands of hosts.

 Load balancing: The performance of any system designed to exploit a large number of

computers depends upon the balanced distribution of workload across them. This will be

achieved by a random placement of resources together with the use of replicas of heavily

used resources.

 Optimization for local interactions between neighboring peers: The ‘network distance’

between nodes that interact has impact on the latency of individual interactions, such as

client requests for access to resources. Network traffic loads are also impacted by it. The

middleware should aim to place resources close to the nodes that access them the most.

 Accommodating to highly dynamic host availability: Peer-to-peer systems are

constructed from host computers that are free to join or leave the system at any time. As

hosts join the system, they must be integrated into the system and the load must be

redistributed. When they leave the system whether voluntarily or involuntarily, the

system must detect their departure and redistribute their load and resources.

 Security of data in an environment with heterogeneous trust: In global-scale systems

with participating hosts of diverse ownership, trust must be built up by the use of

authentication and encryption mechanisms to ensure the integrity and privacy of

information.

Routing overlays:-

In peer-to-peer systems a distributed algorithm known as a routing overlay takes

responsibility for locating nodes and objects. It is responsible for routing requests from any client

to a host that holds the object to which the request is addressed. The objects of interest may be

placed at and relocated to any node in the network without client involvement. It is termed an

overlay since it implements a routing mechanism in the application layer that is separate from

any other routing mechanisms deployed at the network level such as IP routing.

The routing overlay ensures that any node can access any object by routing each request

through a sequence of nodes, exploiting knowledge at each of them to locate the destination

object. Peer-to-peer systems usually store multiple replicas of objects to ensure availability. In

that case, the routing overlay maintains knowledge of the location of all the available replicas

and delivers requests to the nearest ‘live’ node (i.e. one that has not failed) that has a copy of the

relevant object.

The main task of a routing overlay is:

Routing of requests to objects: A client wishing to invoke an operation on an object

submits a request including the object’s GUID to the routing overlay, which routes the

request to a node at which a replica of the object resides.

But the routing overlay must also perform some other tasks:

Insertion of objects: A node wishing to make a new object available to a peer-to-peer

service computes a GUID for the object and announces it to the routing overlay, which

then ensures that the object is reachable by all other clients.

Deletion of objects: When clients request the removal of objects from the service the

routing overlay must make them unavailable.

Node addition and removal: Nodes (i.e., computers) may join and leave the service.

When a node joins the service, the routing overlay arranges for it some of the

responsibilities of other nodes. When a node leaves, its responsibilities are distributed

among the other nodes.

Uniqueness is verified by searching for another object with the same GUID. A hash function is

used to generate the GUID from the object’s value. Because these randomly distributed

identifiers are used to determine the placement of objects and to retrieve them, overlay routing

systems are sometimes described as distributed hash tables (DHT). This is reflected by the

simplest form of API used to access them, as shown in Figure below.

With this API, the put() operation is used to submit a data item to be stored together with

its GUID. The DHT layer takes responsibility for choosing a location for it, storing it (with

replicas to ensure availability) and providing access to it through the get() operation.

Interface for a distributed hash table (DHT) as implemented by the

Pastry

A slightly more flexible form of API is provided by a distributed object location and

routing (DOLR) layer, as shown in Figure below.

 With this interface objects can be stored anywhere and the DOLR layer is responsible for

maintaining a mapping between object identifiers (GUIDs) and the addresses of the nodes at

which replicas of the objects are located.

Interface for distributed object location and routing (DOLR) as implemented by Tapestry

GUIDs are not human-readable, so client applications must obtain the GUIDs for resources of

interest through some form of indexing service using human-readable names or search requests.

Generally, these indexes are also stored in a peer-to-peer manner to overcome the weaknesses of

centralized indexes evidenced by Napster. In BitTorrent a web index search leads to a file

containing details of the desired resource, including its GUID and the URL of a tracker (a host

that holds an up-to-date list of network addresses for providers willing to supply the file).

Overlay routing versus IP routing: Routing overlays share many characteristics

with the IP packet routing infrastructure, the primary communication mechanism of the Internet.

It is therefore legitimate to ask why an additional application-level routing mechanism is

required in peer-to-peer systems. The answer lies in several distinctions that are identified in

Figure below.

Distinctions between IP and overlay routing for peer-to-peer applications

Case Studies:-

 SUN NFS:

 Sun Microsystems’s Network File System(NFS) has been widely adopted since its

introduction in 1985. The design and development of NFS was undertaken by Sun Microsystems

in 1984. The design and implementation of NFS have achieved success both technically and

commercially.

 NFS provides access to remote files for client programs. The client-server relationship is

symmetrical i.e. each computer in an NFS network can act as both a client and a server. Any

computer can be a server, exporting some of its files and a client, accessing files on other

machines.

 To adopt NFS as a standard, the definitions of the key interfaces were placed in the

public domain. The source code for a reference implementation was made available to other

computer vendors under license.

 Andrew File System:

 The design of Andrew File System was made to support information sharing on a large

scale by minimizing client-server communication. This is achieved by transferring whole files

between server and client computers and caching them at clients until the server receives a more

up-to-date version.AFS was initially implemented on servers running UNIX and later it was

made available in public domain versions.

