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Operating system support 

Introduction:  

Now we will discuss how middleware is supported by the operating system facilities at 

the nodes of a distributed system. The operating system facilitates the encapsulation and 

protection of resources inside servers and it supports the mechanisms required to access these 

resources, including communication and scheduling. 

  An important aspect of distributed systems is resource sharing. Client applications invoke 

operations on resources that are often on another node or at least in another process. Applications 

(in the form of clients) and services (in the form of resource managers) use the middleware layer 

for their interactions. Middleware enables remote communication between objects or processes 

at the nodes of a distributed system. 

 

 Below the middleware layer is the operating system (OS) layer. The task of any operating 

system is to provide problem-oriented abstractions of the underlying physical resources – the 

processors, memory, networks, and storage media.  

There are two operating system concepts: Network operating systems and Distributed operating 

systems. 

 

 Both UNIX and Windows are examples of network operating systems. They have a 

networking capability built into them and so can be used to access remote resources.Access is 

network transparent to some types of resources. There are multiple system images, one per node. 

With a network operating system, a user can remotely log into another computer, and run 

processes there.  

By contrast, the operating system has control over all the nodes in the system, and it 

transparently locates new processes at whatever node suits its scheduling policies. An operating 

system that produces a single system image like this for all the resources in a distributed system 

is called a distributed operating system. 

 

Middleware and network operating systems: In fact, there are no distributed operating 

systems in general use, only network operating systems such as UNIX, Mac OS and Windows. 

The combination of middleware and network operating systems provides an acceptable balance 

between the requirements for autonomy on the one hand and network transparent resource access 

on the other. The network operating system enables users to run their word processors and other 

standalone applications. Middleware enables them to take advantage of services that become 

available in their distributed system. 

 

 

The operating system layer: 
 

Users will only be satisfied if their middleware–OS combination has good performance. 

Middleware runs on a variety of OS–hardware combinations (platforms) at the nodes of a 



distributed system. The OS running at a node – a kernel and associated user-level services such 

as communication libraries – provides its own flavour of abstractions of local hardware resources 

for processing, storage and communication. 

 

 
System layers 

 

Above figure shows how the operating system layer at each of two nodes supports a common 

middleware layer in providing a distributed infrastructure for applications and services. Kernels 

and the client and server processes that execute upon them are the chief architectural components 

of distributed system. Kernels and server processes are the components that manage resources 

and present clients with an interface to the resources. 

 

 We require at least the following of them: 

 

 Encapsulation: They should provide a useful service interface to their resources – that is, 

a set of operations that meet their clients’ needs. Details such as management of  memory 

and devices used to implement resources should be hidden from clients. 

 

 Protection: Resources require protection from illegitimate accesses – for example,            

files are protected from being read by users without read permissions, and device           

registers are protected from application processes. 

 

 Concurrent processing: Clients may share resources and access them concurrently.            

Resource managers are responsible for achieving concurrency transparency. 

 

Clients access resources by making remote invocarion methods to a server or system calls to a 

kerner. The means of accessing a resource can be called as an invocation mechanism. A 

combination of libraries, kernels and servers may be called upon to perform the following 

invocation related tasks: 

 

 Communication: Operation parameters and results have to be passed to and from 

resource managers, over a network or within a computer. 

 

 Scheduling: When an operation is invoked, its processing must be scheduled within the 

kernel or server. 

 



 Below figure shows the core OS functionality that we shall be concerned with: process and 

thread management, memory management and communication between processes on the same 

computer (horizontal divisions in the figure denote dependencies). 

 

The core OS components and their responsibilities are: 

 

 Process manager: Creation of and operations upon processes. A process is a unit of 

resource management, including an address space and one or more threads. 

 

 
Core OS functionality 

 

 Thread manager: Thread creation, synchronization and scheduling. Threads are 

schedulable activities attached to processes. 

 

 Communication manager: Communication between threads attached to different 

processes on the same computer. Some kernels also support communication between 

threads in remote processes.. 

 

 Memory manager: Management of physical and virtual memory. It discuss the utilization 

of memory management techniques for efficient data copying and sharing. 

 

 Supervisor: Dispatching of interrupts, system call traps and other exceptions; control of 

memory management unit and hardware caches; processor and floating-point unit register 

manipulations. 

 

Some kernels can execute on shared memory multiprocessors which are described below: 

Shared-memory multiprocessors • Shared-memory multiprocessor computers are equipped 

with several processors that share one or more modules of memory (RAM). The processors may 

also have their own private memory.  

Multiprocessors can be used for many high-performance computing tasks. In distributed 

systems, they are particularly useful for the implementation of high-performance servers because 

the server can run a single program with several threads that handle several requests from clients 

simultaneously. 

 

Protection:  

The resources under the control of operating system require protection from illegitimate 

accesses. As an example for ‘illegitimate access’ to a resource, consider a file. Open files have 

only two operations, read and write. 



 

 Protecting the file consists of two sub-problems. 

 

1) To ensure that each of the file’s two operations can be performed only by clients with the right 

to perform it. For example, Smith, who owns the file, has read and write rights to it. Jones may 

only perform the read operation. An illegitimate access here would be if Jones somehow 

managed to perform a write operation on the file. A complete solution to this resource-protection 

sub-problem in a distributed system requires cryptographic techniques. 

 

2) The other type of illegitimate access, which we address here, is where a misbehaving client 

sidesteps the operations that a resource exports. In our example, this would be if Smith or Jones 

somehow managed to execute an operation that was neither read nor write. Suppose, for 

example, that Smith managed to access the file pointer variable directly. We can protect 

resources from illegitimate invocations. One way is to use a type-safe programming language, 

such as Sing#, an extension of C# or Modula-3. In type-safe languages, no module may access a 

target module unless it has a reference to it – it cannot make up a pointer to it, as would be 

possible in C or C++. 

 

Kernels and protection:  

 

The kernel is a program that remains loaded from system initialization and its code is 

executed with complete access privileges for the physical resources on its host computer. Most 

processors have a hardware mode register whose setting determines whether privileged 

instructions can be executed. A kernel process executes with the processor in supervisor 

(privileged) mode; the kernel arranges that other processes execute in user (unprivileged) mode. 

 

The kernel also sets up address spaces to protect itself and other processes from the 

accesses of an abnormal process. An address space is a collection of ranges of virtual memory 

locations. A process cannot access memory outside its address space. The terms user process or 

user-level process are normally used to describe one that executes in user mode and has a user-

level address space 

  

When a process executes application code, it executes in a distinct user-level address 

space for that application; when the same process executes kernel code, it executes in the 

kernel’s address space. The process can safely transfer from a user-level address space to the 

kernel’s address space via an exception such as an interrupt or a system call trap. A system call 

trap is implemented by a machine-level TRAP instruction, which puts the processor into 

supervisor mode and switches to the kernel address space. 

 

Processes and threads:- 
The traditional operating system notion of a process that executes a single activity was 

found in the 1980s to be unequal to the requirements of distributed systems. The traditional 

process makes sharing between related activities uncomfortable and expensive. 



 The solution is the notion of the process could be associated with multiple activities. 

Nowadays, a process consists of an execution environment together with one or more threads. A 

thread is the operating system abstraction of an activity. An execution environment is the unit of 

resource management: a collection of local kernel managed resources to which its threads have 

access.  

 

An execution environment consists of: 

 An address space; 

 thread synchronization and communication resources such as semaphores and            

communication interfaces (for example, sockets); 

 Higher-level resources such as open files and windows. 

 

 Threads can be created and destroyed dynamically, as needed. The central aim of having 

multiple threads of execution is to maximize the degree of concurrent execution between 

operations, thus enabling the overlap of computation with input and output, and enabling 

concurrent processing on multiprocessors. This can be particularly helpful within servers, where 

concurrent processing of clients’ requests can reduce the tendency for servers to become 

bottlenecks. For example, one thread can process a client’s request while a second thread 

servicing another request waits for a disk access to complete. 

 An execution environment provides protection from threads outside it, so that the data 

and other resources contained in it are by default inaccessible to threads residing in other 

execution environments. But certain kernels allow the controlled sharing of resources such as 

physical memory between execution environments residing at the same computer. 

 As many older operating systems allow only one thread per process. Sometimes use the 

term multi-threaded process for emphasis. In operating system the process means heavy weight 

process and thread means light weight process. 

 

Address spaces:  

An address space is a unit of management of a process’s virtual memory. It is large 

(typically up to 2
32

 bytes and sometimes up to 2
64

 bytes) and consists of one or more regions. A 

region is an area of contiguous virtual memory that is accessible by the threads of the owning 

process. Regions do not overlap. 

 
Address space 



 
Each region is specified by the following properties: 

• Its extent (lowest virtual address and size); 

• Read/write/execute permissions for the process’s threads; 

• Whether it can be grown upwards or downwards. 

 

This representation of an address space as a set of disjoint regions is a generalization of the 

UNIX address space, which has three regions:  

 a fixed, un modifiable text region containing program code;  

 a heap, part of which is initialized by values stored in the program’s binary file, 

and  which is extensible towards higher virtual addresses; and  

 a stack, which is extensible towards lower virtual addresses. 

 

The need to support a separate stack for each thread is allocating a separate stack region to each 

thread makes it possible to detect attempts to exceed the stack limits and to control each stack’s 

growth.  

Another motivation is to enable files in general to be mapped into the address space. A 

mapped file is one that is accessed as an array of bytes in memory. 

  

 The need to share memory between processes, or between processes and the kernel, is 

another factor leading to extra regions in the address space. A shared memory region  is one that 

is backed by the same physical memory as one or more regions belonging to other address 

spaces. Processes therefore access identical memory contents in the regions that are shared, 

while their non-shared regions remain protected.  

The uses of shared regions include the following: 

 

 Libraries: Library code can be very large and would waste considerable memory if it was 

loaded separately into every process that used it. Instead, a single copy of the library code 

can be shared by being mapped as a region in the address spaces of processes that require 

it. 

 Kernel: Often the kernel code and data are mapped into every address space at the same 

location. When a process makes a system call or an exception occurs, there is no need to 

switch to a new set of address mappings.  

 Data sharing and communication: Two processes, or a process and the kernel, might 

need to share data in order to cooperate on some task. It can be considerably more 

efficient for the data to be shared by being mapped as regions in both address spaces than 

by being passed in messages between them. 

 

Creation of new process:  
 

The creation of a new process is an indivisible operation provided by the operating 

system. For example, the UNIX fork system call creates a process with an execution 

environment copied from the caller. 



For a distributed system, the design of the process-creation mechanism has to take into 

account the utilization of multiple computers. 

 

The creation of a new process can be separated into two independent aspects: 

 

1) the choice of a target host,  

2) The creation of an execution environment. 

 

1) Choice of target host: In general, process allocation policies range from running new 

processes at their originator’s workstation to sharing the processing load between a set of 

computers.  

Two policy categories for load sharing are: 

 

The transfer policy determines whether to situate a new process locally or remotely. This may 

depend, for example, on whether the local node is lightly or heavily loaded. 

 

 The location policy determines which node should host a new process selected for transfer. 

This decision may depend on the relative loads of nodes, on their machine architectures or on 

any specialized resources they may possess. 

 

Process location policies may be static or adaptive. The static policies operate without regard to 

the current state of the system. They are based on a mathematical analysis aimed at optimizing a 

parameter such as the overall process throughput. They may be deterministic or probabilistic.  

 

Adaptive policies, on the other hand, apply heuristics to make their allocation decisions, 

based on unpredictable runtime factors such as a measure of the load on each node. 

 

Load-sharing systems may be centralized, hierarchical or decentralized. In the first case there 

is one load manager component, and in the second there are several, organized in a tree 

structure.  

Load managers collect information about the nodes and use it to allocate new processes 

to nodes. In hierarchical systems, managers make process allocation decisions as far down the 

tree as possible, but managers may transfer processes to one another, via a common ancestor, 

under certain load conditions. 

In sender-initiated load-sharing algorithms, the node that requires a new process to be 

created is responsible for initiating the transfer decision. It typically initiates a transfer when its 

own load crosses a threshold.  

By contrast, in receiver-initiated algorithms, a node whose load is below a given 

threshold advertises its existence to other nodes so that relatively loaded nodes can transfer work 

to it. 

Migratory load-sharing systems can shift load at any time, not just when a new process 

is created. They use a mechanism called process migration: the transfer of an executing process 

from one node to another.. While several process migration mechanisms have been constructed, 

they have not been widely deployed. This is largely because of their expense and the tremendous 



difficulty of extracting the state of a process that lies within the kernel, in order to move it to 

another node. 

 

2) Creation of a new execution environment: Once the host computer has been selected, a new 

process requires an execution environment consisting of an address space with initialized 

contents.  

There are two approaches to defining and initializing the address space of a newly created 

process. 

1) The address space is of a statically defined format. For example, it could contain just 

a program text region, heap region and stack region.  

2) The address space can be defined with respect to an existing execution environment.  

 

In the case of UNIX fork semantics, for example, the newly created child process physically 

shares the parent’s text region and has heap and stack regions that are copies of the parent’s in 

extent (as well as in initial contents). This scheme has been generalized so that each region of the 

parent process may be inherited by (or omitted from) the child process. An inherited region may 

either be shared with or logically copied from the parent’s region. 

For example, apply an optimization called copy-on-write when an inherited region is 

copied from the parent. The region is copied, but no physical copying takes place by default. The 

page frames that make up the inherited region are shared between the two address spaces. A page 

in the region is only physically copied when one or another process attempts to modify it. 

 

     Copy-on-write is a general technique used in copying large messages. Let us follow through 

an example of regions RA and RB, whose memory is shared copy-on-write between two 

processes, A and B (Figure below). Let us assume that process A set region RA to be copy-

inherited by its child, process B, and that the region RB was thus created in process B. 

 

 
Copy-on-write 

 



We assume that the pages belonging to region A are resident in memory. Initially, all 

page frames associated with the regions are shared between the two processes’ page tables. If a 

thread in either process attempts to modify the data, a hardware exception called a page fault is 

taken. Let us say that process B attempted the write. The page fault handler allocates a new 

frame for process B and copies the original frame’s data into it byte for byte. The old frame 

number is replaced by the new frame number in one process’s page table – it does not matter 

which – and the old frame number is left in the other page table. The two corresponding pages in 

processes A and B are then each made writable once more at the hardware level. After all of this 

has taken place, process B’s modifying instruction is allowed to proceed. 

 

Threads:- 

 
Here we examine the advantages of enabling client and server processes to possess more 

than one thread. Consider a server that has a pool of one or more threads, each of which 

repeatedly removes a request from a queue of received requests and processes it. For the sake of 

simplicity, we assume that each thread applies the same procedure to process the requests. Let us 

assume that each request takes, on average, 2 milliseconds of processing plus 8 milliseconds of 

I/O (input/output) delay when the server reads from a disk (there is no caching) in a single 

processor computer. 

Consider the maximum server throughput, measured in client requests handled per 

second, for different numbers of threads. If a single thread has to perform all processing, then the 

turnaround time for handling any request is on average 2 + 8 = 10 milliseconds, so this server 

can handle 100 client requests per second. Any new request messages that arrive while the 

server is handling a request are queued at the server port. 

 

Now consider what happens if the server pool contains two threads. We assume that 

threads are independently schedulable – that is, one thread can be scheduled when another 

becomes blocked for I/O.  This increases the server throughput. If all disk requests are serialized 

and take 8 milliseconds each, then the maximum throughput is 1000/8 = 125 requests per 

second. 

 

Suppose that disk block caching is introduced. If a 75% hit rate is achieved, the mean I/O 

time per request reduces to (0.75*0 + 0.25*8) = 2 milliseconds, and the maximum throughput 

increases to 500 requests per second.  

But if the average processor time for a request has been increased to 2.5 milliseconds per 

request as a result of caching (it takes time to search for cached data on every operation), then 

this figure cannot be reached. The server, limited by the processor, can now handle at most 

1000/2.5 = 400 requests per second. 

 

The throughput can be increased by using a shared-memory multiprocessor to ease the 

processor bottleneck. Multiple threads can be scheduled to run on the multiple processors. 

 

 

 



 

Architectures for multi-threaded servers:- 

The threading architectures are: 

 Worker pool architecture 

 Thread per request architecture 

 Thread per connection architecture and 

 Thread per object architecture  

Following figure shows the worker pool architecture. The server creates a fixed pool of 

‘worker’ threads to process the requests when it starts up. The module marked ‘receipt and 

queuing’ in the figure below is implemented by I/O thread and receives requests from a 

collection of sockets and places them on a shared queue. These requests are retrieved from the 

queue by worker threads. 

 

 
Worker pool 

 

A disadvantage of this architecture is its inflexibility: the number of worker threads in the 

pool may be too few to deal adequately with the current rate of request arrival.  

 

In the thread-per-request architecture (fig a) the I/O thread creates a new worker thread for each 

request, and that worker destroys itself when it has processed the request against its designated 

remote object.  

This architecture has the advantage that the threads do not contend for a shared queue, 

and throughput is potentially maximized because the I/O thread can create as many workers as 

there are outstanding requests. Its disadvantage is the overhead of the thread creation and 

destruction operations.  

 

The thread-per-connection architecture (fig b) associates a thread with each connection. The 

server creates a new worker thread when a client makes a connection and destroys the thread 

when the client closes the connection. In between, the client may make many requests over the 

connection, targeted at one or more remote objects.  

 

The thread-per-object architecture (fig c) associates a thread with each remote object. An I/O 

thread receives requests and queues them for the workers, but this time there is a per-object 

queue. 

 



 
server threading architectures 

 

In each of these last two architectures the server benefits from lower thread management 

overheads compared with the thread-per-request architecture. Their disadvantage is that clients 

may be delayed while a worker thread has several outstanding requests but another thread has no 

work to perform. 

 

 

Threads within clients: Threads can be useful for clients as well as servers. The worker pool 

architecture figure shows a client process with two threads. The first thread generates results to 

be passed to a server by remote method invocation. Remote method invocations typically block 

the caller, even when there is no need to wait. This client process can incorporate a second 

thread, which performs the remote method invocations and blocks while the first thread is able to 

continue computing further results. The first thread places its results in buffers, which are 

emptied by the second thread. It is only blocked when all the buffers are full. 

 

Threads versus multiple processes: Threads are cheaper to create and manage than processes, 

and resource sharing can be achieved more efficiently between threads than between processes 

because threads share an execution environment.  

 

The following table shows some of the main state components that must be maintained 

for execution environments and threads, respectively.  

An execution environment has an address space, communication interfaces such as 

sockets, higher-level resources such as open files and thread synchronization objects such as 

semaphores; it also lists the threads associated with it.  

A thread has a scheduling priority, an execution state (such as BLOCKED or 

RUNNABLE), saved processor register values when the thread is BLOCKED, and state 

concerning the thread’s software interrupt handling. 

 

We can summarize a comparison of processes and threads as follows: 

 

• Creating a new thread within an existing process is cheaper than creating a process. 

 

• Switching to a different thread within the same process is cheaper than switching between 

threads belonging to different processes. 

 



• Threads within a process may share data and other resources conveniently and efficiently 

compared with separate processes. 

 

• But, threads within a process are not protected from one another. 

 

 
State associated with execution environments and threads 

 

 

The overhead associated with creating a process are greater than those of creating a new thread. 

It is assumed that it takes 11milliseconds to create a process and about 1millisecond to create a 

thread. 

 

Switching between threads sharing the same execution environment is considerably 

cheaper than switching between threads belonging to different processes.The overheads 

associated with thread switching are related to scheduling and context switching. 

 

Scheduling is the process of choosing the next thread to run.  

A processor context comprises the values of the processor registers such as the program 

counter, and the current hardware protection domain: the address space and the processor 

protection mode (supervisor or user).  

A context switch is the transition between contexts that takes place when switching 

between threads. It involves the following: 

 

• The saving of the processor’s original register state, and the loading of the new state; 

• In some cases, a transfer to a new protection domain – this is known as a domain   

transition. 

 

It is assumed that it takes 1.8milliseconds to switch between processes and 0.4milliseconds to 

switch between threads. 

 

The aliasing problem • Memory management units usually include a hardware cache to speed up 

the translation between virtual and physical addresses, called a translation lookaside buffer 

(TLB). TLBs, and also virtually addressed data and instruction caches, suffer in general from the 

so-called aliasing problem. The same virtual address can be valid in two different address 

spaces, but in general it is supposed to refer to different physical data in the two spaces.  



 

In the example above of the client process with two threads, the first thread generates 

data and passes it to the second thread, which makes a remote method invocation or remote 

procedure call. Since the threads share an address space, there is no need to use message passing 

to pass the data. Both threads may access the data via a common variable.  

Herein lies both the advantage and the disadvantage of using multi-threaded processes. 

The advantage is the convenience and efficiency of access to shared data. The disadvantage is a 

thread can alter data used by another thread. 

If protection is required, then either a type safe language should be used or it may be 

preferable to use multiple processes instead of multiple threads. 

 

Threads programming: Threads programming is concurrent programming studied in the field 

of operating systems. Threads programming is done with a threads library. The C Threads 

package is an example of this. More recently, the POSIX Threads standard, known as pthreads, 

has been widely adopted. Some languages provide direct support for threads, including Ada95, 

Modula-3 and Java. 

 

The Java Thread class includes the constructor and management methods listed in below. 

 

 

 
Java thread constructor and management methods 

 

 
 

Thread lifetimes :  

 

A new thread is created on the same Java virtual machine (JVM) in the SUSPENDED state. After 

it is made RUNNABLE with the start() method, it executes the run() method of an object designated in its 



constructor. Threads can be assigned a priority, so that a Java implementation that supports priorities will 

run a particular thread in preference to any thread with lower priority. A thread ends its life when it 

returns from the run() method or when its destroy() method is called. 

 

Programs can manage threads in groups. Every thread belongs to one group, which it is 

assigned at the time of its creation applications. Thread groups are useful. One example of their 

use is security: by default, a thread in one group cannot perform management operations on a 

thread in another group.  

 

Thread synchronization : Programming a multi-threaded process requires great care. The main 

difficult issues are the sharing of objects and the techniques used for thread coordination and 

cooperation.  

Java provides the synchronized keyword for programmers to designate the well known 

monitor construct for thread coordination. Addto() and removeFrom() methods are designated as 

synchronized methods in Queue class in our example.  

Java allows threads to be blocked and woken up via arbitrary objects that act as condition 

variables. A thread that needs to block awaiting a certain condition calls an object’s wait() 

method. Another thread calls notify() to unblock at most one thread or notifyAll() to unblock all 

threads waiting on that object. These  methods  belong to the Object class. 

 

As an example, when a worker thread discovers that there are no requests to process, it calls 

wait() on the instance of Queue. When the I/O thread adds a request to the queue, it calls the 

queue’s notify() method to wake up a worker.  

 

The java synchronization methods are given as follows: 

 

 
Java thread synchronization methods 

 

The join() method blocks the caller until the target thread’s termination. The interrupt() 

method is useful for waking a waiting thread. All the standard synchronization primitives, such 

as semaphores, can be implemented in Java. But care is required, since Java’s monitor 

guarantees apply only to an object’s synchronized code; a class may have a mixture of 

synchronized and non-synchronized methods. 

 

 



Thread scheduling :  
Scheduling is the activity of deciding which thread has to be given access to resources. An 

important distinction is between preemptive and non preemptive scheduling of threads.  

In preemptive scheduling, a thread may be suspended at any point to make way for 

another thread.  

In non-preemptive scheduling, a thread runs until it makes a call to the threading system 

when the system may reschedule it and schedule another thread to run. 

The advantage of non-preemptive scheduling is that any section of code that does not 

contain a call to the threading system is automatically a critical section. On the other hand, non-

preemptively scheduled threads cannot take advantage of a multiprocessor. Nonpreemptively 

scheduled threads are also unsuited to real-time applications. 

 

Threads implementation: Many kernels provide support for multi-threaded processes, such as 

Windows, Linux, Solaris, Mach and Mac OS X. These kernels provide thread-creation and -

management system calls, and they schedule individual threads.  

Some other kernels have only a single-threaded process abstraction. Multithreaded 

processes must then be implemented in a library of procedures linked to application programs. 

 

When no kernel support for multi-threaded processes is provided, a user-level threads 

implementation suffers from the following problems: 

 

• The threads within a process cannot take advantage of a multiprocessor. 

• A thread that takes a page fault blocks the entire process and all threads within it. 

• Threads within different processes cannot be scheduled according to a single scheme of 

relative prioritization. 

 

User-level threads implementations, on the other hand, have significant advantages over 

kernel-level implementations: 

 

• Certain thread operations are significantly less costly. For example, switching between 

threads belonging to the same process does not necessarily involve a system call. 

• Given that the thread-scheduling module is implemented outside the kernel, it can be 

customized or changed to suit particular application requirements. 

• Many more user-level threads can be supported than could reasonably be provided by 

default by a kernel. 

 

It is possible to combine the advantages of user-level and kernel-level threads 

implementations. A user-level scheduler assigns each user-level thread to a kernel-level thread. 

This scheme can take advantage of multiprocessors, and also benefits because some thread-

creation and thread-switching operations take place at user level. The scheme’s disadvantage is 

that it lacks flexibility: if a thread blocks in the kernel, then all user-level threads assigned to it 

are also prevented from running, regardless of whether they are eligible to run. 

 



Each application process contains a user-level scheduler, which manages the threads 

inside the process. The kernel is responsible for allocating virtual processors to processes. The 

number of virtual processors assigned to a process depends on such factors as the applications’ 

requirements, their relative priorities and the total demand on the processors.  

The following figure shows an example of a three-processor machine, on which the 

kernel allocates one virtual processor to process A, running a relatively low-priority job, and two 

virtual processors to process B. They are virtual processors because the kernel can allocate 

different physical processors to each process as time goes by, while keeping its guarantee of how 

many processors it has allocated. 

 

 
Scheduler activations 

 

Figure (B) also shows that the kernel notifies the process when any of four types of event occurs. 

A scheduler activation (SA) is a call from the kernel to a process, which notifies the process’s 

scheduler of an event. An SA is a unit of allocation of a time slice on a virtual processor. The 

user-level scheduler has the task of assigning its READY threads to the set of SAs currently 

executing within it. 

The four types of event that the kernel notifies the user-level scheduler of are as follows: 

Virtual processor allocated: The kernel has assigned a new virtual processor to the process, and 

this is the first time slice upon it; the scheduler can load the SA with the context of a READY 

thread, which can thus recommence execution.  

 

SA blocked: An SA has blocked in the kernel, and the kernel is using a fresh SA to notify the 

scheduler; the scheduler sets the state of the corresponding thread to BLOCKED and can allocate 

a READY thread to the notifying SA. 

 

SA unblocked: An SA that was blocked in the kernel has become unblocked and is ready to 

execute at user level again; the scheduler can now return the corresponding thread to the READY 

list. In order to create the notifying SA, the kernel either allocates a new virtual processor to the 

process or preempts another SA in the same process. In the latter case, it also communicates the 

preemption event to the scheduler, which can reevaluate its allocation of threads to SAs. 

SA preempted: The kernel has taken away the specified SA from the process; the scheduler 

places the preempted thread in the READY list and reevaluates the thread allocation. 


