
Unit-3

Interprocess Communication

Introduction: Interprocess communication in the Internet provides both

datagram and stream communication. These concepts are concerned with the
communication aspects of middleware. This one is concerned with the design of the
components shown in the darker layer in below Figure.

Middleware layers

The application program interface to UDP provides a message passing
abstraction – the simplest form of interprocess communication. This enables a sending
process to transmit a single message to a receiving process. The independent packets
containing these messages are called datagrams. In the Java and UNIX APIs, the
sender specifies the destination using a socket – an indirect reference to a particular
port used by the destination process at a destination computer.

The application program interface to TCP provides the abstraction of a two-way
stream between pairs of processes. The information communicated consists of a
stream of data items with no message boundaries. Streams provide a building block
for producer-consumer communication.

A producer and a consumer form a pair of processes in which the role of the
producer is to produce data items and the role of the consumer is to consume them.
The data items sent by the producer to the consumer are queued on arrival at the
receiving host until the consumer is ready to receive them. The consumer must wait
when no data items are available. The producer must wait if the storage used to hold
the queued data items is exhausted.

The API for the Internet protocols:- The general characteristics of

interprocess communication are given below. Programmers can use them, either by
means of UDP messages or through TCP streams.

1. The characteristics of interprocess communication: Message passing

between a pair of processes can be supported by two message communication
operations, send and receive, defined in terms of destinations and messages. To
communicate, one process sends a message (a sequence of bytes) to a destination
and another process at the destination receives the message. This activity involves

the communication of data from the sending process to the receiving process and
may involve the synchronization of the two processes.

#Synchronous and asynchronous communication: A queue is associated with

each message destination. Sending processes cause messages to be added to remote
queues and receiving processes remove messages from local queues.

Communication between the sending and receiving processes may be either
synchronous or asynchronous. In the synchronous form of communication, the
sending and receiving processes synchronize at every message. In this case, both send
and receive are blocking operations. Whenever a send is issued the sending process
(or thread) is blocked until the corresponding receive is issued. Whenever receive is
issued by a process (or thread), it blocks until a message arrives.

In the asynchronous form of communication, the use of the send operation is
non- blocking in that the sending process is allowed to proceed as soon as the message
has been copied to a local buffer, and the transmission of the message proceeds in
parallel with the sending process. The receive operation can have blocking and non-
blocking variants. In the non-blocking variant, the receiving process proceeds with
its program after issuing a receive operation, which provides a buffer to be filled in the
background, but it must separately receive notification that its buffer has been filled,
by polling or interrupt.

In a system environment such as Java, which supports multiple threads in a
single process, the blocking receive has no disadvantages. Non-blocking
communication appears to be more efficient, but it involves extra complexity in the
receiving process associated with the need to acquire the incoming message out of its
flow of control.

#Message destinations: Messages are sent to (Internet address, local port) pairs.

A local port is a message destination within a computer, specified as an integer. A port
has exactly one receiver but can have many senders. Processes may use multiple ports
to receive messages. Any process that knows the number of a port can send a message
to it. Servers generally publicize their port numbers for use by clients.

#Reliability: Reliable communication can be defined in terms of validity and

integrity. A point-to-point message service can be described as reliable if messages
are guaranteed to be delivered despite a ‘reasonable’ number of packets being dropped
or lost. In contrast, a point-to-point message service can be described as unreliable if
messages are not guaranteed to be delivered in the face of even a single packet
dropped or lost. For integrity, messages must arrive uncorrupted and without
duplication.

#ordering: Some applications require that messages to be delivered in sender order

– that is, the order in which they were transmitted by the sender. The delivery of
messages out of sender order is regarded as a failure by such applications.

2. Sockets: Both forms of communication (UDP and TCP) use the socket abstraction,

which provides an endpoint for communication between processes. Sockets originate
from BSD UNIX but are also present in most other versions of UNIX, including Linux
as well as Windows and the Macintosh OS. Interprocess communication consists of
transmitting a message between a socket in one process and a socket in another
process(below figure).

Sockets and Ports

For a process to receive messages, its socket must be bound to a local port and
one of the Internet addresses of the computer on which it runs. Messages sent to a
particular Internet address and port number can be received only by a process whose
socket is associated with that Internet address and port number. Processes may use

the same socket for sending and receiving messages. Each computer has a large
number (216) of possible port numbers for use by local processes for receiving
messages. Any process may make use of multiple ports to receive messages, but a
process cannot share ports with other processes on the same computer.

Java API for Internet addresses: As the IP packets underlying UDP and TCP are

sent to Internet addresses, Java provides a class, InetAddress, that represents
Internet addresses. Users of this class refer to computers by Domain Name System
(DNS) hostnames .For example, instances of InetAddress that contain Internet
addresses can be created by calling a static method of InetAddress, giving a DNS
hostname as the argument. The method uses the DNS to get the corresponding
Internet address. For example, to get an object representing the Internet address of
the host whose DNS name is tecnrt.org, use:

InetAddress aComputer = InetAddress.getByName("tecnrt.org");

This method can throw an UnknownHostException

3. UDP datagram communication: A datagram sent by UDP is transmitted from a

sending process to a receiving process without acknowledgement or retries. If a failure
occurs, the message may not arrive. A datagram is transmitted between processes
when one process sends it and another receives it. To send or receive messages a
process must first create a socket bound to an Internet address of the local host and a
local port. A server will bind its socket to a server port – one that it makes known to
clients so that they can send messages to it. A client binds its socket to any free local
port. The receive method returns the Internet address and port of the sender, in

addition to the message, allowing the recipient to send a reply.
The following are some issues relating to datagram communication:

#Message size: The receiving process needs to specify an array of bytes of a particular
size in which to receive a message. If the message is too big for the array, it is
truncated on arrival. The underlying IP protocol allows packet lengths of up to 216
bytes, which includes the headers as well as the message. However, most
environments impose a size restriction of 8 kilobytes. Any application requiring
messages larger than the maximum must fragment them into chunks of that size.

#Blocking: Sockets normally provide non-blocking sends and blocking receives for
datagram communication. The send operation returns when it has handed the
message to the underlying UDP and IP protocols, which are responsible for
transmitting it to its destination. On arrival, the message is placed in a queue for the
socket that is bound to the destination port. The message can be collected from the
queue by an invocation of receive on that socket. Messages are discarded at the
destination if no process has a socket bound to the destination port. The method
receive blocks until a datagram is received, unless a timeout has been set on the
socket. If the process that invokes the receive method has other work to do while
waiting for the message, it should arrange to use a separate thread.

#Timeouts: The receive that blocks forever is suitable for use by a server that is
waiting to receive requests from its clients. But in some programs, it is not appropriate
that a process that has invoked a receive operation should wait indefinitely in
situations where the sending process may have crashed or the expected message may
have been lost. To allow for such requirements, timeouts can be set on sockets.

#Receive from any: The receive method does not specify an origin for messages.
Instead, an invocation of receive gets a message addressed to its socket from any
origin. The receive method returns the Internet address and local port of the sender,
allowing the recipient to check where the message came from.

Failure model for UDP datagrams: Reliable communication can be defined in

terms of two properties: integrity and validity. The integrity property requires that
messages should not be corrupted or duplicated. The use of a checksum ensures that
there is a negligible probability that any message received is corrupted.
UDP datagrams suffer from the following failures:

Omission failures: Messages may be dropped occasionally, either because of a
checksum error or because no buffer space is available at the source or
destination.
Ordering: Messages can sometimes be delivered out of sender order.

Use of UDP : Some applications can use a service that exhibits occasional omission

failures. Example, Domain Name System, which looks up DNS names in the Internet,
is implemented over UDP. Voice over IP (VOIP) also runs over UDP. UDP datagrams
are sometimes an attractive choice because they do not suffer from the overheads
associated with guaranteed message delivery. There are three main sources of
overhead:

• the need to store state information at the source and destination;
• the transmission of extra messages;

• latency for the sender.

Java API for UDP datagrams : The Java API provides datagram communication by

means of two classes: DatagramPacket and DatagramSocket.

->DatagramPacket: This class provides a constructor that makes an instance out of
an array of bytes comprising a message, the length of the message and the Internet
address and local port number of the destination socket, as follows:

An instance of DatagramPacket may be transmitted between processes when one
process sends it and another receives it. This class provides another constructor for
use when receiving a message. Its arguments specify an array of bytes in which to
receive the message and the length of the array. A received message is put in the
DatagramPacket together with its length and the Internet address and port of the
sending socket. The message can be retrieved from the DatagramPacket by means of
the method getData. The methods getPort and getAddress access the port and
Internet address.

->DatagramSocket: This class supports sockets for sending and receiving UDP
datagrams. It provides a constructor that takes a port number as its argument, for
use by processes that need to use a particular port.

The class DatagramSocket provides methods that include the following:

 send and receive: These methods are for transmitting datagrams between a
pair of sockets. The argument of send is an instance of DatagramPacket
containing a message and its destination. The argument of receive is an empty
DatagramPacket in which to put the message, its length and its origin. These
methods can throw IOExceptions.

 setSoTimeout: This method allows a timeout to be set. With a timeout set, the
receive method will block for the time specified and then throw an
InterruptedIOException.

 connect: This method is used for connecting to a particular remote port and
Internet address, in which case the socket is only able to send messages to and
receive messages from that address.

UDP client sends a message to the server and gets a reply

Above code shows the program for a client that creates a socket, sends a
message to a server at port 6789 and then waits to receive a reply. The arguments of
the main method supply a message and the DNS hostname of the server. The message

is converted to an array of bytes, and the DNS hostname is converted to an Internet
address.

UDP server repeatedly receives a request and sends it back to the client

Above code shows the program for the corresponding server, which creates a
socket bound to its server port (6789) and then repeatedly waits to receive a request
message from a client, to which it replies by sending back the same message.

4. TCP stream communication: The API to the TCP protocol, which originates

from BSD 4.x UNIX, provides the abstraction of a stream of bytes to which data may
be written and from which data may be read.
The following characteristics of the network are hidden by the stream abstraction:

#Message sizes: The application can choose how much data it writes to a stream or
reads from it. It may deal in very small or very large sets of data. The underlying
implementation of a TCP stream decides how much data to collect before transmitting
it as one or more IP packets. On arrival, the data is handed to the application as
requested.

#Lost messages: The TCP protocol uses an acknowledgement scheme. The sending
end keeps a record of each IP packet sent and the receiving end acknowledges all the
arrivals. If the sender does not receive an acknowledgement within a timeout, it
retransmits the message.

#Flow control: The TCP protocol attempts to match the speeds of the processes that
read from and write to a stream. If the writer is too fast for the reader, then it is
blocked until the reader has consumed sufficient data.

#Message duplication and ordering: Message identifiers are associated with each IP
packet, which enables the recipient to detect and reject duplicates, or to reorder
messages that do not arrive in sender order.

#Message destinations: A pair of communicating processes establishes a connection
before they can communicate over a stream. Once a connection is established, the
processes simply read from and write to the stream without needing to use Internet
addresses and ports. Establishing a connection involves a connect request from client
to server followed by an accept request from server to client before any
communication can take place.

When pair of processes are establishing a connection, one of them plays the
client role and the other plays the server role. The client role involves creating a
stream socket bound to any port and then making a connect request asking for a
connection to a server at its server port. The server role involves creating a listening
socket bound to a server port and waiting for clients to request connections. The
listening socket maintains a queue of incoming connection requests. In the socket
model, when the server accepts a connection, a new stream socket is created for the
server to communicate with a client, meanwhile retaining its socket at the server port
for listening for connect requests from other clients.

The pair of sockets in the client and server is connected by a pair of streams,
one in each direction. Thus each socket has an input stream and an output stream.
One of the pair of processes can send information to the other by writing to its output
stream, and the other process obtains the information by reading from its input
stream.

When an application closes a socket, this indicates that it will not write any

more data to its output stream. Any data in the output buffer is sent to the other end
of the stream and put in the queue at the destination socket, with an indication that
the stream is broken. The process at the destination can read the data in the queue,
but any further reads after the queue is empty will result in an indication of end of
stream.

The following are some issues related to stream communication:

#Matching of data items: Two communicating processes need to agree as to the
contents of the data transmitted over a stream. Example, if one process writes an int
followed by double to a stream, then the reader at the other end must read an int
followed by a double.

#Blocking: The data written to a stream is kept in a queue at the destination socket.
When a process attempts to read data from a input channel, it will block until data
becomes available.

#Threads: When a server accepts a connection, it creates a new thread to
communicate with the new client. The advantage of using a separate thread for each
client is that the server can block when waiting for input without delaying other
clients.

Failure model: To satisfy the integrity property of reliable communication, TCP
streams use checksums to detect and reject corrupt packets and sequence numbers to
detect and reject duplicate packets. For the sake of the validity property, TCP streams
use timeouts and retransmissions to deal with lost packets.

If the packet loss over a connection passes some limit or the network
connecting a pair of communicating processes is severed or becomes severely
congested, the TCP software responsible for sending messages will receive no
acknowledgements and after a time will declare the connection to be broken. Thus
TCP does not provide reliable communication, because it does not guarantee to deliver
messages in the face of all possible difficulties.

When a connection is broken, a process using it will be notified if it attempts to

read or write. This has the following effects:
• The processes using the connection cannot distinguish between network
failure and failure of the process at the other end of the connection.

• The communicating processes cannot tell whether the messages they have
sent recently have been received or not.

Use of TCP : Many frequently used services run over TCP connections. These include
the following:

HTTP: The Hypertext Transfer Protocol is used for communication between web
browsers and web servers

FTP: The File Transfer Protocol allows directories on a remote computer to be
browsed and files to be transferred from one computer to another over a
connection.

Telnet: Telnet provides access by means of a terminal session to a remote
computer.

SMTP: The Simple Mail Transfer Protocol is used to send mail between
computers.

Java API for TCP streams: The Java interface to TCP streams is provided in the
classes: ServerSocket and Socket:

->Server Socket: This class is intended for use by a server to create a socket at
a server port for listening for connect requests from clients. Its accept method
gets a connect request from the queue or, if the queue is empty, blocks until one
arrives.

->Socket: This class is for use by a pair of processes with a connection. The
client uses a constructor to create a socket, specifying the DNS hostname and
port of a server. This constructor not only creates a socket associated with a
local port but also connects it to the specified remote computer and port
number.
 The Socket class provides the methods getInputStream and
getOutputStream for accessing the two streams associated with a socket. Our
example uses DataInputStream and DataOutputStream, which allow binary
representations of primitive data types to be read and written in a machine-
independent manner.

Below figure shows a client program in which the arguments of the main method
supply a message and the DNS hostname of the server. The client creates a socket
bound to the hostname and server port 7896. It makes a DataInputStream and a
DataOutputStream from the socket’s input and output streams, then writes the
message to its output stream and waits to read a reply from its input stream.

TCP client makes connection to server, sends request and receives reply

The server program in below Figure opens a server socket on its server port (7896) and

listens for connect requests. When one arrives, it makes a new thread in which to

communicate with the client. The new thread creates a DataInputStream and a

DataOutputStream from its socket’s input and output streams and then waits to read a

message and write the same one back.

TCP server makes a connection for each client and then echoes the client’s request

External data representation and marshalling:-

 The information stored in running programs is represented as data
structures whereas the information in messages consists of sequence of bytes.
Irrespective of the form of communication used, the data structures must be flattened
(converted to a sequence of bytes) before transmission and rebuilt on arrival. The
individual primitive data items transmitted in messages can be data values of many
different types, and not all computers store primitive values such as integers in the

same order. The representation of floating-point numbers also differs between
architectures.

There are two variants for the ordering of integers: the so-called big-endian
order, in which the most significant byte comes first; and little-endian order, in which
it comes last. Another issue is the set of codes used to represent characters: for
example, the majority of applications on systems such as UNIX use ASCII character
coding, taking one byte per character, whereas the Unicode standard allows for the
representation of texts in many different languages and takes two bytes per character.

One of the following methods can be used to enable any two computers to
exchange binary data values:
• The values are converted to an agreed external format before transmission and
converted to the local form on receipt;

• The values are transmitted in the sender’s format, together with an indication of the

format used, and the recipient converts the values if necessary.

An agreed standard for the representation of data structures and primitive values is
called an external data representation.

Marshalling is the process of taking a collection of data items and assembling
them into a form suitable for transmission in a message. Unmarshalling is the
process of disassembling them on arrival to produce an equivalent collection of data
items at the destination. Thus marshalling consists of the translation of structured
data items and primitive values into an external data representation. Similarly,
unmarshalling consists of the generation of primitive values from their external data
representation and the rebuilding of the data structures.

Three alternative approaches for external data representation and marshalling are:

CORBA’s CDR(common data representation), which is concerned with an external
representation for the structured and primitive types that can be passed as the
arguments and results of remote method invocations in CORBA.

Java’s object serialization, which is concerned with the flattening and external
data representation of any single object or tree of objects that may need to be
transmitted in a message or stored on a disk. It is for use only by Java.

XML (Extensible Markup Language), which defines a textual format for
representing structured data. It was originally intended for documents containing
textual self-describing structured data.

In the first two cases, the marshalling and unmarshalling activities are
intended to be carried out by a middleware layer without any involvement of the
application programmer. Even in the case of XML, which is textual and therefore more
accessible to hand-encoding, software for marshalling and unmarshalling is available
for all commonly used platforms and programming environments.

In the first two approaches, the primitive data types are marshaled into a
binary form. In the third approach (XML), the primitive data types are represented
textually. The textual representation of a data value will generally be longer than the
equivalent binary representation.

Another issue with regard to the design of marshalling methods is whether the
marshaled data should include information concerning the type of its contents. For
example, CORBA’s representation includes just the values of the objects transmitted,
and nothing about their types. On the other hand, both Java serialization and XML do
include type information, but in different ways. Java puts all of the required type
information into the serialized form, but XML documents may refer to externally
defined sets of names (with types) called namespaces.

Two other techniques for external data representation are worthy of mention.
Google uses an approach called protocol buffers to capture representations of both
stored and transmitted data. There is also considerable interest in JSON (JavaScript
Object Notation) an approach to external data representation.

1)CORBA’s Common Data Representation (CDR):-
CORBA CDR is the external data representation defined with CORBA 2.0. CDR

can represent all of the data types that can be used as arguments and return values in
remote invocations in CORBA. These consist of 15 primitive types, which include short
(16-bit), long (32-bit), unsigned short, unsigned long, float (32-bit), double (64-bit),
char, boolean (TRUE, FALSE), octet (8-bit), and any (which can represent any basic or
constructed type); together with a range of composite types shown below.

CORBA CDR for constructed types

 Primitive types: CDR defines a representation for both big-endian and little-
endian orderings. Values are transmitted in the sender’s ordering, which is
specified in each message. The recipient translates if it requires a different
ordering. For example, a 16-bit short occupies two bytes in the message, and for
big-endian ordering, the most significant bits occupy the first byte and the least
significant bits occupy the second byte. Each primitive value is placed at an
index in the sequence of bytes according to its size.

 Constructed types: The primitive values that comprise each constructed type
are added to a sequence of bytes in a particular order, as shown in Figure
above.

Below figure shows a message in CORBA CDR that contains the three fields of a struct
whose respective types are string, string and unsigned long.

CORBA CDR message(Person struct with value: {‘Smith’, ‘London’, 1984})

Another example of an external data representation is the Sun XDR standard, which is
specified in RFC 1832 It was developed by Sun for use in the messages exchanged
between clients and servers in Sun.

The type of a data item is not given with the data representation in the message in

either the CORBA CDR or the Sun XDR standard. This is because it is assumed that
the sender and recipient have common knowledge of the order and types of the data
items in a message

Marshalling in CORBA: Marshalling operations can be generated automatically from
the specification of the types of data items to be transmitted in a message. The types
of the data structures and the types of the basic data items are described in CORBA
IDL, which provides a notation for describing the types of the arguments and results of
RMI methods. For example, we might use CORBA IDL to describe the data structure in
the message in above Figure as follows:

struct Person{
string name;
string place;

unsigned long year;
};

2)Java Object serialization:- In Java RMI, both objects and primitive data values

may be passed as arguments and results of method invocations. An object is an
instance of a Java class. For example, the Java class equivalent to the Person struct
defined in CORBA IDL might be:

public class Person implements Serializable
{

private String name;
private String place;
private int year;
public Person(String aName, String aPlace, int aYear)
{

name = aName;
place = aPlace;
year = aYear;

}
// followed by methods for accessing the instance variables

}
The above class states that it implements the Serializable interface, which has no
methods.

 In Java, the term serialization refers to the activity of flattening an object or a
connected set of objects into a serial form that is suitable for transmitting in a
message. Deserialization consists of restoring the state of an object or a set of objects
from their serialized form.

It is assumed that the process that does the deserialization has no prior
knowledge of the types of the objects in the serialized form. Therefore some
information about the class of each object is included in the serialized form. This
information enables the recipient to load the appropriate class when an object is
deserialized.

Java objects can contain references to other objects. When an object is
serialized, all the objects that it references are serialized together with it to ensure that
when the object is reconstructed. References are serialized as handles. The handle is
a reference to an object within the serialized form.

To serialize an object, its class information is written out, followed by the types
and names of its instance variables. If the instance variables belong to new classes,
then their class information must also be written out, followed by the types and names
of their instance variables. This recursive procedure continues until the class
information and types and names of the instance variables of all of the necessary
classes have been written out.

The contents of the instance variables that are primitive types, such as integers,
chars, booleans, bytes and longs, are written in a portable binary format using
methods of the ObjectOutputStream class. Strings and characters are written by its
writeUTF method using the Universal Transfer Format (UTF-8), which enables ASCII
characters to be represented unchanged (in one byte), whereas Unicode characters are
represented by multiple bytes. Strings are preceded by the number of bytes they
occupy in the stream.

As an example, consider the serialization of the following object:

Person p = new Person("Smith", "London", 1984);

The serialized form is illustrated in Figure below

Indication of Java serialized form(h0,h1 are handles)

The first instance variable(1984) is an integer that has a fixed length; the second and
third variables are strings and are preceded by their lengths.
To serialize an object, create an instance of the class ObjectOutputStream and invoke
its writeObject method, passing the object as its argument. To deserialize an object
from a stream of data, open an ObjectInputStream on the stream and use its
readObject method to reconstruct the original object.

The use of reflection: The Java language supports reflection – the ability to

enquire about the properties of a class, such as the names and types of its instance
variables and methods. Reflection makes it possible to do serialization and
deserialization in a completely generic manner.

Java object serialization uses reflection to find out the class name of the object
to be serialized and the names, types and values of its instance variables.

3)Extensible Markup Language (XML):-
XML is a markup language that was defined by the World Wide Web Consortium
(W3C) for general use on the Web. In general, the term markup language refers to a
textual encoding that represents both a text and details as to its structure or its
appearance.

Both XML and HTML were derived from SGML (Standardized Generalized
Markup Language). HTML was designed for defining the appearance of web pages.

XML was designed for writing structured documents for the Web. XML data items are
tagged with ‘markup’ strings. The tags are used to describe the logical structure of the
data and to associate attribute-value pairs with logical structures. That is, in XML, the
tags relate to the structure of the text that they enclose.

XML is extensible in the sense that users can define their own tags, in contrast
to HTML, which uses a fixed set of tags. However, if an XML document is intended to
be used by more than one application, then the names of the tags must be agreed
between them.

XML was intended to be used by multiple applications for different purposes.

The provision of tags, together with the use of namespaces to define the meaning of
the tags, has made this possible. XML documents, being textual, can be read by
humans. In practice, most XML documents are generated and read by XML processing
software, but the ability to read XML can be useful when things go wrong.

 XML elements and attributes : XML definition of the Person Structure is given as
follows:

XML definition of the Person structure

Elements: An element in XML consists of a portion of character data surrounded by
matching start and end tags. For example, one of the elements in Person given above
consists of the data Smith contained within the <name> ... </name> tag pair. The
element with the <name> tag is enclosed in the element with the <person
id="123456789"> ...</person > tag pair. The ability of an element to enclose another
element allows hierarchic data to be represented.

Attributes: A start tag may optionally include pairs of associated attribute names and
values such as id="123456789", as shown above. The syntax is the same as for HTML,

in which an attribute name is followed by an equal sign and an attribute value in
quotes. Multiple attribute values are separated by spaces.

Names: The names of tags and attributes in XML start with a letter, but can also start
with underline or colon. The names can continue with letters, digits, hyphens,
underscores, colons or full stops. Letters are case sensitive.

Binary Data: All of the information in XML elements must be expressed as character
data. The encrypted elements can be represented in base64 notation which uses
alphanumeric characters together with +,/and =.

 Parsing and well-formed documents: An XML document must be well formed – that
is, it must conform to rules about its structure. A basic rule is that every start tag has
a matching end tag. Another basic rule is that all tags are correctly nested – for
example, <x>..<y>..</y>..</x> is correct, whereas <x>..<y>..</x>..</y> is not. Finally,

every xml document must have a single root element that encloses all the other
elements. When a parser reads an XML document that is not well formed, it will report
a fatal error.

CDATA: XML parsers normally parse the contents of elements because they may
contain further nested structures. If text needs to contain an angle bracket or a quote,
it may be represented in a special way: for example, < represents the opening angle
bracket. For example, if a place name is to include an apostrophe, then it could be
specified in either of the two following ways:

<place> King&apos Cross </place >
<place> <![CDATA [King's Cross]]></place >

XML prolog: Every XML document must have a prolog as its first line. The prolog
must at least specify the version of XML in use (which is currently 1.0). For example:

<?XML version = "1.0" encoding = "UTF-8" standalone = "yes"?>

The term encoding refers to the set of codes used to represent characters – ASCII
being the best-known example. The attribute standalone is used to state that whether
the document stands alone or is dependent on other documents.

 XML namespaces :An XML namespace is a set of names for a collection of element
types and attributes that is referenced by a URL. Any element that makes use of an
XML namespace can specify that namespace as an attribute called xmlns, whose
value is a URL referring to the file containing the namespace definitions. For example:

xmlns:pers = http://www.cdk5.net/person

The name after xmlns, in this case pers can be used as a prefix to refer to the
elements in a particular namespace, as shown below. The pers prefix is bound to
http://www.cdk4.net/person for the person element. An XML document may be
defined in terms of several different namespaces, each of which is referenced by a
unique prefix.

http://www.cdk5.net/person

Illustration of the use of a namespace in the Person structure

 XML schemas : An XML schema defines the elements and attributes that can appear
in a document, how the elements are nested and the order and number of elements,
and whether an element is empty or can include text. For each element, it defines the
type and default value. Below Figure gives an example of a schema that defines the
data types and structure of the XML definition of the person structure.

An XML schema for the Person structure

 APIs for accessing XML: XML parsers and generators are available for most
commonly used programming languages. For example, there is Java software for
writing out Java objects as XML (marshalling) and for creating Java objects from such
structures (unmarshalling). Similar software is available in Python for Python data
types and objects.

4) Remote object references: When a client invokes a method in a remote

object, an invocation message is sent to the server process that hosts the remote
object. This message needs to specify which particular object is to have its method
invoked.

A remote object reference is an identifier for a remote object that is valid

throughout a distributed system. A remote object reference is passed in the invocation
message to specify which object is to be invoked.

Remote object references must be generated in a manner that ensures
uniqueness over space and time. In general, there may be many processes hosting
remote objects, so remote object references must be unique among all of the processes
in the various computers in a distributed system. Any attempt to invoke a deleted
object should produce an error rather than allow access to a different object.

There are several ways to ensure that a remote object reference is unique. One
way is to construct a remote object reference by concatenating the Internet address of

its host computer and the port number of the process that created it with the time of
its creation and a local object number.

The local object number is incremented each time an object is created in that
process. The port number and time together produce a unique process identifier on
that computer. With this approach, remote object references might be represented
with a format such as that shown in below figure.

Representation of a remote object reference

In the simplest implementations of RMI, remote objects live only in the process

that created them and survive only as long as that process continues to run. In such
cases, the remote object reference can be used as the address of the remote object.

Multicast communication:-

The pairwise exchange of messages is not the best model for communication
from one process to a group of other processes, which may be necessary. A multicast

operation is an operation that sends a single message from one process to each of the
members of a group of processes, usually in such a way that the membership of the
group is transparent to the sender. The simplest multicast protocol provides no
guarantees about message delivery or ordering.

Multicast messages provide a useful infrastructure for constructing distributed
systems with the following characteristics:

1. Fault tolerance based on replicated services: A replicated service consists of a
group of servers. Client requests are multicast to all the members of the group, each of
which performs an identical operation. Even when some of the members fail, clients
can still be served.

2. Discovering services in spontaneous networking: Multicast messages can be
used by servers and clients to locate available discovery services in order to register
their interfaces or to look up the interfaces of other services in the distributed system.

3. Better performance through replicated data: Data are replicated to increase the
performance of a service. Each time the data changes, the new value is multicast to

the processes managing the replicas.

4. Propagation of event notifications: Multicast to a group may be used to notify
processes when something happens. For example, in Facebook, when someone
changes their status, all their friends receive notifications.

IP multicast – An implementation of multicastcommunication:-

 IP multicast :IP multicast is built on top of the Internet Protocol (IP). IP multicast
allows the sender to transmit a single IP packet to a set of computers that form a
multicast group. The sender is unaware of the identities of the individual recipients
and of the size of the group. A multicast group is specified by a Class D Internet
address – that is, an address whose first 4 bits are 1110 in IPv4.

The membership of multicast groups is dynamic, allowing computers to join or

leave at any time and to join an arbitrary number of groups. It is possible to send
datagrams to a multicast group without being a member.

At the application programming level, IP multicast is available only via UDP. An
application program performs multicasts by sending UDP datagrams with multicast
addresses and ordinary port numbers. It can join a multicast group by making its
socket join the group, enabling it to receive messages to the group. When a multicast
message arrives at a computer, copies are forwarded to all of the local sockets that
have joined the specified multicast address and are bound to the specified port
number.

The following details are specific to IPv4:

Multicast routers: IP packets can be multicast both on a local network and on
the wider Internet. Local multicasts use the multicast capability of the local
network, for example, of an Ethernet. Internet multicasts make use of multicast
routers, which forward single datagrams to routers on other networks, where
they are again multicast to local members. To limit the distance of propagation
of a multicast datagram, the sender can specify the number of routers it is
allowed to pass – called the time to live, or TTL for short.

Multicast address allocation: Class D addresses (that is, addresses in the
range 224.0.0.0 to 239.255.255.255) are reserved for multicast traffic and
managed globally by the Internet Assigned Numbers Authority (IANA). The
management of this address space is reviewed annually, with current practice
documented in RPC .This document defines a partitioning of this address space
into a number of blocks, including:

• Local Network Control Block (224.0.0.0 to 224.0.0.225), for multicast
traffic within a given local network.

• Internet Control Block (224.0.1.0 to 224.0.1.225).

• Ad Hoc Control Block (224.0.2.0 to 224.0.255.0), for traffic that does
not fit any other block.

• Administratively Scoped Block (239.0.0.0 to 239.255.255.255), which is
used to implement a scoping mechanism for multicast traffic.

Multicast addresses may be permanent or temporary. Permanent groups exist even
when there are no members – their addresses are assigned by IANA. For example,
224.0.1.1 in the Internet block is reserved for the Network Time Protocol (NTP).

 The remainder of the multicast addresses are available for use by temporary
groups, which must be created before use and cease to exist when all the members
have left. When a temporary group is created, it requires a free multicast address to
avoid participation in an existing group. Simple solutions are possible- RFC2908
describes a multicast address allocation architecture (MALLOC) that allocates unique
addresses.

A client-server solution is adopted where clients request a multicast address
from a multicast address allocation server (MAAS) that ensures allocations are unique.

 Failure model for multicast datagrams :Datagrams multicast over IP multicast have
the same failure characteristics as UDP datagrams – that is, they suffer from omission
failures. The effect on a multicast is that messages are not guaranteed to be delivered
to any particular group member in the face of even a single omission failure. This can
be called unreliable multicast, because it does not guarantee that a message will be
delivered to any member of a group.

 Java API to IP multicast:

The Java API provides a datagram interface to IP multicast through the class
MulticastSocket, which is a subclass of DatagramSocket with the additional
capability of being able to join multicast groups.

The class MulticastSocket provides two alternative constructors, allowing
sockets to be created to use either a specified local port(6789,above figure) or any free
local port.

A process can join a multicast group with a given multicast address by invoking
the joinGroup method of its multicast socket. Effectively, the socket joins a multicast
group at a given port and it will receive datagrams sent by processes on other
computers to that group at that port.

 A process can leave a specified group by invoking the leaveGroup method of its
multicast socket.

This can be given in the following program:

The arguments of the main method specify a message to be multicast and the
multicast address of a group.

After joining that multicast group, the process makes an instance of

DatagramPacket containing the message and sends it through its multicast socket to
the multicast group address at port 6789.

After that, it attempts to receive three multicast messages from its peers via its

socket, which also belongs to the group on the same port.

When several instances of this program are run simultaneously on different

computers, all of them join the same group, and each of them should receive its own
message and the messages from those that joined after it.

The Java API allows the TTL to be set for a multicast socket by means of the

setTimeToLive method.

Multicast peer joins a group and sends and receives datagrams

 Reliability and ordering of multicast: A datagram sent from one multicast router to

another may be lost, thus preventing all recipients beyond that router from receiving
the message. Also, when a multicast on a local area network uses the multicasting
capabilities of the network to allow a single datagram to arrive at multiple recipients,
any one of those recipients may drop the message because its buffer is full.

Another factor is that any process may fail. If a multicast router fails, the group
members beyond that router will not receive the multicast message, although local
members may do so.

Another isssure is ordering. IP packets sent over an internetwork do not
necessarily arrive in the order in which they were sent, with the possible effect that
some group members receive datagrams from a single sender in a different order from
other group members.

Some examples of the effects of reliability and ordering:-

1. Fault tolerance based on replicated services: Consider a replicated service that
consists of the members of a group of servers that start in the same initial state and
always perform the same operations in the same order, so as to remain consistent
with one another. This application of multicast requires that either all of the replicas
or none of them should receive each request to perform an operation – if one of them
misses a request, it will become inconsistent with the others.

2. Discovering services in spontaneous networking: One way for a process to
discover services in spontaneous networking is to multicast requests at periodic
intervals, and for the available services to listen for those multicasts and respond. An
occasional lost request is not an issue when discovering services.

3. Better performance through replicated data: Consider the case where the
replicated data itself, rather than operations on the data, are distributed by means of
multicast messages. The effect of lost messages and inconsistent ordering would
depend on the method of replication and the importance of all replicas being totally
up-to-date.

4. Propagation of event notifications: The particular application determines the
qualities required of multicast.

These examples suggest that some applications require a multicast protocol that is
more reliable than IP multicast. There is a need for reliable multicast.

