

UNIT-2

SYSTEM MODELS

Introduction:-

There are 3 important ways to design the distributed systems:

“Physical models” capture the hardware composition of a system in terms of computers

(and other devices, such as mobile phones) and their interconnecting networks.

“Architectural models” describe a system in terms of the computational and

communication tasks performed by its computational elements; the computational elements

being individual computers or aggregates of them supported by appropriate network

interconnections. Client-server and peer-to-peer are two of the most commonly used forms of

architectural model for distributed systems.

“Fundamental models” examine individual aspects of a distributed system.

Fundamental models examine 3 important aspects of distributed systems. Message

communication over a computer network can be affected by delays, can suffer from a variety of

failures and is vulnerable to security attacks. These issues are addressed by three models:

• The interaction model considers the structure and sequencing of the communication

between the elements of the system.

• The failure model consider the ways in which a system may fail to operate correctly

• The security model considers how the system is protected against attempts to interfere

with its correct operation.

Difficulties and threats for distributed systems : Here are some of the problems

that the designers of distributed systems face.

>Widely varying modes of use: The component parts of systems are subject to wide

variations in workload – for example, some web pages are accessed several million times a day.

Some parts of a system may be disconnected, or poorly connected some of the time – for

example, when mobile computers are included in a system. Some applications have special

requirements for high communication bandwidth and low latency – for example, multimedia

applications.

>Wide range of system environments: A distributed system must accommodate

heterogeneous hardware, operating systems and networks. The networks may differ widely in

performance – wireless networks operate at a fraction of the speed of local networks. Systems

of widely differing scales, ranging from tens of computers to millions of computers must be

supported.

>Internal problems: Non-synchronized clocks, conflicting data updates and many modes of

hardware and software failure involving the individual system components.

>External threats: Attacks on data integrity and secrecy, denial of service attacks.

Physical models:-
A physical model is a representation of the underlying hardware elements of a distributed

system that abstracts specific details of the computer and networking technologies employed.

Baseline physical model: A distributed system is one in which hardware or software

components located at networked computers communicate and coordinate their actions only

by passing messages.

Beyond this baseline model, we can usefully identify three generations of distributed systems.

Early distributed systems: These systems emerged in the late 1970s and early 1980s in

response to the emergence of local area networking technology, usually Ethernet. These

systems typically consisted of between 10 and 100 nodes interconnected by a local area

network, with limited Internet connectivity and supported a small range of services such as

shared local printers and file servers as well as email and file transfer across the Internet.

Individual systems were largely homogeneous and openness was not a concern.

Internet-scale distributed systems: These systems started to emerge in the 1990s in

response to the dramatic growth of the Internet. This is an extensible set of nodes

interconnected by a network of networks (the Internet). The level of heterogeneity in such

systems is significant in terms of networks, computer architecture, operating systems,

languages employed and the development teams involved. This has led to an increasing

emphasis on open standards and associated middleware technologies such as CORBA and

more recently, web services.

Contemporary distributed systems: In the above systems, nodes were typically desktop

computers and therefore relatively static (that is, remaining in one physical location for

extended periods), discrete (not embedded within other physical entities) and autonomous (to a

large extent independent of other computers in terms of their physical infrastructure). The key

trends identified are

• The emergence of mobile computing has led to physical models where nodes such as laptops

or smart phones move from location to location leading to the need for added capabilities such

as support for spontaneous interoperation.

• The emergence of ubiquitous computing has led to a move from discrete nodes to architectures

where computers are embedded in everyday objects such as washing machines or in smart

homes.

• The emergence of cloud computing and, in particular, cluster architectures have led to a move

from autonomous nodes performing a given role to pools of nodes.

 The net result is a physical architecture with a significant increase in the level of

heterogeneity, involve up to hundreds of thousands of nodes.

Generations of distributed systems

Distributed system of systems:

A recent report captures the complexity of modern distributed systems by referring to such

architectures as “systems of systems” (mirroring the view of the Internet as a network of

networks).

A “system of systems” can be defined as a complex system consisting of a series of subsystems

that are systems in their own right and that come together to perform a particular task or

tasks.

Architectural models:-
The architecture of a system is its structure in terms of separately specified components and

their interrelationships. The overall goal is to ensure that the structure will meet present and

future demands on it. Major concerns are to make the system reliable, manageable, adaptable

and cost-effective. This adopts a three-stage approach:

1) Looking at the core underlying architectural elements of the modern distributed systems,

2) examining composite architectural patterns that can be used in isolation or, in

combination, in developing more sophisticated distributed systems solutions;

3) And finally, considering middleware platforms that are available to support the various

styles of programming.

1) Architectural elements:-
 To understand the fundamental building blocks of a distributed system, we

need to consider four key questions:

• What are the entities that are communicating in the distributed system?

• How do they communicate, or, more specifically, what communication paradigm is used?

• What are the roles and responsibilities do they have in the overall architecture?

• How are they mapped on to the physical distributed infrastructure (what is their

placement)?

Communicating entities: It is helpful to address the first question from a system-oriented

and a problem-oriented perspective.

 From a system perspective, the answer is the entities that communicate in

a distributed system are typically processes.

• In some primitive environments, such as sensor networks, the underlying operating systems

may not support process abstractions, and hence the entities that communicate in such

systems are nodes.

• In most distributed system environments, processes are supplemented by threads, so, it is

threads that are the endpoints of communication.

From a programming perspective,

Objects: Objects have been introduced to enable and encourage the use of object oriented

approaches in distributed systems. In distributed object-based approaches, a computation

consists of a number of interacting objects representing natural units of decomposition for the

given problem domain. Objects are accessed via interfaces, with an associated interface

definition language (or IDL).

Components: Components resemble objects in that they offer problem-oriented abstractions

for building distributed systems and are also accessed through interfaces. The key difference is

that components specify not only their (provided) interfaces but also the assumptions they

make in terms of other components/interfaces that must be present for a component to fulfill

its function – in other words, making all dependencies explicit and providing a more complete

contract for system construction. Component-based middleware often provides additional

support for key areas such as deployment and support for server-side programming.

Web services: Web services are closely related to objects and components, again taking an

approach based on encapsulation of behavior and access through interfaces. The World Wide

Web consortium (W3C) defines a web service as:

... a software application identified by a URI, whose interfaces and bindings are capable of being

defined, described and discovered as XML artifacts. A Web service supports direct interactions

with other software agents using XML-based message exchanges via Internet-based protocols.

Communication paradigms:- we consider 3 types of communication paradigms:

1. Inter process communication;

2. Remote invocation;

3. Indirect communication.

1.Inter process communication refers to the communication between processes in

distributed systems, including message-passing primitives, direct access to the API offered by

Internet protocols (socket programming) and support for multicast communication.

2. Remote invocation represents the most common communication paradigm in distributed

systems, covering a range of techniques based on a two-way exchange between communicating

entities in a distributed system and resulting in the calling of a remote operation.

 (i) Request-reply protocols: Request-reply protocols are effectively a pattern imposed on

an underlying message-passing service to support client-server computing. Such protocols

involve a pair wise exchange of messages from client to server and then from server back

to client, with the first message containing an encoding of the operation to be executed at

the server and also an array of bytes holding associated arguments and the second

message containing any results of the operation, again encoded as an array of bytes.

(ii)Remote procedure calls: The concept of a remote procedure call (RPC) represents a

major intellectual breakthrough in distributed computing. In RPC, procedures in

processes on remote computers can be called as if they are procedures in the local address

space. This approach supports client-server computing with servers offering a set of

operations through a service interface and clients calling these operations directly as if

they were available locally.RPC systems therefore offer access and location transparency.

(iii)Remote method invocation: Remote method invocation (RMI) strongly resembles

remote procedure calls but in a world of distributed objects. With this approach, a calling

object can invoke a method in a remote object. As with RPC, the underlying details are

generally hidden from the user. RMI implementations may, go further by supporting object

identity and the associated ability to pass object identifiers as parameters in remote calls.

The above sets of techniques all have one thing in common: communication represents a two-

way relationship between a sender and a receiver with senders explicitly directing

messages/invocations to the associated receivers. Receivers are also generally aware of the

identity of senders, and in most cases both parties must exist at the same time.

3. Indirect Communication allows decoupling between senders and receivers.

 In particular:

• Senders do not need to know who they are sending to (space uncoupling).

• Senders and receivers do not need to exist at the same time (time uncoupling)

Indirect communication techniques are:

>Group communication: Group communication is concerned with the delivery of

messages to a set of recipients and hence is a multiparty communication paradigm

supporting one-to-many communication. Group communication relies on the abstraction

of a group which is represented in the system by a group identifier. Recipients elect to

receive messages sent to a group by joining the group. Senders then send messages to the

group via the group identifier.

>Publish-subscribe systems: Many systems, such as the financial trading can be

classified as information-dissemination systems wherein a large number of producers (or

publishers) distribute information items of interest (events) to a similarly large number of

consumers (or subscribers). In Publish-subscribe systems, an intermediary service

efficiently ensures information generated by producers is routed to consumers who desire

this information.

>Message queues: Whereas publish-subscribe systems offer a one-to-many style of

communication, message queues offer a point-to-point service whereby producer processes

can send messages to a specified queue and consumer processes can receive messages

from the queue or be notified of the arrival of new messages in the queue.

 >Tuple spaces: Tuple spaces offer a further indirect communication service by supporting

a model whereby processes can place arbitrary items of structured data, called tuples, in a

persistent tuple space and other processes can either read or remove such tuples from the

tuple space by specifying patterns of interest. Since the tuple space is persistent, readers

and writers do not need to exist at the same time.

>Distributed shared memory: Distributed shared memory (DSM) systems provide an

abstraction for sharing data between processes that do not share physical memory.

Programmers are nevertheless presented with a familiar abstraction of reading or writing

(shared) data structures as if they were in their own local address spaces, thus presenting

a high level of distribution transparency.

COMMUNICATING ENTITES AND COMMUNICATION PARADIGMS

Roles and responsibilities:- In a distributed system processes – or indeed objects,

components or services, including web services – interact with each other to perform a useful

activity, for example, to support a chat session. we examine two architectural styles from the

role of individual processes: client-server and peer-to-peer.

CLIENTS INVOKE INDIVIDUAL SERVERS

Client-server: Above diagram illustrates the simple structure in which processes take

on the roles of being clients or servers. client processes interact with individual server

processes in potentially separate host computers in order to access the shared

resources that they manage.

 Servers may in turn be clients of other servers, such as web

server is often a client of a local file server that manages the files in which the web

pages are stored. Another web-related example is search engines, which enable users to

look up summaries of information available on web pages at sites throughout the

Internet. These summaries are made by programs called web crawlers, which run in the

background at a search engine site using HTTP requests to access web servers

throughout the Internet. In this example, the server tasks (responding to user queries)

and the crawler tasks (making requests to other web servers) are entirely independent.

Peer-to-peer: In this architecture all of the processes involved in a task or activity play

similar roles, interacting cooperatively as peers without any distinction between client

and server processes. Sharing the computing and communication loads incurred in

accessing them amongst a much larger number of computers and network links led to

the development of Peer-to-peer systems. The aim of the peer-to-peer architecture is to

exploit the resources (both data and hardware) in a large number of participating

computers for the fulfillment of a given task or activity. Peer-to-peer applications and

systems have been successfully constructed that enable tens or hundreds of thousands

of computers to provide access to data and other resources that they collectively store

and manage.

PEER-TO-PEER ARCHITECTURE

Above diagram illustrates the peer tot peer systems. Applications are composed of large

numbers of peer processes running on separate computers and the pattern of

communication between them depends entirely on application requirements. A large

number of data objects are shared; an individual computer holds only a small part of

the application database, and the storage, processing and communication loads. Each

object is replicated in several computers to further distribute the load and to recover in

the event of disconnection of individual computers. The need to place individual objects

and retrieve them and to maintain replicas amongst many computers represents this

architecture substantially more complex than the client-server architecture.

Placement:- The final issue to be considered is how entities such as objects or services

map on to the underlying physical distributed infrastructure which will consist of a potentially

large number of machines interconnected by a network. Placement is crucial in terms of

determining the properties of the distributed system, such as reliability and security. The

question of where to place a given client or server in terms of machines and processes within

machines is a matter of careful design. Placement needs to take into account the patterns of

communication between entities, the reliability of given machines and their current loading,

the quality of communication between different machines and so on. Placement must be

determined with strong application knowledge, and there are few universal guidelines to

obtaining an optimal solution. Placement strategies are:

• Mapping of services to multiple servers;

 • caching;

 • Mobile code;

 • Mobile agents.

>Mapping of services to multiple servers: Services may be implemented as several server

processes in separate host computers interacting as necessary to provide a service to client

processes (see given diagram). The servers may partition the set of objects on which the

service is based and distribute those objects between themselves or they may maintain

replicated copies on several hosts.

A SERVICE PROVIDED BY MULTIPLE SERVERS

Web is a common example for partitioned data. An example of a service based on replicated

data is the Sun Network Information Service (NIS), which is used to enable all the computers

on a LAN to access the same user authentication data when users log in. Each NIS server has

its own replica of a common password file containing a list of users’ login names and

encrypted passwords.

>Caching: A cache is a store of recently used data objects that is closer to one client or a

particular set of clients. When a new object is received from a server it is added to the local

cache store, replacing some existing objects if necessary. When an object is needed by a client

process, the caching service first checks the cache and supplies the object from there if an up-

to-date copy is available. If not, an up-to-date copy is fetched.

Web browsers maintain a cache of recently visited web pages and other web resources in the

client’s local file system, using a special HTTP request to check with the original server that

cached pages are up-to date before displaying them.

Web proxy servers (below figure) provide a shared cache of web resources for the client

machines at a site or across several sites. The purpose of proxy servers is to increase the

availability and performance of the service by reducing the load on the wide area network and

web servers. Proxy servers can take on other roles; for example, they may be used to access

remote web servers through a firewall.

WEB PROXY SERVER

>Mobile code: Applets are a well-known and widely used example of mobile code – the user

running a browser selects a link to an applet whose code is stored on a web server; the code is

downloaded to the browser and runs there, as shown in below Figure . An advantage of

running the downloaded code locally is that it can give good interactive response since it does

not suffer from the delays or variability of bandwidth associated with network communication.

Mobile code is a potential security threat to the local resources in the destination computer.

Therefore browsers give applets limited access to local resources.

WEB APPLETS

>Mobile agents: A mobile agent is a running program (including both code and data) that

travels from one computer to another in a network carrying out a task on someone’s behalf.

Mobile agents (like mobile code) are a potential security threat to the resources in computers

that they visit. The environment receiving a mobile agent should decide which of the local

resources it should be allowed to use, based on the identity of the user on whose behalf the

agent is acting – their identity must be included in a secure way with the code and data of the

mobile agent. In addition, mobile agents can themselves be vulnerable – they may not be able

to complete their task if they are refused access to the information they need. The tasks

performed by mobile agents can be performed by other means. For example, web crawlers that

need to access resources at web servers throughout the Internet work quite successfully by

making remote invocations to server processes. For these reasons, the applicability of mobile

agents may be limited.

2)Architectural patterns:- Many architectural patterns have been identified for

distributed systems. we present several key architectural patterns in distributed systems,

including layering and tiered architectures and the related concept of thin clients.

Layering :The concept of layering is a familiar one and is closely related to abstraction. In a

layered approach, a complex system is partitioned into a number of layers, with a given layer

making use of the services offered by the layer below. A given layer therefore offers a software

abstraction, with higher layers being unaware of implementation details. A distributed service

can be provided by one or more server processes, interacting with each other and with client

processes. For example, a network time service is implemented on the Internet based on the

Network Time Protocol (NTP) by server processes running on hosts throughout the Internet that

supply the current time to any client that requests it and adjust their version of the current

time as a result of interactions with each other.

SOFTWARE AND HARDWARE SERVICE LAYERS IN DISTRIBUTED SYSTEM

Above figure introduces the important terms platform and middleware,

 A platform for distributed systems and applications consists of the lowest-level

hardware and software layers. These low-level layers provide services to the layers

above them, which are implemented independently in each computer, Intel

x86/Windows, Intel x86/Solaris, Intel x86/Mac OS X, Intel x86/Linux and ARM are

major examples.

 Middleware is defined as a layer of software whose purpose is to mask heterogeneity

and to provide a convenient programming model to application programmers.

Middleware is represented by processes or objects in a set of computers that interact

with each other to implement communication and resource-sharing support for

distributed applications. In particular, it raises the level of the communication activities

of application programs through the support of abstractions such as remote method

invocation; communication between a group of processes; notification of events;

Tiered architecture : Tiered architectures are complementary to layering. Whereas layering

deals with the vertical organization of services into layers of abstraction, tiering is a technique

to organize functionality of a given layer and place this functionality into appropriate servers.

To illustrate this, consider the functional decomposition of a given application, as follows:

• The presentation logic, which is concerned with handling user interaction and updating the

view of the application as presented to the user;

• The application logic, which is concerned with the detailed application-specific processing

associated with the application;

• The data logic, which is concerned with the persistent storage of the application, typically in

a database management system.

Let us first examine the concepts of two- and three-tiered architecture.

TWO TIER AND THREE TIER ARCHITECTURE

In the two-tier solution, the three aspects mentioned above must be partitioned into two

processes, the client and the server. This is done by splitting the application logic, with some

residing in the client and the remainder in the server. The advantage of this scheme is low

latency in terms of interaction, with only one exchange of messages to invoke an operation. The

disadvantage is the splitting of application logic across a process boundary, with the restriction

on which parts of the logic can be directly invoked from which other part.

In the three-tier solution, there is a one-to-one mapping from logical elements to physical

servers. Each tier also has a well-defined role; for example, the third tier is simply a database

offering a relational service interface. The first tier can also be a simple user interface allowing

intrinsic support for thin clients .The drawbacks are the added complexity of managing three

servers and also the added network traffic and latency associated with each operation. This

approach generalizes to n-tiered where a given application domain is partitioned into n logical

elements. Wikipedia adopts multitier architecture.

Thin clients :The trend in distributed computing is towards moving complexity away from the

end-user device towards services in the Internet. This trend has given rise to interest in the

concept of a thin client, enabling access to sophisticated networked services, provided for

example by a cloud solution, with few assumptions or demands on the client device. The term

thin client refers to a software layer that supports a window-based user interface that is local to

the user while executing application programs or, accessing services on a remote computer.

THIN CLIENTS AND COMPUTER SERVERS

The advantage of this approach is that potentially simple local devices (including, for example,

smart phones and other resource-constrained devices) can be significantly enhanced with a

number of networked services and capabilities. The main drawback of the thin client

architecture is in highly interactive graphical activities such as CAD and image processing,

where the delays experienced by users are increased to unacceptable levels by the need to

transfer image and vector information between the thin client and the application process, due

to both network and operating system latencies.

This concept has led to the emergence of virtual network computing (VNC). The concept

is straightforward, providing remote access to graphical user interfaces. In this solution, a VNC

client (or viewer) interacts with a VNC server through a VNC protocol. Virtual network

computing has superseded network computers and proved to be a more flexible solution and

now dominates the market place.

Other commonly occurring patterns

• The proxy pattern is a commonly recurring pattern in distributed systems designed

particularly to support location transparency in remote procedure calls or remote method

invocation. With this approach, a proxy is created in the local address space to represent the

remote object. This proxy offers exactly the same interface as the remote object, and the

programmer makes calls on this proxy object and hence does not need to be aware of the

distributed nature of the interaction.

• The use of brokerage in web services can usefully be viewed as an architectural pattern

supporting interoperability in complex distributed infrastructures. This pattern consists of the

trio of service provider, service requester and service broker (a service that matches services

provided to those requested), as shown in below Figure.

THE WEB SERVICE ARCHITECTURE PATTERN

• Reflection is a pattern that is increasingly being used in distributed systems as a means of

supporting both introspection (the dynamic discovery of properties of the system) and

intercession (the ability to dynamically modify structure or behavior).

3)Associated middleware solutions:-The task of middleware is to provide a

higher-level programming abstraction for the development of distributed systems and, through

layering, to abstract over heterogeneity in the underlying infrastructure to promote

interoperability and portability.

Categories of middleware :Remote procedure calling packages such as Sun RPC and group

communication systems such as ISIS were amongst the earliest instances of middleware. For

example, many distributed object platforms offer distributed event services to complement the

more traditional support for remote method invocation. Similarly, many component-based

platforms also support web service interfaces and standards, for reasons of interoperability.

CATEGORIES OF MIDDLEWARE

The top-level categorization of middleware in above figure is driven by the choice of

communicating entities and associated communication paradigms, and follows five of the main

architectural models: distributed objects, distributed components, publish subscribe systems,

message queues and web services.

In addition to programming abstractions, middleware can also provide infrastructural

distributed system services for use by application programs or other services. These

infrastructural services are tightly bound to the distributed programming model that the

middleware provides. For example, CORBA provides applications with a range of CORBA

services, including support for making applications secure and reliable.

Fundamental models:-
 All of the models share the design requirements of achieving the

performance and reliability characteristics of processes and networks and ensuring the

security of the resources in the system. These models are based on the fundamental properties

that allow us to be more specific about their characteristics and the failures and security risks

they might exhibit.

The purpose of such a model is:

• To make explicit all the relevant assumptions about the systems we are modeling.

• To make generalizations concerning what is possible or impossible, given those assumptions.

 The aspects of distributed systems that are captured in fundamental models are:

Interaction: Computation occurs within processes; the processes interact by passing

messages, resulting in communication (information flow) and coordination (synchronization

and ordering of activities) between processes. In the analysis and design of distributed systems

we are concerned especially with these interactions. The interaction model must reflect the

facts that communication takes place with delays that are often of considerable duration, and

that the accuracy with which independent processes can be coordinated is limited by these

delays.

Failure: The correct operation of a distributed system is threatened whenever a fault occurs in

any of the computers on which it runs or in the network that connects them. This provides a

basis for the analysis of their potential effects and for the design of systems that are able to

tolerate faults of each type while continuing to run correctly.

Security: The modular nature of distributed systems and their openness exposes them to

attack by both external and internal agents. Our security model defines and classifies the

forms that such attacks may take, providing a basis for the analysis of threats to a system and

for the design of systems that are able to resist them.

1) Interaction model:-
Distributed systems are composed of many processes, interacting in complex ways. For

example:

• Multiple server processes may cooperate with one another to provide a service; the examples

were the Domain Name System, which partitions and replicates its data at servers throughout

the Internet and Sun Network Information Service, which keeps replicated copies of password

files at several servers in a LAN.

• A set of peer processes may cooperate with one another to achieve a common goal: for

example, a voice conferencing system that distributes streams of audio data in a similar

manner, but with strict real-time constraints.

 Most programmers will be familiar with the concept of an algorithm – a

sequence of steps to be taken in order to perform a desired computation. Distributed systems

composed of multiple processes such as those mentioned above are more complex. Their

behavior and state can be described by a distributed algorithm – a definition of the steps to be

taken by each of the processes of which the system is composed, including the transmission of

messages between them. Messages are transmitted between processes to transfer information

between them and to coordinate their activity.

The rate at which each process proceeds and the timing of the transmission of messages

between them cannot be predicted. It is also difficult to describe all the states of a distributed

algorithm, because it must deal with the failures of one or more of the processes involved or

the failure of message transmissions.

We discuss two significant factors affecting interacting processes in a distributed system:

• Communication performance is often a limiting characteristic.

• It is impossible to maintain a single global notion of time.

Performance of communication channels: Communication over a computer network has

the following performance characteristics relating to latency, bandwidth and jitter:

• The delay between the start of a message’s transmission from one process and the beginning

of its receipt by another is referred to as latency. The latency includes:

– The time taken for the first of a string of bits transmitted through a network to

reach its destination.

– The delay in accessing the network, which increases significantly when the

network is heavily loaded.

– The time taken by the operating system communication services at both the

sending and the receiving processes, which varies according to the current load

on the operating systems.

• The bandwidth of a computer network is the total amount of information that can be

transmitted over it in a given time. When a large number of communication channels are using

the same network, they have to share the available bandwidth.

• Jitter is the variation in the time taken to deliver a series of messages. Jitter is relevant to

multimedia data. For example, if consecutive samples of audio data are played with differing

time intervals, the sound will be badly distorted.

Computer clocks and timing events :Each computer in a distributed system has its own

internal clock, which can be used by local processes to obtain the value of the current time.

Therefore two processes running on different computers can each associate timestamps with

their events. However, even if the two processes read their clocks at the same time, their local

clocks may supply different time values. This is because computer clocks drift from perfect

time and, their drift rates differ from one another. The term clock drift rate refers to the rate at

which a computer clock deviates from a perfect reference clock.

 There are several approaches to correcting the times on

computer clocks. For example, computers may use radio receivers to get time readings from the

Global Positioning System (GPS) with an accuracy of about 1 microsecond. But GPS receivers

do not operate inside buildings, nor can the cost be justified for every computer. Instead, a

computer that has an accurate time source such as GPS can send timing messages to other

computers in its network. The resulting agreement between the times on local clocks is affected

by variable message delays.

Two variants of the interaction model: In a distributed system it is hard to set limits on

the time that can be taken for process execution, message delivery or clock drift. Two models

are there:

Synchronous distributed systems: synchronous distributed system is one in which the

following bounds are defined:

• The time to execute each step of a process has known lower and upper

bounds.

• Each message transmitted over a channel is received within a known bounded

time.

• Each process has a local clock whose drift rate from real time has a known

bound.

It is possible to suggest likely upper and lower bounds for process execution time, message

delay and clock drift rates in a distributed system, but it is difficult to arrive at realistic values

and to provide guarantees of the chosen values.

Asynchronous distributed systems: An asynchronous distributed system is one in which

there are no bounds on:

• Process execution speeds – for example, one process step may take only a

picoseconds and another a century; all that can be said is that each step may

take an arbitrarily long time.

• Message transmission delays – for example, one message from process A to

process B may be delivered in negligible time and another may take several

years.

• Clock drift rates – again, the drift rate of a clock is arbitrary.

The asynchronous model allows no assumptions about the time intervals involved in any

execution. This exactly models the Internet, in which there is no intrinsic bound on server or

network load and therefore on how long it takes, for example, to transfer a file using FTP.

Sometimes an email message can take days to arrive.

Event ordering :In many cases, we are interested in knowing whether an event (sending or

receiving a message) at one process occurred before, after or concurrently with another event at

another process.

For example, consider the following set of exchanges between a group of email users, X, Y, Z

and A, on a mailing list:

1. User X sends a message with the subject Meeting.

2. Users Y and Z reply by sending a message with the subject Re: Meeting.

In real time, X’s message is sent first, and Y reads it and replies; Z then reads both X’s message

and Y’s reply and sends another reply, which references both X’s and Y’s messages.But due to

the independent delays in message delivery, the messages may be delivered as shown in the

figure below:

Real Time Ordering Events

If the clocks on X’s, Y’s and Z’s computers could be synchronized, then each message could

carry the time on the local computer’s clock when it was sent. For example, messages m1, m2

and m3 would carry times t1, t2 and t3 where t1<t2<t3. The messages received will be displayed

to users according to their time ordering.

Since clocks cannot be synchronized perfectly across a distributed system, Lamport proposed a

model of Logical time that can be used to provide an ordering among the events running in

different processes in a distributed system.

Logically, we know that a message is received after it was sent. Therefore we can state a logical

ordering for pairs of events shown in Figure, for example, considering only the events

concerning X and Y:

X sends m1 before Y receives m1;

Y sends m2 before X receives m2.

We also know that replies are sent after receiving messages, so we have the following logical

ordering for Y:

Y receives m1 before sending m2.

2)Failure model:- In a distributed system both processes and communication channels

may fail. The failure model defines the ways in which failure may occur in order to provide an

understanding of the effects of failures. The failure model gives a specification of the faults that

can be exhibited by processes and communication channels. Several types of failures are

Omission failures

Arbitrary failures

Timing failures

Omission failures : The faults classified as omission failures refer to cases when a process or

communication channel fails to perform actions that it is supposed to do.

Process omission failures: The chief omission failure of a process is to crash. We say

that a process has crashed if it has halted and will not execute any further steps of its

program ever. Processes may be able to detect such a crash by the fact that the process

repeatedly fails to respond to invocation messages. This method of crash detection relies

on the use of timeouts – that is, a method in which one process allows a fixed period of

time for something to occur. In an asynchronous system a timeout can indicate only

that a process is not responding – it may have crashed or may be slow, or the messages

may not have arrived.

A process crash is called fail-stop if other processes can detect certainly that the

process has crashed. Fail-stop behavior can be produced in a synchronous system if

the processes use timeouts to detect when other processes fail to respond and messages

are guaranteed to be delivered. For example, if processes p and q are programmed for q

to reply to a message from p, and if process p has received no reply from process q in a

maximum time measured on p’s local clock, then process p may conclude that process

q has failed.

Communication omission failures: Consider the communication primitives send and

receive. A process p performs a send by inserting the message m in its outgoing

message buffer. The communication channel transports m to q’s incoming message

buffer. Process q performs a receive by taking m from its incoming message buffer and

delivering it (see below figure). The outgoing and incoming message buffers are typically

provided by the operating system.

Process and channels

The communication channel produces an omission failure if it does not transport a message

from p’s outgoing message buffer to q’s incoming message buffer. This is known as ‘dropping

messages’ and is generally caused by lack of buffer space at the receiver or at an intervening

gateway, or by a network transmission error, detected by a checksum carried with the message

data. The loss of messages between the sending process and the outgoing message buffer are

termed as send-omission failures, the loss of messages between the incoming message buffer

and the receiving process are termed as receive-omission failures, and the loss of messages

in between are termed as channel omission failures.

Arbitrary failures : The term arbitrary or Byzantine failure is used to describe the worst

possible failure semantics, in which any type of error may occur. An arbitrary failure of a

process is one in which it arbitrarily omits intended processing steps or takes unintended

processing steps. Arbitrary failures in processes cannot be detected by seeing whether the

process responds to invocations, because it might arbitrarily omit to reply.

Communication channels can suffer from arbitrary failures; for example, message

contents may be corrupted, nonexistent messages may be delivered or real messages may be

delivered more than once.

Omission and arbitrary failures

Timing failures : Timing failures are applicable in synchronous distributed systems where

time limits are set on process execution time, message delivery time and clock drift rate. In an

asynchronous distributed system, an overloaded server may respond too slowly, but we cannot

say that it has a timing failure since no guarantee has been offered.

Timing failures are listed as:

Timing failures

Masking failures : Each component in a distributed system is generally constructed from a

collection of other components. For example, multiple servers that hold replicas of data can

continue to provide a service when one of them crashes. A knowledge of the failure

characteristics of a component can enable a new service to be designed to mask the failure of

the components on which it depends. A service masks a failure either by hiding it altogether or

by converting it into a more acceptable type of failure. For example, checksums are used to

mask corrupted messages.

 Reliability of one-to-one communication :

The term reliable communication is defined in terms of validity and integrity as follows:

Validity: Any message in the outgoing message buffer is eventually delivered to the

incoming message buffer.

Integrity: The message received is identical to one sent, and no messages are delivered

twice.

The threats to integrity come from two independent sources:

• Any protocol that retransmits messages but does not reject a message that arrives

twice. Protocols can attach sequence numbers to messages so as to detect those that

are delivered twice.

• Malicious users that may inject spurious messages, replay old messages or tamper

with messages. Security measures can be taken to maintain the integrity property in

the face of such attacks.

3)Security model:-
The architectural model provides the basis for security model:

The security of a distributed system can be achieved by securing the processes and the

channels used for their interactions and by protecting the objects that they encapsulate

against unauthorized access.

Protecting objects: The following figure shows a server that manages a collection of objects

on behalf of some users. The users can run client programs that send invocations to the server

to perform operations on the objects. The server carries out the operation specified in each

invocation and sends the result to the client.

Objects and principals

Objects are intended to be used in different ways by different users. For example, some

objects may hold a user’s private data, such as their mailbox, and other objects may hold

shared data such as web pages. To support this, “access rights” specify who is allowed to

perform the operations of an object – for example, who is allowed to read or to write its state.

An authority is associated with each invocation and result. Such an authority is called

a “principal”. A principal may be user or a process. The server is responsible for verifying the

identity of the principal behind each invocation and checking that they have sufficient access

rights to perform the requested operation on the particular object invoked.

Securing processes and their interactions : Processes interact by sending messages. The

messages are exposed to attack because the network and the communication service that they

use are open, to enable any pair of processes to interact. Servers and peer processes expose

their interfaces, enabling invocations to be sent to them by any other process.

The enemy: To model security threats, we postulate an enemy that is capable of sending any

message to any process and reading or copying any message sent between a pair of processes,

as shown in below Figure. Such attacks can be made simply by using a computer connected to

a network to run a program that reads network messages addressed to other computers on the

network.

The enemy

The threats from a potential enemy include threats to processes and threats to

communication channels.

Threats to processes: A process that is designed to handle incoming requests may

receive a message from any other process in the distributed system, and it cannot

necessarily determine the identity of the sender. Communication protocols such as IP

do include the address of the source computer in each message, but it is not difficult for

an enemy to generate a message with a forged source address. This lack of knowledge of

source of a message is a threat to the correct functioning of both servers and clients as:

Servers: Since a server can receive invocations from many different clients, it

cannot determine the identity of the principal behind any particular invocation. Even if

a server requires the inclusion of principal’s identity in each invocation, an enemy

might generate an invocation with a false identity. A server cannot tell whether to

perform the operation or to reject it without knowledge of the sender’s identity.

 Clients: When a client receives the result of an invocation from a server, it

cannot necessarily tell whether the source of the result message is from the intended

server or from an enemy.

Threats to communication channels: An enemy can copy, alter or inject messages as

they travel across the network and its intervening gateways. Such attacks present a

threat to the privacy and integrity of information as it travels over the network and to

the integrity of the system. For example, a result message containing a user’s mail item

might be revealed to another user or it might be altered.

Another form of attack is the attempt to save copies of messages and to replay

them at a later time, making it possible to reuse the same message over and over again.

All these threats can be defeated by the use of secure channels, which are described

below and are based on cryptography and authentication.

Defeating security threats:

Cryptography and shared secrets: Suppose that a pair of processes share a secret; that

is, they both know the secret but no other process in the distributed system knows it.

Then if a message exchanged by that pair of processes includes information that proves

the sender’s knowledge of the shared secret, the receipent knows for sure that sender

was the other process in the pair.

 “Cryptography” is the science of keeping messages secure, and “encryption”

is the process of scrambling a message in such a way as to hide its contents. Modern

cryptography is based on encryption algorithms that use secret keys.

Authentication: The use of shared secrets and encryption provides the basis for the

authentication of messages – proving the identities supplied by their senders. The basic

authentication technique is to include in a message an encrypted portion that contains

enough of the contents of the message to guarantee its authenticity.

Secure channels: A secure channel is a communication channel connecting a pair of

processes, each of which acts on behalf of a principal. Encryption and authentication

are used to build secure channels as a service layer on top of existing communication

services.

Secure channels

A secure channel has the following properties:

• Each of the processes knows reliably the identity of the principal on whose

behalf the other process is executing. Therefore if a client and server

communicate via a secure channel, the server knows the identity of the principal

behind the invocations and can check their access rights before performing an

operation.

• A secure channel ensures the privacy and integrity of the data transmitted

across it.

• Each message includes a physical or logical timestamp to prevent messages

from being replayed or reordered.

Other possible threats from an enemy:

 Denial of service: This is a form of attack in which the enemy interferes with the

activities of authorized users by making excessive and pointless invocations on services

or message transmissions in a network, resulting in overloading of physical resources

(network bandwidth, server processing capacity).

Mobile code: Mobile code raises new and interesting security problems for any process

that receives and executes program code from elsewhere, such as the email attachment.

Such code may easily play a Trojan horse role, purporting to fulfill an innocent purpose

but in fact including code that accesses or modifies resources that are legitimately

available to the host process.

