
Implementation Levels of Virtualization 
 

Virtualization is a computer architecture technology by which multiple virtual machines 

(VMs) are multiplexed in the same hardware machine. The purpose of a VM is to enhance 

resource sharing by many users and improve computer performance in terms of resource 

utilization and application flexibility. The idea is to separate the hardware from the software to 

yield better system efficiency. 

A traditional computer runs with a host operating system specially tailored for its 

hardware architecture, as shown in Figure. After virtualization, different user applications 

managed by their own operating systems (guest OS) can run on the same hardware, independent 

of the host OS. This is often done by adding additional software, called a virtualization layer as 

shown in Figure. 

 

Virtualization can be implemented at various operational levels, as given below: 

 Instruction set architecture (ISA) level 

 Hardware level 

 Operating system level 

 Library support level 

 Application level 

 



 

Instruction Set Architecture Level 

At the ISA level, virtualization is performed by emulating a given ISA by the ISA of the 

host machine. The basic emulation method is through code interpretation. An interpreter program 

interprets the source instructions to target instructions one by one. One source instruction may 

require tens or hundreds of native target instructions to perform its function. Obviously, this 

process is relatively slow. For better performance, dynamic binary translation is desired. This 

approach translates basic blocks of dynamic source instructions to target instructions. The basic 

blocks can also be extended to program traces or super blocks to increase translation efficiency. 

A virtual instruction set architecture (V-ISA) thus requires adding a processor-specific software 

translation layer to the compiler. 

Hardware Abstraction Level 

It is performed right on top of the bare hardware and generates a virtual hardware 

environment for a VM. On the other hand, the process manages the underlying hardware through 

virtualization. The idea is to virtualize a computer’s resources, such as its processors, memory, 

and I/O devices so as hardware utilization rate by multiple users concurrently may be upgraded 

Operating System Level 

OS-level virtualization creates isolated containers on a single physical server and the OS 

instances to utilize the hardware and software in data centers. The containers behave like real 

servers. OS-level virtualization is commonly used in creating virtual hosting environments to 

allocate hardware resources among a large number of mutually distrusting users.  

Library Support Level 

Virtualization with library interfaces is possible by controlling the communication link 

between applications and the rest of a system through API hooks. The software tool WINE has 

implemented this approach to support Windows applications on top of UNIX hosts. Another 

example is the vCUDA which allows applications executing within VMs to leverage GPU 

hardware acceleration. 

User-Application Level 

On a traditional OS, an application often runs as a process. Therefore, application-level 

virtualization is also known as process-level virtualization. The most popular approach is to 

deploy high level language (HLL) VMs. In this scenario, the virtualization layer exports an 

abstraction of a VM that can run programs written and compiled to a particular abstract machine 

definition. Any program written in the HLL and compiled for this VM will be able to run on it. 

The Microsoft .NET CLR and Java Virtual Machine (JVM) are two good examples of this class 

of VM. Other forms of application-level virtualization are known as application isolation, 

application sandboxing, or application streaming. The process involves wrapping the application 

in a layer that is isolated from the host OS and other applications. The result is an application 

that is much easier to distribute and remove from user workstations.  

Virtualization Support at the OS Level 



It is slow to initialize a hardware-level VM because each VM creates its own image from 

scratch and storage of such images are also slow. OS-level virtualization provides a feasible 

solution for these hardware-level virtualization issues. OS virtualization inserts a virtualization 

layer inside an operating system to partition a machine’s physical resources. It enables multiple 

isolated VMs within a single operating system kernel. This kind of VM is often called a virtual 

execution environment (VE). This VE has its own set of processes, file system, user accounts, 

network interfaces with IP addresses, routing tables, firewall rules, and other personal settings. 

 

Advantages: 

 VMs at the operating system level have minimal startup/shutdown costs, low resource 

requirements, and high Scalability 

 It is possible for a VM and its host environment to synchronize state changes when 

necessary 



Virtualization Structures/Tools and Mechanisms 

Before virtualization, the operating system manages the hardware. After virtualization, a 

virtualization layer is inserted between the hardware and the OS. In such a case, the 

virtualization layer is responsible for converting portions of the real hardware into virtual 

hardware. Depending on the position of the virtualization layer, there are several classes of VM 

architectures, namely  

 Hypervisor architecture,  

 Paravirtualization  

 host-based virtualization.  

Hypervisor and Xen Architecture 

Depending on the functionality, a hypervisor can assume a micro-kernel architecture or a 

monolithic hypervisor architecture. A micro-kernel hypervisor includes only the basic and 

unchanging functions (such as physical memory management and processor scheduling). The 

device drivers and other changeable components are outside the hypervisor. A monolithic 

hypervisor implements all the aforementioned functions, including those of the device drivers. 

Therefore, the size of the hypervisor code of a micro-kernel hypervisor is smaller than that of a 

monolithic hypervisor. 

Xen Architecture 

Xen is an open source hypervisor program developed by Cambridge University. Xen is a 

microkernel hypervisor, which separates the policy from the mechanism. It implementsall the 

mechanisms, leaving the policy to be handled by Domain 0, as shown in Figure. Xen does not 

include any device drivers natively. It just provides a mechanism by which a guest OS can have 

direct access to the physical devices.  
 

 
 

 

 

 

 

 

 

 

 

Like other virtualization systems, many guest OSes can run on top of the hypervisor. The guest 

OS (privileged guest OS), which has control ability, is called Domain 0, and the others are called 

Domain U. It is first loaded when Xen boots without any file system drivers being available. 

Domain 0 is designed to access hardware directly and manage devices. 

Binary Translation with Full Virtualization 

Depending on implementation technologies, hardware virtualization can be classified into 

two categories: full virtualization and host-based virtualization. 

Full Virtualization 

With full virtualization, noncritical instructions run on the hardware directly while critical 

instructions are discovered and replaced with traps into the VMM to be emulated by software. 



Both the hypervisor and VMM approaches are considered full virtualization.  Noncritical 

instructions do not control hardware or threaten the security of the system, but critical 

instructions do. Therefore, running noncritical instructions on hardware not only can promote 

efficiency, but also can ensure system security. 

Host-Based Virtualization 

An alternative VM architecture is to install a virtualization layer on top of the host OS. 

This host OS is still responsible for managing the hardware. The guest OSes are installed and run 

on top of the virtualization layer. Dedicated applications may run on the VMs. Certainly, some 

other applications can also run with the host OS directly. This host based architecture has some 

distinct advantages, as enumerated next. First, the user can install this VM architecture without 

modifying the host OS. Second, the host-based approach appeals to many host machine 

configurations.  

 
Para-Virtualization 

It needs to modify the guest operating systems. A para-virtualized VM provides special 

APIs requiring substantial OS modifications in user applications. Performance degradation is  a 

critical issue of a virtualized system. Figure illustrates the concept of a para-virtualized VM 

architecture. The guest OS are para-virtualized. They are assisted by an intelligent compiler to 

replace the non virtualizable OS instructions by hypercalls. The traditional x86 processor offers 

four instruction execution rings: Rings 0, 1, 2, and 3. The lower the ring number, the higher the 

privilege of instruction being executed. The OS is responsible for managing the hardware and the 

privileged instructions to execute at Ring 0, while user-level applications run at Ring 3. 

 

 
 

Although para-virtualization reduces the overhead, it has incurred problems like compatibility 

and portability, because it must support the unmodified OS as well. Second, the cost is high, 

because they may require deep OS kernel modifications. Finally, the performance advantage of 

para-virtualization varies greatly due to workload variations. 



Virtualization of CPU, Memory, And I/O Devices 
 

To support virtualization, processors such as the x86 employ a special running mode and 

instructions, known as hardware-assisted virtualization. In this way, the VMM and guest OS run 

in different modes and all sensitive instructions of the guest OS and its applications are trapped 

in the VMM. To save processor states, mode switching is completed by hardware. 

Hardware Support for Virtualization 

Modern operating systems and processors permit multiple processes to run 

simultaneously. If there is no protection mechanism in a processor, all instructions from different 

processes will access the hardware directly and cause a system crash. Therefore, all processors 

have at least two modes, user mode and supervisor mode, to ensure controlled access of critical 

hardware. Instructions running in supervisor mode are called privileged instructions. Other 

instructions are unprivileged instructions. In a virtualized environment, it is more difficult to 

make OSes and applications run correctly because there are more layers in the machine stack. 

Figure shows the hardware support by Intel. 

CPU Virtualization 

Unprivileged instructions of VMs run directly on the host machine for higher efficiency. 

Other critical instructions should be handled carefully for correctness and stability. The critical 

instructions are divided into three categories: privileged instructions, controls sensitive 

instructions, and behavior-sensitive instructions. Privileged instructions execute in a privileged 

mode and will be trapped if executed outside this mode. Control-sensitive instructions attempt to 

change the configuration of resources used. Behavior-sensitive instructions have different 

behaviors depending on the configuration of resources, including the load and store operations 

over the virtual memory. 

A CPU architecture is virtualizable if it supports the ability to run the VM’s privileged 

and unprivileged instructions in the CPU’s user mode while the VMM runs in supervisor mode. 

When the privileged instructions including control- and behavior-sensitive instructions of a VM 

are executed, they are trapped in the VMM. RISC CPU architectures can be naturally virtualized 

because all control- and behavior-sensitive instructions are privileged instructions. On the 

contrary, x86 CPU architectures are not primarily designed to support virtualization.  

Hardware-Assisted CPU Virtualization 

This technique attempts to simplify virtualization because full or paravirtualization is 

complicated. Intel and AMD add an additional mode called privilege mode level (some people 

call it Ring-1) to x86 processors. Therefore, operating systems can still run at Ring 0 and the 

hypervisor can run at Ring -1. All the privileged and sensitive instructions are trapped in the 

hypervisor automatically. This technique removes the difficulty of implementing binary 

translation of full virtualization. It also lets the operating system run in VMs without 

modification 



 
Memory Virtualization 

Virtual memory virtualization is similar to the virtual memory support provided by 

modern operating systems. In a traditional environment, the OS maintains page table for 

mappings of virtual memory to machine memory, which is a one-stage mapping. All modern x86 

CPUs include a memory management unit (MMU) and a translation lookaside buffer (TLB) to 

optimize virtual memory performance. However, in a virtual execution environment, virtual 

memory virtualization involves sharing the physical system memory in RAM and dynamically 

allocating it to the physical memory of the VMs. A two-stage mapping process should be 

maintained by the guest OS and the VMM, respectively: virtual memory to physical memory and 

physical memory to machine memory. The VMM is responsible for mapping the guest physical 

memory to the actual machine memory in guest OS. 

 

 

 

 

 

 

 

 

 

 

 

Since each page table of the guest OSes has a separate page table in the VMM 

corresponding to it, the VMM page table is called the shadow page table.  VMware uses shadow 

page tables to perform virtual-memory-to-machine-memory address translation. Processors use 

TLB hardware to map the virtual memory directly to the machine memory to avoid the two 

levels of translation on every access. When the guest OS changes the virtual memory to a 

physical memory mapping, the VMM updates the shadow page tables to enable a direct lookup. 

I/O virtualization  

It involves managing the routing of I/O requests between virtual devices and the shared 

physical hardware. There are three ways to implement I/O virtualization: 

Full device emulation 



Para-virtualization 

Direct I/O.  

Full device emulation 

All the functions of a device like device enumeration, identification, interrupts, and DMA, are 

replicated in software and it is located in the VMM and acts as a virtual device. The I/O access 

requests of the guest OS are trapped in the VMM which interacts with the I/O devices. 

 
Para-virtualization 

It is a split driver model consisting of a frontend driver and a backend driver. The 

frontend driver is running in Domain U and the backend driver is running in Domain 0. They 

interact with each other via a block of shared memory. The frontend driver manages the I/O 

requests of the guest OSes and the backend driver is responsible for managing the real I/O 

devices and multiplexing the I/O data of different VMs. Although para-I/O-virtualization 

achieves better device performance than full device emulation, it comes with a higher CPU 

overhead. 

Direct I/O virtualization  

It lets the VM access devices directly. It can achieve close-to-native performance without 

high CPU costs. However, current direct I/O virtualization implementations focus on networking 

for mainframes. 

Another way to help I/O virtualization is via self-virtualized I/O (SV-IO). The key idea  

is to harness the rich resources of a multicore processor. All tasks associated with virtualizing an 

I/O device are encapsulated in SV-IO. SV-IO defines one virtual interface (VIF) for every kind 

of virtualized I/O device, such as virtual network interfaces, virtual block devices (disk), virtual 

camera devices, and others. The guest OS interacts with the VIFs via VIF device drivers. Each 

VIF consists of two message queues. One is for outgoing messages to the devices and the other is 

for incoming messages from the devices. In addition, each VIF has a unique ID for identifying it 

in SV-IO. 

Virtualization in Multi-Core Processors 

Multicore processors are claimed to have higher performance by integrating multiple 

processor cores in a single chip, muti-core virtualiuzation has raised some new challenges to 

computer architects, compiler constructors, system designers, and application programmers. 

Application programs must be parallelized to use all cores fully, and software must explicitly 

assign tasks to the cores, which is a very complex problem. Concerning the first challenge, new 

programming models, languages, and libraries are needed to make parallel programming easier. 



The second challenge has spawned research involving scheduling algorithms and resource 

management policies 

Virtual Hierarchy 

A virtual hierarchy is a cache hierarchy that can adapt to fit the workload or mix of 

workloads. The hierarchy’s first level locates data blocks close to the cores needing them for 

faster access, establishes a shared-cache domain, and establishes a point of coherence for faster 

communication.  The first level can also provide isolation between independent workloads. A 

miss at the L1 cache can invoke the L2 access. 

The following figure illustrates a logical view of such a virtual cluster hierarchy in two  

 
levels. Each VM operates in a isolated fashion at the first level which minimize both miss access 

time and performance interference with other workloads or VMs. The second level maintains a 

globally shared memory facilitates dynamically repartitioning resources without costly cache 

flushes. 



VIRTUAL CLUSTERS AND RESOURCE MANAGEMENT 

A physical cluster is a collection of servers interconnected by a physical network such as 

a LAN whereas virtual clusters have VMs that are interconnected logically by a virtual network 

across several physical networks. We will study three critical design issues of virtual clusters: 

live migration of VMs, memory and file migrations, and dynamic deployment of virtual clusters. 

VMs in virtual cluster have the following interesting properties: 

 The virtual cluster nodes can be either physical or virtual machines 

 The purpose of using VMs is to consolidate multiple functionalities on the same server 

 VMs can be colonized (replicated) in multiple servers for the purpose of promoting 

distributed parallelism, fault tolerance, and disaster recovery 

 The size (number of nodes) of a virtual cluster can grow or shrink dynamically 

 The failure of any physical nodes may disable some VMs installed on the failing nodes. 

But the failure of VMs will not pull down the host system. 

Virtual cluster based on application partitioning or customization.  The most important 

thing is to determine how to store those images in the system efficiently. There are common 

installations for most users or applications, such as operating systems or user-level programming 

libraries. These software packages can be preinstalled as templates (called template VMs). With 

these templates, users can build their own software stacks. New OS instances can be copied from 

the template VM. 

Fast Deployment and Effective Scheduling 

Deployment means two things: to construct and distribute software stacks (OS, libraries, 

applications) to a physical node inside clusters as fast as possible, and to quickly switch runtime 

environments from one user’s virtual cluster to another user’s virtual cluster. If one user finishes 

using his system, the corresponding virtual cluster should shut down or suspend quickly to save 

the resources to run other VMs for other users 

High-Performance Virtual Storage 

Basically, there are four steps to deploy a group of VMs onto a target cluster: preparing 

the disk image, configuring the VMs, choosing the destination nodes, and executing the VM 

deployment command on every host. Many systems use templates to simplify the disk image 

preparation process. A template is a disk image that includes a preinstalled operating system with 

or without certain application software. Templates could implement the COW (Copy on  rite) 

format. A new COW backup file is very small and easy to create and transfer. 

Live VM Migration Steps 

There are four ways to manage a virtual cluster. First, we can use a guest-based manager, 

by which the cluster manager resides on a guest system. In this case, multiple VMs form a virtual 

cluster. We can build a cluster manager on the host systems. The host-based manager supervises 

the guest systems and can restart the guest system on another physical machine. Third way to 

manage a virtual cluster is to use an independent cluster manager on both the host and guest 

systems. Finally, you can use an integrated cluster on the guest and host systems. This means the 

manager must be designed to distinguish between virtualized resources and physical resources. 

A VM can be in one of the following four states.  

 An inactive state is defined by the virtualization platform, under which the VM is not enabled.  



 An active state refers to a VM that has been instantiated at the virtualization platform to perform 

a real task.  

 A paused state corresponds to a VM that has been instantiated but disabled to process a task or 

paused in a waiting state.  

 A VM enters the suspended state if its machine file and virtual resources are stored back to the 

disk. 

 
 

live migration of a VM from one machine to another consists of the following six steps: 
Steps 0 and 1: Start migration. This step makes preparations for the migration, including determining the 

migrating VM and the destination host 

Steps 2: Transfer memory. Since the whole execution state of the VM is stored in memory, sending the 

VM’s memory to the destination node ensures continuity of the service provided by the VM. All of the 

memory data is transferred  

Step 3: Suspend the VM and copy the last portion of the data. The migrating VM’s execution is suspended 

when the last round’s memory data is transferred.  

Steps 4 and 5: Commit and activate the new host. After all the needed data is copied, on the destination 

host, the VM reloads the states and recovers the execution of programs in it, and the service provided by 

this VM continues. 

 

Migration of Memory, Files, and Network Resources 

When one system migrates to another physical node, we should consider the following 

issues: Memory migration can be in a range of hundreds of megabytes to a few gigabytes in a 

typical system today, and it needs to be done in an efficient manner. The Internet Suspend-

Resume (ISR) technique exploits temporal locality as memory states are likely to have 



considerable overlap in the suspended and the resumed instances of a VM. To exploit temporal 

locality, each file in the file system is represented as a tree of small subfiles. A copy of this tree 

exists in both the suspended and resumed VM instances. 

File System Migration 

Location-independent view of the file system that is available on all hosts. A simple way 

to achieve this is to provide each VM with its own virtual disk which the file system is mapped 

to and transport the contents of this virtual disk along with the other states of the VM A 

distributed file system is used in ISR serving as a transport mechanism for propagating a 

suspended VM state. The actual file systems themselves are not mapped onto the distributed file 

system.  

Network Migration 

To enable remote systems to locate and communicate with a VM, each VM must be 

assigned a virtual IP address known to other entities. This address can be distinct from the IP 

address of the host machine where the VM is currently located. Each VM can also have its own 

distinct virtual MAC address. The VMM maintains a mapping of the virtual IP and MAC 

addresses to their corresponding VMs. Live migration is a key feature of system virtualization 

technologies. Here, we focus on VM migration within a cluster environment where a network-

accessible storage system, such as storage area network (SAN) or network attached storage 

(NAS), is employed. Only memory and CPU status needs to be transferred from the source node 

to the target node. In fact, these issues with the precopy approach are caused by the large amount 

of transferred data during the whole migration process. A checkpointing/recovery and 

trace/replay approach (CR/ TR-Motion) is proposed to provide fast VM migration. Another 

strategy of postcopy is introduced for live migration of VMs. Here, all memory pages are 

transferred only once during the whole migration process and the baseline total migration time is 

reduced. 

 



VIRTUALIZATION FOR DATA-CENTER AUTOMATION 

Data-center automation refers huge volumes of hardware, software, and database 

resources in these data centers can be allocated dynamically to millions of Internet users 

simultaneously, with guaranteed QoS. The latest virtualization development highlights high 

availability (HA), backup services, workload balancing, and further increases in client bases. 

Server Consolidation in Data Centers 

The heterogeneous workloads in the data center can be roughly divided into two 

categories: chatty workloads and noninteractive workloads. Chatty workloads may burst at some 

point and return to a silent state at some other point. For example, video services can be used by 

a lot of people at night and few people use it during the day. Noninteractive workloads do not 

require people’s efforts to make progress after they are submitted. Server consolidation is an 

approach to improve the low utility ratio of hardware resources by reducing the number of 

physical servers. The use of VMs increases resource management complexity.   

 It enhances hardware utilization. Many underutilized servers are consolidated into fewer 

servers to enhance resource utilization. Consolidation also facilitates backup services and 

disaster recovery. 

 In a virtual environment, the images of the guest OSes and their applications are readily 

cloned and reused. 

 Total cost of ownership is reduced 

 Improves availability and business continuity  

 

Automation of data-center operations includes resource scheduling, architectural support, 

power management, automatic or autonomic resource management, performance of analytical 

models, and so on. In virtualized data centers, an efficient, on-demand, fine-grained scheduler is 

one of the key factors to improve resource utilization. Dynamic CPU allocation is based on VM 

utilization and application-level QoS metrics. One method considers both CPU and memory 

flowing as well as automatically adjusting resource overhead based on varying workloads in 

hosted services. Another scheme uses a two-level resource management system to handle the 

complexity involved. A local controller at the VM level and a global controller at the server level 

are designed. 

Virtual Storage Management 

Virtual storage includes the storage managed by VMMs and guest OSes. Generally, the 

data stored in this environment can be classified into two categories: VM images and application 

data. The VM images are special to the virtual environment, while application data includes all 

other data which is the same as the data in traditional OS environments. In data centers, there are 

often thousands of VMs, which cause the VM images to become flooded. Parallax is a 

distributed storage system customized for virtualization environments. Content Addressable 

Storage (CAS) is a solution to reduce the total size of VM images, and therefore supports a large 

set of VM-based systems in data centers. 



Parallax designs a novel architecture in which storage features that have traditionally 

been implemented directly on high-end storage arrays and switchers are relocated into a 

federation of storage VMs. These storage VMs share the same physical hosts as the VMs that 

they serve. Figure provides an overview of the Parallax system architecture. For each physical 

machine, Parallax customizes a special storage appliance VM. The storage appliance VM acts as 

a block virtualization layer between individual VMs and the physical storage device. It provides 

a virtual disk for each VM on the same physical machine. 

 
Cloud OS for Virtualized Data Centers 

Virtual infrastructure (VI) managers and OSes are specially tailored for virtualizing data 

centers which often own a large number of servers in clusters. Nimbus, Eucalyptus, and Open 

Nebula are all open source software available to the public. Only vSphere 4 is a proprietary OS 

for cloud resource virtualization and management over data centers. These VI managers are used 

to create VMs and aggregate them into virtual clusters as elastic resources. 

Eucalyptus for Virtual Networking of Private Cloud 

Eucalyptus is an open source software system (Figure 3.27) intended mainly for 

supporting Infrastructure as a Service (IaaS) clouds. The system primarily supports virtual 

networking and the management of VMs 

 

 
 

The three resource managers in are specified below: 



Instance Manager (IM) controls the execution, inspection, and terminating of VM instances on 

the host  

Group Manager (GM) gathers information about chedules VM execution on specific instance 

managers, as well as manages virtual instance network. 

Cloud Manager (CM) is the entry-point into the cloud for users and administrators. It queries 

node managers for information about resources, makes scheduling decisions, and implements 

them by making requests to group managers. 

 

vSphere 4 

vSphere extends earlier virtualization software products by VMware, namely the 

VMware Workstation, ESX for server virtualization, and Virtual Infrastructure for server clusters 

overall architecture. The system interacts with user applications via an interface layer, called 

vCenter. It is primarily intended to offer virtualization support and resource management of data-

center resources in building private clouds. 

The vSphere 4 is built with two functional software suites: infrastructure services and 

application services. It also has three component packages intended mainly for virtualization 

purposes: vCompute is supported by ESX, ESXi, and DRS virtualization libraries from VMware. 

Trust Management in Virtualized Data Centers 

A VM in the host machine entirely encapsulates the state of the guest operating system 

running inside it. Encapsulated machine state can be copied and shared over the network and 

removed like a normal file, which proposes a challenge to VM security. In general, a VMM can 

provide secure isolation and a VM accesses hardware resources through the control of the VMM, 

so the VMM is the base of the security of a virtual system. Normally, one VM is taken as a 

management VM to have some privileges such as creating, suspending, resuming, or deleting a 

VM. 

VM-Based Intrusion Detection 

Intrusions are unauthorized access to computer from local/ network users and intrusion 

detection is used to recognize the unauthorized access.  Virtualization-based intrusion detection 

can isolate guest VMs on the same hardware platform.  VMM monitors and audits access 

requests for hardware and system software. There are two different methods for implementing a 

VM-based IDS: Either the IDS is an independent process in each VM or a high-privileged VM 

on the VMM; or the IDS is integrated into the VMM  and has the same privilege to access the 

hardware as well as the VMM. The proposed IDS to run on a VMM as a high-privileged VM is 

depicted in the following figure. 

 



 
 

 

The VM-based IDS contains a policy engine and a policy module. The policy framework 

can monitor events in different guest VMs by operating system interface library and PTrace 

indicates trace to secure policy of monitored host. Besides IDS, honeynets are also prevalent in 

intrusion detection. They attract and provide a fake system view to attackers in order to protect 

the real system. In addition, the attack action can be analyzed, and a secure IDS can be built. A 

honeypot is a purposely defective system that simulates an operating system to cheat and monitor 

the actions of an attacker. 

 


