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Overview 

Cluster analysis divides data into groups (clusters) that are meaningful, useful, or 

both. Here we consider following two issues 

(1) Different ways to group a set of objects into a set of clusters, and  

(2) Types of clusters.  

Different Types of Clusterings 

An entire collection of clusters is commonly referred to as a clustering. 

Hierarchical versus Partitional The most commonly discussed distinction among 

different types of clusterings is whether the set of clusters is nested or un nested, or 

in more traditional terminology, hierarchical or partitional. A partitional clnstering is 

simply a division of the set of data objects into non-overlapping subsets (clusters) 

such that each data object is in exactly one subset. In the following Figures (b-d) is 

a partitional clustering. 

If we permit clusters to have sub clusters, then we obtain a hierarchical clustering, 

which is a set of nested clusters that are organized as a tree. Each node (cluster) in 

the tree (except for the leaf nodes) is the union of its children (subclusters), and the 

root of the tree is the cluster containing all the objects. The clusters shown in 

following  Figures (a-d), when taken in that order, also form a hierarchical (nested) 

clustering with, respectively, 1, 2, 4, and 6 clusters on each level. 

Exclusive versus Overlapping versus Fuzzy The clusterings shown in following 

figure Figure are all exclusive, as they assign each object to a single cluster. There 

are many situations in which a point could reasonably be placed in more than one 

cluster, and these situations are better addressed by non-exclusive clustering. In the 

most general sense, an overlapping or non-exclusive clustering is used to reflect the 

fact that an object can simultaneously belong to more than one group (class). For 

instance, a person at a university can be both an enrolled student and an employee of 

the university. In a fuzzy clustering, every object belongs to every cluster with a 

membership weight that is between 0 (absolutely doesn't belong) and 1 (absolutely 

belongs). In other words, clusters are treated as fuzzy sets. (Mathematically, a fuzzy 

set is one in which an object belongs to any set with a weight that is between 0 and 

1. 

Complete versus Partial A complete clustering assigns every object to a cluster, 

whereas a partial clustering does not. The motivation for a partial clustering is that 

some objects in a data set may not belong to well-defined groups. Many times 

objects in the data set may represent noise, outliers, or "uninteresting background." 
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Figure Different ways of clustering the same set of points. 

Different Types of Clusters 

Well-Separated A cluster is a set of objects in which each object is closer (or more 

similar) to every other object in the cluster than to any object not in the cluster. 

Sometimes a threshold is used to specify that all the objects in a cluster must be 

sufficiently close (or similar) to one another. This idealistic definition of a cluster is 

satisfied only when the data contains natural clusters that are quite far from each 

other. The following Figure (a) gives an example of well separated clusters that 

consists of two groups of points in a two-dimensional space. 

Prototype-Based A cluster is a set of objects in which each object is closer (more 

similar) to the prototype that defines the cluster than to the prototype of any other 

cluster. For data with continuous attributes, the prototype of a cluster is often a 

centroid, i.e., the average (mean) of all the points in the cluster. When a centroid is 

not meaningful, such as when the data has categorical attributes, the prototype is 

often a medoid, Figure (b) shows an example of center-based clusters. 

Graph-Based If the data is represented as a graph, where the nodes are objects and 

the links represent connections among objects then a cluster can be defined as a 

connected component; i.e., a group of objects that are connected to one another, but 

that have no connection to objects outside the group. An important example of 

graph-based clusters are contiguity-based clusters, where two objects are connected 

only if they are within a specified distance of each other. This implies that each 

object in a contiguity-based cluster is closer to some other object in the cluster than 

to any point in a different cluster. Figure (c) shows an example of such clusters for 

two-dimensional points. 

Density-Based A cluster is a dense region of objects that is surrounded by a region 

of low density. Figure ( d) shows some density-based clusters for data created by 

adding noise to the data of Figure (c). The two circular clusters are not merged, as in 

Figure (c), because the bridge between them fades into the noise. Likewise, the 

curve that is present in Figure(c). 

Shared-Property (Conceptual Clusters) More generally, we can define a cluster as a 

set of objects that share some property Consider the clusters shown in Figure (e). A 
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triangular area (cluster) is adjacent to a rectangular one, and there are two 

intertwined circles (clusters). In both cases, a clustering algorithm would need a very 

specific concept of a cluster to successfully detect these clusters. The process of 

finding such clusters is called conceptual clustering. 

 
Figure. Different types of clusters as illustrated by sets of two-dimensional points. 

The Basic K-means Algorithm 

The K-means clustering technique is simple, and we begin with a description of the 

basic algorithm. We first choose K initial centroids, where K is a user specified 

parameter, namely, the number of clusters desired. Each point is then assigned to the 

closest centroid, and each collection of points assigned to a centroid is a cluster. The 

centroid of each cluster is then updated based on the points assigned to the cluster. 

We repeat the assignment and update steps until no point changes clusters, or 

equivalently, until the centroids remain the same. 

K-means is formally described by Algorithm 
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The operation of K-means is illustrated in following Figure, which shows how, 

starting from three centroids, the final clusters are found in four assignment-update 

steps. In these and other figures displaying K-means clustering, each subfigure 

shows (1) the centroids at the start of the iteration and (2) the assignment of the 

points to those centroids. The centroids are indicated by the "+" symbol; all points 

belonging to the same cluster have the same marker shape. 

 
Figure. Using the K·means algorithm to find three clusters in sample data. 

In the first step, shown in Figure (a), points are assigned to the initial centroids, 

which are all in the larger group of points. For this example, we use the mean as the 

centroid. After points are assigned to a centroid the centroid is then updated. Again, 

the figure for each step shows the centroid at the beginning of the step and the 

assignment of points to those centroids. In the second step, points are assigned to the 

updated centroids, and the centroids are updated again. In steps 2, 3, and 4, which 

are shown in Figures (b), (c), and (d), respectively, two of the centroids move to the 

two small groups of points at the bottom of the figures. When the K-means 

algorithm terminates in Figure (d), because no more changes occur, the centroids 

have identified the natural groupings of points. 

Assigning Points to the Closest Centroid 

To assign a point to the closest centroid, we need a proximity measure that 

quantifies the notion of "closest" for the specific data under consideration. Euclidean 

(L2) distance is often used for data points in Euclidean space, while cosine similarity 

is more appropriate for documents. However, there may be several types of 

proximity measures that are appropriate for a given type of data. For example, 

Manhattan (L1) distance can be used for Euclidean data, while the Jaccard measure 

is often employed for documents. Usually, the similarity measures used for K-means 

are relatively simple since the algorithm repeatedly calculates the similarity of each 

point to each centroid. 
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Data in Euclidean Space consider data whose proximity measure is Euclidean 

distance. For our objective function, which measures the quality of a clustering, we 

use the sum of the squared error (SSE), which is also known as scatter. In other 

words, we calculate the error of each data point, i.e., its Euclidean distance to the 

closest centroid, and then compute the total sum of the squared errors. Given two 

different sets of clusters that are produced by two different runs of K-means, we 

prefer the one with the smallest squared error since this means that the prototypes 

(centroids) of this clustering are a better representation of the points in their cluster. 

Using the notation in 

Table, the SSE is formally defined as follows: 

 
Table. Table of notation. 

 
Where dist is the standard Euclidean (L,,) distance between two objects in 

Euclidean space using the notation in Table, the centroid (mean) of the ith cluster is 

defined by Equation 

 
To illustrate, the centroid of a cluster containing the three two-dimensional points, 

(1,1), (2,3), and (6,2), is (1 + 2 + 6)/3,(1 + 3 + 2)/3) = (3,2). A common approach is 

to choose the initial centroids randomly, but the resulting clusters are often poor. 

(Poor Initial Centroids). Randomly selected initial centroids may be poor. 

Limits of Random Initialization 
One technique that is commonly used to address the problem of choosing initial 

centroids is to perform multiple runs, each with a different set of randomly chosen 

initial centroids, and then select the set of clusters with the minimum SSE. 

K-means: Additional Issues 

Handling Empty Clusters 

One of the problems with the basic K-means algorithm given earlier is that empty 

clusters can be obtained if no points are allocated to a cluster during the assignment 

step. If this happens, then a strategy is needed to choose a replacement centroid, 

since otherwise, the squared error will be larger than necessary. One approach is to 

choose the point that is farthest away from any current centroid. 
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Another approach is to choose the replacement centroid from the cluster that has the 

highest SSE. This will typically split the cluster and reduce the overall SSE of the 

clustering. If there are several empty clusters, then this process can be repeated 

several times. 

Outliers 

When the squared error criterion is used, outliers can unduly influence the clusters 

that are found. In particular, when outliers are present, the resulting cluster centroids 

(prototypes) may not be as representative. Because of this, it is often useful to 

discover outliers and eliminate them beforehand. An obvious issue is how to identify 

outliers.  

If we use approaches that remove outliers before clustering, we avoid clustering 

points that will not cluster well. Alternatively, outliers can also be identified in a 

postprocessing step. For instance, we can keep track of the SSE contributed by each 

point, and eliminate those points with unusually high contributions, especially over 

multiple runs. Also, we may want to eliminate small clusters since they frequently 

represent groups of outliers. 

Reducing the SSE with Postprocessing 

An obvious way to reduce the SSE is to find more clusters, i.e., to use a larger 

K. However, in many cases, we would like to improve the SSE, but don't want to 

increase the number of clusters. Two strategies that decrease the total SSE by 

increasing the number of clusters are the following: 

Split a cluster: The cluster with the largest SSE is usually chosen, but we could also 

split the cluster with the largest standard deviation for one particular attribute. 

Introduce a new cluster centroid: Often the point that is farthest from any cluster 

center is chosen. We can easily determine this if we keep track of the SSE 

contributed by each point. Another approach is to choose randomly from all points 

or from the points with the highest SSE. 

Two strategies that decrease the number of clusters, while trying to minimize the 

increase in total SSE, are the following: 

Disperse a cluster: This is accomplished by removing the centroid that corresponds 

to the cluster and reassigning the points to other clusters. Ideally, the cluster that is 

dispersed should be the one that increases the total SSE the least. 

Merge two clusters: The clusters with the closest centroids are typically chosen, 

although another, perhaps better, approach is to merge the two clusters that result in 

the smallest increase in total SSE. These two merging strategies are the same ones 

that are used in the hierarchical. 

 Cluster Analysis: 

Updating Centroids Incrementally 

Instead of updating cluster centroids after all points have been assigned to a cluster, 

the centroids can be updated incrementally, after each assigmnent of a point to a 

cluster. Notice that this requires either zero or two updates to cluster centroids at 
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each step, since a point either moves to a new cluster (two updates) or stays in its 

current cluster (zero updates). Using an incremental update strategy guarantees that 

empty clusters are not produced since all clusters start with a single point, and if a 

cluster ever has only one point, then that point will always be reassigned to the same 

cluster. 

Bisecting K-means 

The bisecting K-means algorithm is a straightforward extension of the basic K-

means algorithm that is based on a simple idea: to obtain K clusters, split the set of 

all points into two clusters, select one of these clusters to split, and so on, until k 

clusters have been produced. There are a number of different ways to choose which 

cluster to split. We can choose the largest cluster at each step, choose the one with 

the largest SSE, or use a criterion based on both size and SSE. Different choices 

result in different clusters.The details of bisecting K-means are given by Algorithm 

Algorithm  Bisecting K-means algorithm. 

1: Initialize the list of clusters to contain the cluster consisting of all points. 

2: repeat 

3: Remove a cluster from the list of clusters. 

4: {Perform several "trial" bisections of the chosen cluster.} 

5: for i = 1 to number of trials do 

6: Bisect the selected cluster using basic K-means. 

7: end for 

8: Select the two clusters from the bisection with the lowest total SSE. 

9: Add these two clusters to the list of clusters. 

10: until Until the list of clusters contains K clusters. To illustrate that 

bisecting K-means is less susceptible to initialization problems, we show, in the 

following second Figure, how bisecting K-means finds four clusters in the data set 

originally shown in the following first Figure (a). In iteration 1, two pairs of clusters 

are found in iteration 2, the rightmost pair of clusters is split; and in iteration 3, the 

leftmost pair of clusters is split. Bisecting K-means has less trouble with 

initialization because it performs several trial bisections and takes the one with the 

lowest SSE, and because there are only two centroids at each step.  

Figure. Input 
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Figure. Bisecting K-means on the four clusters example. 

 

Finally, by recording the sequence of clusterings produced as K-means bisects 

clusters, we can also use bisecting K-means to produce a hierarchical clustering. 

K-means and Different Types of Clusters 

K-means and its variations have a number of limitations with respect to finding 

different types of clusters. In particular, K-means has difficulty detecting the 

"natural" clusters, when clusters have non-spherical shapes or widely different sizes 

or densities. This is illustrated by following Figures. In the following Figure, K-

means cannot find the three natural clusters because one of the clusters is much 

larger than the other two, and hence, the larger cluster is broken, while one of the 

smaller clusters is combined with a portion of the larger cluster.  

 
Figure. K·means with clusters of different size. 

In the following Figure, K-means fails to find the three natural clusters because the 

two smaller clusters are much denser than the larger cluster.  

 
Figure. K·rneans wrth clusters of different density. 

Finally, in the following Figure, K-rneans finds two clusters that mix portions of the 

two natural clusters because the shape of the natural clusters is not globular. 
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Figure. K·means with non-globular clusters. 

The difficulty in these three situations is that the K-means objective function 

is a mismatch for the kinds of clusters we are trying to find since it is minimized by 

globular clusters of equal size and density or by clusters that are well separated. 

Strengths and Weaknesses 

K-means is simple and can be used for a wide variety of data types. It is also quite 

efficient, even though multiple runs are often performed. Some variants, including 

bisecting K-means, are even more efficient, and are less susceptible to initialization 

problems. 

 K-means is not suitable for all types of data, It cannot handle non-globular clusters 

or clusters of different sizes and densities, although it can typically find pure 

subclusters if a large enough number of clusters is specified. K-means also has 

trouble clustering data that contains outliers. Outlier detection and removal can help 

significantly in such situations. Finally, K-means is restricted to data for which there 

is a notion of a center (centroid). 

K-means as an Optimization Problem 

As mentioned earlier, given an objective function such as "minimize SSE," 

clustering can be treated as an optimization problem. One way to solve this problem-

to find a global optimum-is to enumerate all possible ways of dividing the points 

into clusters and then choose the set of clusters that best satisfies the objective 

function, e.g., that minimizes the total SSE. 

Derivation of K-means as an Algorithm to Minimize the SSE 

In this section, we show how the centroid for the K-means algorithm can be 

mathematically derived when the proximity function is Euclidean distance and the 

objective is to minimize the SSE. In mathematical terms, we seek to minimize 

Equation 
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Here, Ci, is the ith cluster, x is a point in Ci, and ci is the mean of the ith cluster. We 

can solve for the kth centroid Ck, which minimizes above Equation, by 

differentiating the SSE, setting it equal to 0, and solving, as indicated below. 

 
Thus, as previously indicated, the best centroid for minimizing the SSE of a cluster 

is the mean of the points in the cluster. 

Derivation of K-means for SAE 

To demonstrate that the K-means algorithm can be applied to a variety of different 

objective functions, we consider how to partition the data into k clusters such that 

the sum of the Manhattan (L1) distances of points from the center of their clusters is 

minimized. We are seeking to minimize the sum of the Ll absolute errors (SAE) as 

given by the following equation, where dist is the Ll distance. Again, for notational 

simplicity, we use one-dimensional data, 

 
We can solve for the k'h centroid Ck, which minimizes above Equation, by 

differentiating the SAE, setting it equal to 0, and solving. 
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Agglomerative hierarchical clustering, Basic Agglomerative hierarchical 

clustering  algorithm, Specific techniques, DBSCAN, Traditional density, 

center based approach, Strengths and weaknesses(Tan) 

Agglomerative hierarchical clustering 

Hierarchical clustering techniques are second important category of clustering 

methods. There are two basic approaches for generating a hierarchical clustering: 

Agglomerative: Start with the points as individual clusters and, at each step, merge 

the closest pair of clusters. This requires defining a notion of cluster proximity. 

Divisive: Start with one, all-inclusive cluster and, at each step, split a cluster until 

only singleton clusters of individual points remain, In this case, we need to decide 

which cluster to split at each step and how to do the splitting. 

 A hierarchical clustering is often displayed graphically using a tree-like diagram 

called a dendrogram, which displays both the cluster-sub cluster relationships and 

the order in which the clusters were merged (agglomerative view) or split (divisive 

view). The following figure shows an example of these two types of figures for a set 

of four two-dimensional points. 

 
Figure  A hierarchical clustering of four points shown as a dendrogram and as 

nested clusters 

Basic Agglomerative Hierarchical Clustering Algorithm 

Many agglomerative hierarchical clustering techniques are variations on a single 

approach: starting with individual points as clusters, successively merge the two 

closest clusters until only one cluster remains. This approach is expressed more 

formally in Algorithm as below. 

Algorithm  Basic agglomerative hierarchical clustering algorithm. 

1: Compute the proximity matrix, if necessary. 

2: repeat 

3: Merge the closest two clusters. 

4: Update the proximity matrix to reflect the proximity between the new cluster and 

the original clusters. 

5: until only one cluster remains. 

For example, many agglomerative hierarchical clustering techniques, such as MIN, 

MAX, and Group Average, come from a graph-based view of clusters. MIN defines 
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cluster proximity as the proximity between the closest two points that are in different 

clusters, or using graph terms, the shortest edge between two nodes in different 

subsets of nodes.  

Alternatively, MAX takes the proximity between the farthest two points in different 

clusters to be the cluster proximity, or using graph terms, the longest edge between 

two nodes in different subsets of nodes. 

Another graph-based approach, the group average technique, defines cluster 

proximity to be the average pairwise proximities (average length of edges) of all 

pairs of points from different clusters. The following Figure illustrates these three 

approaches. 

 
Figure. Graph-based definitions of cluster proximity 

Specific Techniques 

Sample Data 

To illustrate the behavior of the various hierarchical clustering algorithms, we shall 

use sample data that consists of 6 two-dimensional points, which are shown in 

following Figure. The x and y coordinates of the points and the Euclidean distances 

between them are shown in following Tables. 

 
Figure. Set of 6 two-dimensional points 

 
Table. x,y coordinates of 6 points 
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Table. Euclidean distance matrix for 6 points. 

Single Link or MIN 

For the single link or MIN version of hierarchical clustering, the proximity of two 

clusters is defined as the minimum of the distance (maximum of the similarity) 

between any two points in the two different clusters. Using graph terminology, if 

you start with all points as singleton clusters and add links between points one at a 

time, shortest links first, then these single links combine the points into clusters. The 

single link technique is good at handling non-elliptical shapes but is sensitive to 

noise and outliers. 

Example (Single Link). The following Figure shows the result of applying the single 

link technique to our example data set of six points. Figure (a) shows the nested 

clusters as a sequence of nested ellipses, where the numbers associated with the 

ellipses indicate the order of the clustering. Figure (b) shows the same information, 

but as a dendrogram. The height at which two clusters are merged in the dendrogram 

reflects the distance of the two clusters.For instance, from the above Table, we see 

that the distance between points 3 and 6 is 0.11, and that is the height at which they 

are joined into one cluster in the dendrogram. As another example, the distance 

between clusters {3,6} and {2,5} is given by 

dist( {3, 6}, {2, 5}) min(dist(3, 2), dist(6, 2), dist(3, 5), dist(6, 5)) 

min(0.15, 0.25, 0.28, 0.39) 

0.15. 

 
Figure. Single link clustering of the six points 
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Complete Link or MAX or CLIQUE 

For the complete link or MAX version of hierarchical clustering, the proximity of 

two clusters is defined as the maximum of the distance (minimum of the similarity) 

between any two points in the two different clusters. Using graph terminology, if 

you start with all points as singleton clusters and add links between points one at a 

time, shortest links first, then a group of points is not a cluster until all the points in 

yit are completely linked, i.e., form a clique. Complete link is less susceptible to 

noise and outliers, but it can break large clusters and it favors globular shapes. 

Example (Complete Link). The following Figure shows the results of applying 

MAX to the sample data set of six points. As with single link, points 3 and 6are 

merged first. However, {3,6} is merged with {4}, instead of {2, 5} or {1} because 

dist({3,6},{4}) =max(dist(3, 4), dist(6, 4)) 

max(0.15,0.22) 

0.22. 

dist( {3, 6}, {2, 5})=max(dist(3, 2), dist(6, 2), dist(3, 5), dist(6, 5)) 

max(0.15, 0.25, 0.28, 0.39) 

0.39. 

dist({3,6}, {I}) =max(dist(3, 1), dist(6, 1)) 

max(0.22,0.23) 

0.23. 

 
Figure. Complete link clustering of the six points 

•Group Average 

For the group average version of hierarchical clustering, the proximity of two 

clusters is defined as the average pairwise proximity among all pairs of points in the 

different clusters. This is an intermediate approach between the single and complete 

link approaches. Thus, for group average, the cluster proximty group average 

approach to the sample data set of six points. To illustratehow group average 

works, we calculate the distance between some clusters. 
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Because dist( {3, 6,4}, {2, 5}) is smaller than dist( {3, 6,4}, {I}) and dist( {2, 5}, 

{1}),clusters {3, 6,4} and {2,5} are merged at the fourth stage. 

 
Figure. Group average clustering of the six points 

DBSCAN 

Density-based clustering locates regions of high density that are separated from one 

another by regions of low density. DB SCAN is a simple and effective density-based 

clustering algorithm. Any two core points that are close enough-within a distance 

Eps of one another-are put in the same cluster. 

Algorithm 8.4 DBSCAN algorithm. 

1: Label all points as core, border, or noise points. 

2: Eliminate noise points. 

3: Put an edge between all core points that are within Eps of each other. 

4: Make each group of connected core points into a separate cluster. 

5: Assign each border point to one of the clusters of its associated core points. 

In the center-based approach, density is estimated for a particular point in the data 

set by counting the number of points within a specified radius, Eps, of that point. In 

the following figure, the number of points within a radius of Eps of point A is 7, 

including A itself. 
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Strengths and Weaknesses 

 Because DBSCAN uses a density-based definition of a cluster, it is relatively 

resistant to noise and can handle clusters of arbitrary shapes and sizes. Thus, 

DBSCAN can find many clusters that could not be found using K-means, 
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 However, DBSCAN has trouble when the clusters have widely varying 

densities. It also has trouble with high-dimensional data because density is 

more difficult to define for such data. 

 DB SCAN can be expensive when the computation of nearest neighbors 

requires computing all pairwise proximities, as is usually the case for high-

dimensional data. 

 


