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Association analysis: problem definition, frequent item set generation: The 

Apriori principle, frequent item set generation in the Apriori algorithm, 

candidate generation and pruning, support counting, rule generation, compact 

representation of frequent item sets, FP-Growth algorithms. (Tan) 

 

Association analysis: 
It is useful for discovering interesting relationships hidden in large data 
sets. The uncovered relationships can be represented in the form of association rule
s or sets of frequent items. The following Table illustrates 
an example of market basket transactions. 

 

 

 

 

 

 

 

  Table.   An example of market basket transactions  
The following rule can be extracted from the data set shown in aboveTable: 

{Diapers}  {Beer}. 
The rule suggests that a strong relationship exists between the sale of diapers 

and beer because many customers who buy diapers also buy beer. 

Problem Definition: 

Binary Representation Market basket data can be represented in a binary format as 

shown in following Table, where each row corresponds to a transaction and each 

column corresponds to an item. An item can be treated as a binary variable whose 

value is one if the item is present in a transaction and zero otherwise. Because 

the presence of an item in a transaction is often considered more important than its 

absence, an item is an asymmetric binary variable. 

 
Table. A binary 0/1 representation of market basket data. 

In association analysis, a collection of zero or more items is termed an itemset. If an 

itemset contains k items, it is called a k-itelnset. For instance, {Beer, Diapers, Milk} 

is an example of a 3-itemset. The null (or empty) set is an itemset that does not 

contain any items. 

The transaction width is defined as the number of items present in a transaction. 

T ID Items 
1 
2 
3 
4 
5 

{Bread, Milk} 
{Bread, Diapers, Beer, E
ggs} 
{Milk, Diapers, Beer, C
ola} 
{Bread, Milk, Diapers, 
Beer} 
{Bread, Milk, Diapers, 
Cola} 
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A transaction tj is said to contain an itemset X if X is a subset of tj. For example, the 

second transaction shown in above Table contains the itemset {Bread, Diapers} but 

not {Bread, Milk}. An important property of an itemset is its support count, which 

refers to the number of transactions that contain a particular itemset. 

Mathematically, the support COunt, σ(X), for an itemset X can be stated as follows: 

 
In the data set shown in  above Table  the support count for {Beer, Diapers, Milk} is 

equal to two because there are only two transactions that contain all three items. 

Association Rule An association rule is an implication expression of the form X => 

Y, where X and Yare disjoint itemsets, i.e., X ∩ Y = φ. The strength of an 

association rule can be measured in terms of its support and confidence. 

Support determines how often a rule is applicable to a given data set (or) The rule  

X => Y holds in the transaction set D with support s, where s is the percentage of 

transactions in D that contain XU Y. 

support(X =>Y) = Prob{XUY}  (or) 

 
Confidence determines how frequently items in Y appear in transactions that 

contain X.(or) The rule X=>Y has confidence c in the transaction set D if c is the 

percentage of transactions in D containing X which also contain Y. 

confidence(X=>Y) = Prob{Y/X} (or) 

 
Consider the rule {Milk, Diapers} => {Beer}. Since the support count for {Milk, 

Diapers, Beer} is 2 and the total number of transactions is 5, the rule's support is 2/5 

= 0.4. The rule's confidence is obtained by dividing the support count for {Milk, 

Diapers, Beer} by the support count for {Milk, Diapers}. Since there are 3 

transactions that contain milk and diapers, the confidence for this rule is 2/3 = 0.67. 

Association Rule Discovery 

Given a set of transactions T, find all the rules having support ≥ minsup and 

confidence ≥ minconf, where minsup and minconf are the corresponding support and 

confidence thresholds. 

A brute-force approach for mining association rules is to compute the support and 

confidence for every possible rule. This approach is prohibitively expensive because 

there are exponentially many rules that can be extracted from a data set. More 

specifically, the total number of possible rules extracted from a data set that contains 

d items is 

 
Even for the small data set shown in first Table, this approach requires us to 

compute the support and confidence for 36 - 27+ 1 = 602 rules. More than 80% of 
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the rules are discarded after applying minsup = 20% and minconf = 50%, thus 

making most of the computations become wasted. 

For example, the following rules have identical support because they involve items 

from the same itemset, {Beer, Diapers, Milk}: 

 
If the itemset is infrequent, then all six candidate rules can be pruned immediately 

without having to compute their confidence values. Therefore, a common strategy 

adopted by many association rule mining algorithms is to decompose the problem 

into two major subtasks: 

1. Frequent Itemset Generation, whose objective is to find all the itemsets that 

satisfy the minsup threshold. These itemsets are called frequent itemsets. 

2. Rule Generation, whose objective is to extract all the high-confidence rules from 

the frequent itemsets found in the previous step. These rules are called strong rules. 

Frequent item set generation 

A lattice structure can be used to enumerate the list of all possible itemsets. 

The following Figure shows an itemset lattice for 1= {a,b,c,d,e}. In general, a data 

set that contains k items can potentially generate up to 2
k
 - 1 frequent itemsets, 

excluding the null set. 

 
Figure. An itemset lattice. 

A brute-force approach for finding frequent itemsets is to determine the support 

count for every candidate itemset in the lattice structure. To do this, we need to 

compare each candidate against every transaction, an operation that is shown in 
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following Figure. If the candidate is contained in a transaction, its support count will 

be incremented. For example, the support for {Bread, Milk} is incremented three 

times because the itemset is contained in transactions 1, 4, and 5.Such an approach 

can he very expensive because it requires O(NMw) comparisons, where N is the 

number of transactions, M = 2
k
 -1 is the number of candidate itemsets, and w is the 

maximum transaction width. 

 
Figure. Counting the support of candidate itemsets 

There are several ways to reduce the computational complexity of frequent 

itemset generation. 

1. Reduce the number of candidate itemsets (M). 

2. Reduce the number of comparisons. 

The Apriori principle 

If an itemset is frequent, then all of its subsets must also be frequent. 

For ex consider the itemset lattice shown in following Figure. Suppose {c, d, e} is a 

frequent itemset. Clearly, any transaction that contains {c,d,e} must also contain its 

subsets, {c,d}, {c,e}, {d,e}, {c}, {d}, and {e}. As a result, if {c,d,e} is frequent, then 

all subsets of {c,d,e} (Le., the shaded itemsets in this figure) must also be frequent. 
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Figure. An illustration of the Apriori principle. If {c, d, e} is frequent, then all 

subsets of this itemset are frequent, 

Conversely, if an itemset such as {a, b} is infrequent, then all of its supersets must be 

infrequent too. For ex in the following Figure, the entire sub graph containing the 

supersets of {a, b} can be pruned immediately once {a, b} is found to be infrequent. 
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Figure. An illustration of support-based pruning. if {a, b} is infrequent, then all 

supersets of {a, b} 

are infrequent. 

This strategy of trimming the exponential search space based on the support measure 

is known as support-based pruning. In this the support for an itemset never exceeds 

the support for its subsets. This property is also known as the anti-monotone 

property of the support measure. 

frequent item set generation in the Apriori algorithm 

Apriori is an influential algorithm for mining frequent itemsets for Boolean 

association rules. The name of the algorithm is based on the fact that the algorithm 

uses prior knowledge of frequent itemset properties, as we shall see below. Apriori 

employs an iterative approach known as a level-wise search, where k-itemsets are 

used to explore (k+1)-itemsets. First, the set of frequent 1-itemsets is found. This set 

is denoted L1. L1 is used to find L2, the frequent 2-itemsets, which is used to find 

L3, and so on, until no more frequent k-itemsets can be found. The finding of each 

Lk requires one full scan of the database. To improve the efficiency of the level-wise 

generation of frequent itemsets, an important property called the Apriori property, 

presented below, is used to reduce the search space. 

The Apriori property. All non-empty subsets of a frequent itemset must also be 

frequent. This property is based on the following observation. By definition, if an 

itemset I does not satisfy the minimum support threshold, s, then I is not frequent, 

i.e., Prob{I} < s. If an item A is added to the itemset I, then the resulting itemset 

(i.e., I U A) cannot occur more frequently than I. Therefore, I U A is not frequent 

either, i.e.,Prob{ IUA} < s. 

A two step process is followed, consisting of join and prune actions. 

 
2. The prune step: Ck is a superset of Lk, that is, its members may or may not be 

frequent, but all of the frequent k-itemsets are included in Ck. A scan of the database 

to determine the count of each candidate in Ck would result in the determination of 

Lk. To reduce the size of Ck, the Apriori property is used as follows. Any (k-1)-

itemset that is not frequent cannot be a subset of a frequent k-itemset. Hence, if any 

(k-1)-subset of a candidate k-itemset is not in Lk-1, then the candidate cannot be 

frequent either and so can be removed from Ck. 
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Fig. Transactional data 

Suppose that the minimum transaction support count required is 2 (i.e., min sup = 

50%) 

 
 

The following Figure  provides a high-level illustration of the frequent itemset 

generation part of the Apriori algorithm for the transactions shown in first Table. We 

assume that the support threshold is 60%, which is equivalent to a minimum support 

count equal to 3. 



UNIT V 

 

Page No. : 8 

 
 

Initially, every item is considered as a candidate l-itemset. After counting their 

supports, the candidate itemsets {Cola} and {Eggs} are discarded because they 

appear in fewer than three transactions. In the next iteration, candidate 2-itemsets are 

generated using only the frequent l-itemsets because the Apriori principle ensures 

that all supersets of the infrequent l-itemsets must be infrequent. Because there are 

only four frequent l-itemsets, the number of candidate 2-itemsets generated by the 

algorithm is 6. Two of these six candidates, {Beer, Bread} and {Beer, Milk}, are 

subsequently found to be infrequent after computing their support values. The 

remaining four candidates are frequent, and thus will be used to generate candidate 

3-itemsets. Without support-based pruning, there are 20 candidate 3-itemsets that 

can be formed using the six items given in this example. With the Apriori principle, 

we only need to keep candidate 3-itemsets whose subsets are frequent. The only 

candidate that has this property is {Bread, Diapers, Milk}. 

The effectiveness of the Apriori pruning strategy can be shown by counting the 

number of candidate itemsets generated. A brute-force strategy of enumerating all 

itemsets (up to size 3) as candidates will produce 

 
candidates. With the Apriori principle, this number decreases to 

 
candidates, which represents a 68% reduction in the number of candidate 

itemsets even in this simple example.. 
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The pseudocode for the frequent itemset generation part of the Apriori algorithm is 

shown in Algorithm 

 
Candidate Generation and Pruning 

1. Candidate Generation. This operation generates new candidate k-itemsets based 

on the frequent (k - 1)-itemsets found in the previous iteration. 

2. Candidate Pruning. This operation eliminates some of the candidate k-itemsets 

using the support-based pruning strategy. 

Next, we will briefly describe several candidate generation procedures, including the 

one used by the apriori-gen function. 

Brute-Force Method The brute-force method considers every k-itemset as a 

potential candidate and then applies the candidate pruning step to remove any 

unnecessary candidates. 

 
Figure. A brute-force method for generating candidate 3itemsets. 

Fk-l X F1 Method An alternative method for candidate generation is to extend each 

frequent (k - l)-itemset with other frequent items. The following Figure illustrates 

how a frequent 2-itemset such as {Beer, Diapers} can be augmented with a frequent 

item such as Bread to produce a candidate 3-itemset {Beer, Diapers, Bread}. 
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Figure. Generating and pruning candidate k itemsets by merging a frequent (k - 1)-

itemset with a frequent item. Note that some of the candidates are unnecessary 

because their subsets are infrequent. 

While this procedure is a substantial improvement over the brute-force method, it 

can still produce a large number of unnecessary candidates. For example, the 

candidate itemset obtained by merging {Beer, Diapers} with {Milk} is unnecessary 

because one of its subsets, {Beer, Milk}, is infrequent. 

Fk-l xF k-l Method The candidate generation procedure in the apriori-gen function 

merges a pair of frequent (k -1)-itemsets only if their first k - 2 items are identical. 

Let A =  and B =  be a pair of frequent (k - 1) 

itemsets. A and B are merged if they satisfy the following conditions: 

 

 
In the above Figure the frequent itemsets {Bread, Diapers} and {Bread, Milk} are 

merged to form a candidate 3-itemset {Bread, Diapers, Milk}. The algorithm does 

not have to merge {Beer, Diapers} with {Diapers, Milk} because the first item in 

both itemsets is different. Indeed, if {Beer, Diapers, Milk} is a viable candidate, it 

would have been obtained by merging {Beer, Diapers} with {Beer, Milk} instead. 
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Support Counting 

 

One approach for doing this is to compare each transaction against every candidate 

itemset and to update the support counts of candidates contained in the transaction. 

This approach is computationally expensive, especially when the numbers of 

transactions and candidate itemsets are large. 

An alternative approach is to enumerate the itemsets contained in each transaction 

and use them to update the support counts of their respective candidate itemsets. To 

illustrate, consider a transaction t that contains five items, {1, 2, 3,5, 6}. There are 

10 itemsets of size 3 contained in this transaction. The following Figure shows a 

systematic way for enumerating the 3-itemsets contained in t. Assuming that each 

itemset keeps its items in increasing lexicographic order. 

 
Rule Generation 

Here we describe how to extract association rules efficiently from a given frequent 

itemset. Each frequent k-itemset, Y, can produce up to 2
k-2

 association rules, 

ignoring rules that have empty antecedents or consequents (φY) or (Yφ). 

An association rule can be extracted by partitioning the itemset Y into two non-

empty subsets, X and Y - X, such that X  Y - X satisfies the confidence threshold. 

Example.  Let X = {1, 2, 3} be a frequent itemset. There are six candidate 

association rules that can be generated from X: {1,2} => {3}, {1, 3} => {2}, {2,3} 

=> {1}, {1=>{2,3}, {2} => {1,3}, and {3} => {1,2}. As each of their support is 

identical to the support for X, the rules must satisfy the support threshold. 

Theorem. If a rule X  Y - X does not satisfy the confidence threshold, then any rule 

X'  Y - X', where X' is a subset of X, must not satisfy the confidence threshold as 

well. 

For example, if {acd}  {b} and {abd}  {c} are high-confidence rules, then the 

candidate rule {ad} {be} is generated by merging the consequents of both rules. 
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The following Figure shows a lattice structure for the association rules generated 

from the frequent itemset {a, b, c, d}. If any node in the lattice has low confidence, 

then according to above Theorem, the entire sub graph spanned by the node can be 

pruned immediately. Suppose the confidence for {bcd}{a} is low. All the rules 

containing item a in its consequent, including {cd}{ab}, {bd}  {ae}, {be}{ad}, 

and {d}  {abe} can be discarded. 

 

 

 
Figure . Pruning of association rules using the confidence measure. 

 

Compact Representation of Frequent Itemsets 

It is useful to identify a small representative set of itemsets from which all other 

frequent iternsets can be derived. Two such representations are as follows. 

Maximal Frequent Itemsets 

A maximal frequent itemset is defined as a frequent itemset for which none of its 

immediate supersets are frequent. 

Consider the itemset lattice shown in following Figure. The itemsets in the lattice 

are divided into two groups: those that are frequent and those that are infrequent. A 

frequent itemset order, which is represented by a dashed line, is also illustrated in the 

diagram. Every itemset located above the border is frequent, while those located 

below the border (the shaded nodes) are infrequent. Among the itemsets residing 

near the border, {a, d}, {a, c, e}, and {b, c, d, e} are considered to be maximal 

frequent itemsets because their immediate supersets are infrequent. An itemset such 

as {a, d} is maximal frequent because all of its immediate supersets, {a, b, d}, {a, c, 

d}, and {a,d,e}, are infrequent. In contrast, {a,e} is non-maximal because one of its 

immediate supersets, {a, c, e} 1 is frequent. 
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Figure Maximal frequent itemset. 

Despite providing a compact representation, maximal frequent itemsets do not 

contain the support information of their subsets. For example, the support of the 

maximal frequent itemsets {a, c, e}, {a, d}, and {b,c,d,e} do not provide any hint 

about the support of their subsets.  

Closed Frequent Itemsets 

Closed itemsets provide a minimal representation of itemsets without losing their 

support information. An itemset X is closed if none of its immediate supersets has 

exactly the same support count as X. 

Examples of closed itemsets are shown in following Figure. To better illustrate the 

support count of each itemset, we have associated each node (itemset) in the lattice 

with a list of its corresponding transaction IDs. 

An itemset is a closed frequent itemset if it is closed and its support is greater than or 

equal to minsup. 
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Figure An example of the closed frequent ttemsets (with minimum support count 

equal to 40%). 

FP-Growth Algorithm 

This section presents an alternative algorithm called FP-growth that takes a radically 

different approach to discovering frequent itemsets. The algorithm does not 

subscribe to the generate-and-test paradigm of Apriori. Instead, it encodes the data 

set using a compact data structure called an FP- tree and extracts frequent itemsets 

directly from this structure. 

FP-Tree Representation 

An FP-tree is a compressed representation of the input data. It is constructed by 

reading the data set one transaction at a time and mapping each transaction onto a 

path in the FP-tree. As different transactions can have several items in common, 

their paths may overlap. The more the paths overlap with one another, the more 

compression we can achieve using the FP-tree structure. 
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Figure. Construction of an FP-tree. 

The above Figure  shows a data set that contains ten transactions and five items. 

The structures of the FP-tree after reading the first three transactions are also 

depicted in the diagram. Each node in the tree contains the label of an item along 

with a counter that shows the number of transactions mapped onto the given path. 

Initially, the FP-tree contains only the root node represented by the null symbol. The 

FP-tree is subsequently extended as follows 

The data set is scanned once to determine the support count of each item. Infrequent 

items are discarded, while the frequent items are sorted in decreasing support counts. 

For the data set shown in above Figure, a is the most frequent item, followed by b, c, 

d, and e. 

The algorithm makes a second pass over the data to construct the FPtree. 

1.After reading the first transaction, {a, b}, the nodes labeled as a and b are created. 

A path is then formed from null ab to encode the transaction. Every node along 

the path has a frequency count of 1.. 

2. The algorithm makes a second pass over the data to construct the FPtree. 

After reading the first transaction, {a, b}, the nodes labeled as a and b are created. A 

path is then formed from null ---;a ---;b to encode the transaction. Every node along 

the path has a frequency count of 1. 
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3. After reading the second transaction, {b,c,d}, a new set of nodes is created for 

items b, c, and d. A path is then formed to represent the transaction by connecting 

the nodes null  b  c  d. Every node along this path also has a frequency count 

equal to one. Although the first two transactions have an item in common, which is 

b, their paths are disjoint because the transactions do not share a common prefix. 

4. The third transaction, {a,c,d,e}, shares a common prefix item (which is a) with the 

first transaction. As a result, the path for the third transaction, null a  C  d  

e, overlaps with the path for the first transaction, null  a  b. Because of their 

overlapping path, the frequency count for node a is incremented to two, while the 

frequency counts for the newly created nodes, c, d, and e, are equal to one. 

5. This process continues until every transaction has been mapped onto one of the 

paths given in the FP-tree. The resulting FP-tree after reading all the transactions is 

shown at the bottom of Figure. 

The size of an FP-tree is typically smaller than the size of the uncompressed data 

because many transactions in market basket data often share a few items in common. 

Frequent Itemset Generation in FP-Growth Algorithm 

FP-growth is an algorithm that generates frequent itemsets from an FP-tree by 

exploring the tree in a bottom-up fashion. Given the example tree shown in above 

Figure, the algorithm looks for frequent itemsets ending in e first, followed by d, c, 

b, and finally, a. 

We can derive the frequent itemsets ending with a particular item. The extracted 

paths are shown in following Figure 

 
Figure. Decomposing the frequent itemset generation problem into multiple sub 

problems, where each sub problem involves finding frequent itemsets ending in e, d, 

e, b, and a. 
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FP-growth finds all the frequent itemsets ending with a particular suffix by 

employing a divide-and-conquer strategy to split the problem into smaller sub 

problems. For example, suppose we are interested in finding all frequent itemsets 

ending in e. To do this, we must first check whether the itemset {e} itself is frequent. 

If it is frequent, we consider the sub problem of finding frequent itemsets ending in 

de, followed by ce, be, and ae. In turn, each of these sub problems are further 

decomposed into smaller sub problems. By merging the solutions obtained from the 

sub problems, all the frequent itemsets ending in e can be found. This divide-and-

conquer approach is the key strategy employed by the FP-growth algorithm. 

 
Table. The list of frequent itemsets ordered by their corresponding suffixes 

FP-growth is an interesting algorithm because it illustrates how a compact 

representation of the transaction data set helps to efficiently generate frequent 

itemsets. The run-time performance of FP-growth depends on the compaction factor 

of the data set. If the resulting conditional FP-trees are very bushy (in the worst case, 

a full prefix tree), then the performance of the algorithm degrades significantly 

because it has to generate a large number of sub problems and merge the results 

returned by each sub problem. 


