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best split, Algorithm for decision tree induction. 

Model over fitting: Due to presence of noise, due to lack of representation 

samples, evaluating the performance of classifier: hold out method, random 

subsampling, cross validation, bootstrap (Tan) 

 

Classification: Basic concepts 

Classification, which is the task of assigning objects to one of several predefined 

categories, is a pervasive problem that encompasses many diverse applications. 

Examples include detecting spam email messages based upon the message 

header and content, categorizing cells as malignant or benign based upon the 

results of MRI scans, and classifying galaxies based upon their shapes. A 

classification model may be built to categorize bank loan applications as either safe 

or risky, while a prediction model may be built to predict the expenditures of 

potential customers on computer equipment given their income and occupation. 

Data classification is a two step process. In the first step, a model is built describing 

a predetermined set of data classes or concepts. The model is constructed by 

analyzing database tuples described by attributes. Each tuple is assumed to belong to 

a predefined class, as determined by one of the attributes, called the class label 

attribute. In the second step the constructed model is used to classify the samples. 

Classification is the task of learning a target function f that maps each attribute set X 

to one of the predefined class labels y. 

 
Figure Classification is the task of mapping an input attribute set x into its class 

label y. 

Classification model is useful for the following purposes. 

Descriptive Modeling A classification model can serve as an explanatory tool to 

distinguish between objects of different classes. For example, it would be useful-for 

both biologists and others-to have a descriptive model that summarizes the data 

shown in following Table and explains what features define a vertebrate as a 

mammal, reptile, bird, fish, or amphibian. 
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Table . The vertebrate data set. 

Predictive Modeling A classification model can also be used to predict the class 

label of unknown records. 

 
General Approach to Solving a Classification Problem 

A classification technique (or classifier) is a systematic approach to building 

classification models from an input data set. Examples include decision tree 

classifiers, rule-based classifiers, neural networks, support vector machines, and 

naive Bayes classifiers. Each technique employs a learning algorithm to identify a 

model that best fits the relationship between the attribute set and class label of the 

input data. The model generated by a learning algorithm should both fit the input 

data well and correctly predict the class labels of records it has never seen before. 

Therefore, a key objective of the learning algorithm is to build models with good 

generalization capability; i.e., models that accurately predict the class labels of 

previously unknown records. 

The following figure shows a general approach for solving classification problems. 

First, a training set consisting of records whose class labels are known must be 

provided. The training set is used to build a classification model, which is 

subsequently applied to the test set, which consists of records with unknown class 

labels. 
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Figure: General approach for building a classification model. 

Evaluation of the performance of a classification model is based on the counts of test 

records correctly and incorrectly predicted by the model. These counts are tabulated 

in a table known as a confusion matrix as shown below. 

 
Table: Confusion matrix for a 2 class problem. 

Based on the entries in the confusion matrix, the total number of correct predictions 

made by the model is (f11 + foo) and the total number of incorrect predictions is (f1o 

+ f01) . 

Although a confusion matrix provides the information needed to determine how well 

a classification model performs, summarizing this information with a single 

number would make it more convenient to compare the performance of different 

models. This can be done using a performance metric such as accuracy, which is 

defined as follows: 

 
Equivalently, the performance of a model can be expressed in terms of its error rate, 

which is given by the following equation: 
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Most classification algorithms seek models that attain the highest accuracy, or 

equivalently, the lowest error rate when applied to the test set. 

Decision Tree Induction 

How a Decision Tree Works 

To illustrate how classification with a decision tree works, consider a simpler 

version of the vertebrate classification problem described in the previous section. 

Instead of classifying the vertebrates into five distinct groups of species, we assign 

them to two categories: mammals and non-mammals. Suppose a new species is 

discovered by scientists. How can we tell whether it is a mammal or a non-

mammal? One approach is to pose a series of questions about the characteristics 

of the species. The first question we may ask is whether the species is cold- or 

warm-blooded. If it is cold-blooded, then it is definitely not a mammal. Otherwise, it 

is either a bird or a mammal. In the latter case, we need to ask a follow-up question: 

Do the females of the species give birth to their young? Those that do give birth are 

definitely mammals, while those that do not are likely to be non-mammals (with the 

exception of egg-laying mammals such as the platypus and spiny anteater). 

The previous example illustrates how we can solve a classification problem by 

asking a series of carefully crafted questions about the attributes of the test record. 

Each time we receive an answer, a follow-up question is asked until we reach a 

conclusion about the class label of the record. The series of questions and their 

possible answers can be organized in the form of a decision tree, which is a 

hierarchical structure consisting of nodes and directed edges. 

The following Figure shows the decision tree for the mammal classification 

problem. The tree has three types of nodes: 

• A root node that has no incoming edges and zero or more outgoing edges. 

• Internal nodes, each of which has exactly one incoming edge and two or more 

outgoing edges. 

• Leaf or terminal nodes, each of which has exactly one incoming edge and no 

outgoing edges. 

In a decision tree, each leaf node is assigned a class label. The nonterminal nodes, 

which include the root and other internal nodes, contain attribute test conditions to 

separate records that have different characteristics. 
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Figure: A decision tree for the mammal classification problem. 

For example, the root node shown in above figure uses the attribute body 

Temperature to separate warm-blooded from cold-blooded vertebrates. Since all 

cold-blooded vertebrates are non-mammals, a leaf node labeled Non-mammals is 

created as the right child of the root node. If the vertebrate is warm-blooded, a 

subsequent attribute, Gives Birth, is used to distinguish mammals from other warm-

blooded creatures, which are mostly birds. 

Classifying a test record is straightforward once a decision tree has been constructed. 

Starting from the root node, we apply the test condition to the record and follow the 

appropriate branch based on the outcome of the test. 

 
As an illustration, the above Figure traces the path in the decision tree that is used to 

predict the class label of a flamingo. The path terminates at a leaf node labeled Non-

mammals. 

How to Build a Decision Tree 

Hunt's Algorithm 
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In Hunt's algorithm, a decision tree is grown in a recursive fashion by 

partitioning the training records into successively purer subsets. Let Dt be the set of 

training records that are associated with node t and y = {y1, y2, ... ,yc} be the class 

labels. The following is a recursive definition of Hunt's algorithm. 

 

Step 1: If all the records in Dt, belong to the same class yt then t is a leaf node 

labeled as yt. 

Step 2: If Dt contains records that belong to more than one class, an attribute test 

condition is selected to partition the records into smaller subsets. A child node is 

created for each outcome of the test condition and the records in Dt are distributed to 

the children based on the outcomes. The algorithm is then recursively applied to 

each child node. 

In the example shown in following Figure each record contains the personal 

information of a borrower along with a class label indicating whether the borrower 

has defaulted on loan payments. 

 
Figure: Training set for predicting borrowers who will default on loan payments. 

The initial tree for the classification problem contains a single node with class label 

Defaulted = No (see following  Figure (a)), which means that most of the borrowers 

successfully repaid their loans. The tree, however, needs to be refined since the root 

node contains records from both classes. The records M" subsequently divided into 

smaller subsets based on the outcomes of the Home Owner test condition, as shown 

in following Figure (b). Hunt's algorithm is then applied recursively to each child of 

the root node. From the training set given in above Figure, notice that all borrowers 

who are home owners successfully repaid their loans. The left child of the root is 

therefore a leaf node labeled Defaulted = No (see following Figure (b)). For the right 

child, we need to continue applying the recursive step of Hunt's algorithm until all 
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the records belong to the same class. The trees resulting from each recursive step are 

shown in following Figures (c) and (d). 

 
Figure: Hunts algorithm for inducing decision trees. 

Design Issues of Decision Tree Induction 

A learning algorithm for inducing decision trees must address the following two 

issues. 

1. How should the training records be split? Each recursive step of the tree-growing 

process must select an attribute test condition to divide the records into smaller 

subsets. 

2. How should the splitting procedure stop? A stopping condition is needed to 

terminate the tree-growing process. A possible strategy is to continue expanding a 

node until either all the records belong to the same class or all the records have 

identical attribute values. 

Methods for Expressing Attribute Test Conditions 

Decision tree induction algorithms must provide a method for expressing an attribute 

test condition and its corresponding outcomes for different attribute types. 

Binary Attributes The test condition for a binary attribute generates two potential 

outcomes, as shown in following Figure. 
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Figure: Test condition for binary attributes. 

Nominal Attributes Since a nominal attribute can have many values its test 

condition can be expressed in two ways, as shown in following Figure. For a multi 

way split (following Figure (a), the number of outcomes depends on the number of 

distinct values for the corresponding attribute. For example, if an attribute such as 

marital status has three distinct values----single, married, or divorced-its test 

condition will produce a three-way split. On the other hand, some decision tree 

algorithms, such as CART, produce only binary splits by considering all 2
k-1

 - 1 

ways of creating a binary partition of k attribute values. Following Figure (b) 

illustrates three different ways of grouping the attribute values for marital status into 

two subsets. 

 
(b) Binary split {by grouping attribute values} 

Figure: Test conditions for nominal attributes. 

Ordinal Attributes Ordinal attributes can also produce binary or multi way splits. 

Ordinal attribute values can be grouped as long as the grouping does not violate the 

order property of the attribute values. The following Figure illustrates various ways 

of splitting training records based on the Shirt Size attribute. 

The groupings shown in Figures (a) and (b) preserve the order among the attribute 

values, whereas the grouping shown in Figure (c) violates this property because it 
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combines the attribute values Small and Large into the same partition while Medium 

and Extra Large are combined into another partition. 

 
Figure: Different ways of grouping ordinal attribute values. 

Continuous Attributes For continuous attributes, the test condition can be 

expressed as a comparison test (A < v) or (A ≥ v) with binary outcomes, or a range 

query with outcomes of the form Vi ≤ A < Vi+l, for i = 1, ... , k. The difference 

between these approaches is shown in following Figure 

 
Figure: Test condition for continuous attributes. 

Measures for Selecting the Best Split 

Attribute selection measure:- The information gain measure is used to select the test 

attribute at each node in the tree. Such a measure is referred to as an attribute 

selection measure or a measure of the goodness of split. The attribute with the 

highest information gain (or greatest entropy reduction) is chosen as the test attribute 

for the current node.  

Let S be a set consisting of s data samples. Suppose the class label attribute has m 

distinct values defining m distinct classes, Ci (for i = 1,..,m). Let si be the number of 

samples of S in class Ci. The expected information needed to classify a given sample 

is given by: 

 
The entropy, or expected information based on the partitioning into subsets by A is 

given by: 
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The smaller the entropy value is, the greater the purity of the subset partitions. The 

encoding information that would be gained by branching on A is 

 
Example: Induction of a decision tree. The following Table presents a training set of 

data tuples taken from the All Electronics customer database. (The data are adapted 

from [Quinlan 1986b]). The class label attribute, buys computer, has two distinct 

values (namely {yes, no}), therefore, there are two distinct classes (m = 2). Let C1 

correspond to the class yes and class C2 correspond to no. There are 9 samples of 

class yes and 5 samples of class no. To compute the information gain of each 

attribute, we first use first Equation to compute the expected information needed to 

classify a given sample. This is: 

 

 
Next, we need to compute the entropy of each attribute. Let's start with the attribute 

age. We need to look at the distribution of yes and no samples for each value of age. 

We compute the expected information for each of these distributions. 

 
Table. Training set 

Using second equation the expected information needed to classify a given sample if 

the samples are partitioned according to age is 
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Hence, the gain in information from such a partition would be: 

 
Similarly, we can compute Gain (income) = 0.029, Gain(student) = 0.151, and 

Gain(credit rating) = 0.048. Since age has the highest information gain among the 

attributes, it is selected as the test attribute. A node is created and labeled with age, 

and branches are grown for each of the attribute's values. The samples are then 

partitioned accordingly, as shown in following Figure. 

 
 

Notice that the samples falling into the partition for age = 30-40 all belong to the 

same class. Since they all belong to class yes, a leaf should therefore be created at 

the end of this branch and labeled with yes. The final decision tree returned by the 

algorithm is shown in following Figure. 

 
Algorithm: (generate_decision_tree) generate a decision tree from the given training 

data 



UNIT IV 

 

Page No. : 12 

 
Some examples of impurity measures include 

 
where c is the number of classes and 0 log2 0 = 0 in entropy calculations 

We provide several examples of computing the 

different impurity measures. 

 

 
Splitting of Binary Attributes 

Consider the diagram shown in following Figure. Suppose there are two ways to 

split the data into smaller subsets. Before splitting, the Gini index is 0.5 since there 

are an equal number of records from both classes. If attribute A is chosen to split the 

data, the Gini index for node N1 is 0.4898, and for node N2, it is 0.480. The 

weighted average of the Gini index for the descendent nodes is (7/12) x 0.4898 + 

(5/12) x 0.480 = 0.486. Similarly, we can show that the weighted average of the Gini 
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index for attribute B is 0.375. Since the subsets for attribute B have a smaller Gini 

index, it is preferred over attribute A. 

 
Figure: Splitting binary attributes. 

Splitting of Nominal Attributes 

As previously noted, a nominal attribute can produce either binary or multi way 

splits. The computation of the Gini index for a binary split is similar to that shown 

for determining binary attributes. For the first binary grouping of the Car Type 

attribute, the Gini index of {Sports, Luxury} is 0.4922 and the Gini index of 

{Family} is 0.3750. The weighted average Gini index for the grouping is equal to 

16/20 X 0.4922 +4/20 X 0.3750 = 0.468. 

Similarly, for the second binary grouping of {Sports} and {Family. Luxury}, the 

weighted average Gini index is 0.167. The second grouping has a lower Gini index 

because its corresponding subsets are much purer. 

For the multiway split, the Gini index is computed for every attribute value. Since 

Gini({Family}) = 0.375, Gini({Sports}) = 0, and Gini({Luxury}) = 0.219, the 

overall Gini index for the multi way split is equal to 4/20 X 0.375 + 8/20 X 0 + 8/20 

X 0.219 = 0.163. 

The multiway split has a smaller Gini index compared to both two-way splits. 
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Figure  Splitting nominal attributes. 

Splitting of Continuous Attributes 

Consider the example shown in Figure 4.16, in which the test condition Annual 

Income ≤ v is used to split the training records for the loan default classification 

problem. 

 
Figure: Splitting continuous attributes. 

The best split position corresponds to the one that produces the smallest Gini index, 

i.e., v = 97. This procedure is less expensive because it requires a constant 

amount of time to update the class distribution at each candidate split position. 

Model Over fitting 

The errors committed by a classification model are generally divided into two types: 

training errors and generalization errors. Training error, also known as 

(resubstitution error or apparent error) is the number of misclassification errors 

committed on training records) whereas generalization error is the expected error of 

the model on previously unseen records. A good model must have low training error 

as well as low generalization error. This is important because a model that fits the 

training data too well can have a poorer generalization error than a model with a 

higher training error. Such a situation is known as model over fitting. 

Notice that the training and test error rates of the model are large when the size of 

the tree is very small. This situation is known as model under fitting. As the number 

of nodes in the decision tree increases, the tree will have fewer training and test 

errors. However, once the tree becomes too large, its test error rate begins to 
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increase even though its training error rate continues to decrease. This 

phenomenon is known as model over fitting. Over fitting Due to Presence of Noise 

Consider the training and test sets shown in following Tables for the mammal 

classification problem. Two of the ten training records are mislabeled: bats and 

whales are classified as non-mammals instead of mammals. 

 
Table: An example of training set for classifying mammals. Class labels with 

asterisk symbols represent mislabeled records. 

 
Table: An example test set for classifying mammals. 

A decision tree that perfectly fits the training data is shown in Figure (a). Although 

the training error for the tree is zero, its error rate on the test set is 30%. Both 

humans and dolphins were misclassified as non-mammals because their attribute 

values for Body Temperature, Gives Birth, and Four-legged are identical to the 

mislabeled records in the training set. In contrast, the decision tree M2 shown in 

Figure 4.25(b) has a lower test error rate (10%) even though its training error rate is 

somewhat higher (20%). 

It is evident that the first decision tree, MI, has over fitted the training data because 

there is a simpler model with lower error rate on the test set. The Four-legged 

attribute test condition in model Ml is spurious because it fits the mislabeled training 
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records, which leads to the misclassification of records in the test set. 

 
Figure: Decision tree induced from the data set shown in above Table 

Over fitting Due to Lack of Representative Samples 

Models that make their classification decisions based on a small number of training 

records are also susceptible to overfitting. Such models can be generated because of 

lack of representative samples in the training data and learning algorithms that 

continue to refine their models even when few training records are available. 

Consider the five training records shown in following Table. All of these training 

records are labeled correctly and the corresponding decision tree is depicted in 

following Figure. Although its training error is zero, its error rate on the test set is 

30%. 

 
Table: An example training set for classifying mammals. 
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Figure: Decision tree induced from the data set shown in above table 

Humans, elephants, and dolphins are misclassified because the decision tree 

classifies all warm-blooded vertebrates that do not hibernate as non-mammals. 

The tree arrives at this classification decision because there is only one training 

record, which is an eagle, with such characteristics. This example clearly 

demonstrates the danger of making wrong predictions when there are not enough 

representative examples at the leaf nodes of a decision tree. 

Evaluating the Performance of a Classifier 

Holdout Method 

In the holdout method, the original data with labeled examples is partitioned into 

two disjoint sets, called the training and the test sets, respectively. A classification 

model is then induced from the training set and its performance is evaluated on the 

test set. The proportion of data reserved for training and for testing is typically at the 

discretion of the analysts (e.g., 50-50 or two thirds for training and one-third for 

testing). The accuracy of the classifier can be estimated based on the accuracy of the 

induced model on the test set. 

The holdout method has several well-known limitations.  

First, fewer labeled examples are available for training because some of the records 

are withheld for testing. As a result, the induced model may not be as good as when 

all the labeled examples are used for training.  

Second, the model may be highly dependent on the composition of the training and 

test sets. Smaller the training set size, the larger the variance of the model. On the 

other hand, if the training set is too large, then the estimated accuracy computed 

from the smaller test set is less reliable. 

Finally, the training and test sets are no longer independent of each other. Because 

the training and test sets are subsets of the original data, a class that is 

overrepresented in one subset will be underrepresented in the other, and vice versa. 
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Random Subsampling 

The holdout method can be repeated several times to improve the estimation of a 

classifier's performance. This approach is known as random subsampling. Let acci 

be the model accuracy during the ith iteration. The overall accuracy is given by 

Accsub = ∑i=
k
1acci/ k. Random subsampling still encounters some of the problems 

associated with the holdout method because it does not utilize as much data as 

possible for training. It also has no control over the number of times each record is 

used for testing and training. Consequently, some records might be used for training 

more often than others. 

Cross-Validation 

An alternative to random subsampling is cross-validation. In this approach, each 

record is used the same number of times for training and exactly once for testing. To 

illustrate this method, suppose we partition the data into two equal-sized subsets. 

First, we choose one of the subsets for training and the other for testing. We then 

swap the roles of the subsets so that the previous training set becomes the test set 

and vice versa. This approach is called a twofold cross-validation. The total error is 

obtained by summing up the errors for both runs. The k-fold cross-validation method 

generalizes this approach by segmenting the data into k equal-sized partitions. 

During each run, one of the partitions is chosen for testing, while the rest of them are 

used for training. 

This procedure is repeated k times so that each partition is used for testing exactly 

once. Again, the total error is found by summing up the errors for all k runs. The 

drawback of this approach is that it is computationally expensive to repeat the 

procedure N times. 

Bootstrapapproach 

The methods presented so far assume that the training records are sampled without 

replacement. As a result, there are no duplicate records in the training and test sets. 

In the bootstrap approach, the training records are sampled with replacement; i.e., a 

record already chosen for training is put back into the original pool of records so that 

it is equally likely to be redrawn. 


