
UNIT IV

Page No. : 1

Classification: Basic concepts, general approach to solving a classification

problem, decision tree induction: working of decision tree, building a decision

tree, methods for expressing attribute test conditions, measures for selecting the

best split, Algorithm for decision tree induction.

Model over fitting: Due to presence of noise, due to lack of representation

samples, evaluating the performance of classifier: hold out method, random

subsampling, cross validation, bootstrap (Tan)

Classification: Basic concepts

Classification, which is the task of assigning objects to one of several predefined

categories, is a pervasive problem that encompasses many diverse applications.

Examples include detecting spam email messages based upon the message

header and content, categorizing cells as malignant or benign based upon the

results of MRI scans, and classifying galaxies based upon their shapes. A

classification model may be built to categorize bank loan applications as either safe

or risky, while a prediction model may be built to predict the expenditures of

potential customers on computer equipment given their income and occupation.

Data classification is a two step process. In the first step, a model is built describing

a predetermined set of data classes or concepts. The model is constructed by

analyzing database tuples described by attributes. Each tuple is assumed to belong to

a predefined class, as determined by one of the attributes, called the class label

attribute. In the second step the constructed model is used to classify the samples.

Classification is the task of learning a target function f that maps each attribute set X

to one of the predefined class labels y.

Figure Classification is the task of mapping an input attribute set x into its class

label y.

Classification model is useful for the following purposes.

Descriptive Modeling A classification model can serve as an explanatory tool to

distinguish between objects of different classes. For example, it would be useful-for

both biologists and others-to have a descriptive model that summarizes the data

shown in following Table and explains what features define a vertebrate as a

mammal, reptile, bird, fish, or amphibian.

UNIT IV

Page No. : 2

Table . The vertebrate data set.

Predictive Modeling A classification model can also be used to predict the class

label of unknown records.

General Approach to Solving a Classification Problem

A classification technique (or classifier) is a systematic approach to building

classification models from an input data set. Examples include decision tree

classifiers, rule-based classifiers, neural networks, support vector machines, and

naive Bayes classifiers. Each technique employs a learning algorithm to identify a

model that best fits the relationship between the attribute set and class label of the

input data. The model generated by a learning algorithm should both fit the input

data well and correctly predict the class labels of records it has never seen before.

Therefore, a key objective of the learning algorithm is to build models with good

generalization capability; i.e., models that accurately predict the class labels of

previously unknown records.

The following figure shows a general approach for solving classification problems.

First, a training set consisting of records whose class labels are known must be

provided. The training set is used to build a classification model, which is

subsequently applied to the test set, which consists of records with unknown class

labels.

UNIT IV

Page No. : 3

Figure: General approach for building a classification model.

Evaluation of the performance of a classification model is based on the counts of test

records correctly and incorrectly predicted by the model. These counts are tabulated

in a table known as a confusion matrix as shown below.

Table: Confusion matrix for a 2 class problem.

Based on the entries in the confusion matrix, the total number of correct predictions

made by the model is (f11 + foo) and the total number of incorrect predictions is (f1o

+ f01) .

Although a confusion matrix provides the information needed to determine how well

a classification model performs, summarizing this information with a single

number would make it more convenient to compare the performance of different

models. This can be done using a performance metric such as accuracy, which is

defined as follows:

Equivalently, the performance of a model can be expressed in terms of its error rate,

which is given by the following equation:

UNIT IV

Page No. : 4

Most classification algorithms seek models that attain the highest accuracy, or

equivalently, the lowest error rate when applied to the test set.

Decision Tree Induction

How a Decision Tree Works

To illustrate how classification with a decision tree works, consider a simpler

version of the vertebrate classification problem described in the previous section.

Instead of classifying the vertebrates into five distinct groups of species, we assign

them to two categories: mammals and non-mammals. Suppose a new species is

discovered by scientists. How can we tell whether it is a mammal or a non-

mammal? One approach is to pose a series of questions about the characteristics

of the species. The first question we may ask is whether the species is cold- or

warm-blooded. If it is cold-blooded, then it is definitely not a mammal. Otherwise, it

is either a bird or a mammal. In the latter case, we need to ask a follow-up question:

Do the females of the species give birth to their young? Those that do give birth are

definitely mammals, while those that do not are likely to be non-mammals (with the

exception of egg-laying mammals such as the platypus and spiny anteater).

The previous example illustrates how we can solve a classification problem by

asking a series of carefully crafted questions about the attributes of the test record.

Each time we receive an answer, a follow-up question is asked until we reach a

conclusion about the class label of the record. The series of questions and their

possible answers can be organized in the form of a decision tree, which is a

hierarchical structure consisting of nodes and directed edges.

The following Figure shows the decision tree for the mammal classification

problem. The tree has three types of nodes:

• A root node that has no incoming edges and zero or more outgoing edges.

• Internal nodes, each of which has exactly one incoming edge and two or more

outgoing edges.

• Leaf or terminal nodes, each of which has exactly one incoming edge and no

outgoing edges.

In a decision tree, each leaf node is assigned a class label. The nonterminal nodes,

which include the root and other internal nodes, contain attribute test conditions to

separate records that have different characteristics.

UNIT IV

Page No. : 5

Figure: A decision tree for the mammal classification problem.

For example, the root node shown in above figure uses the attribute body

Temperature to separate warm-blooded from cold-blooded vertebrates. Since all

cold-blooded vertebrates are non-mammals, a leaf node labeled Non-mammals is

created as the right child of the root node. If the vertebrate is warm-blooded, a

subsequent attribute, Gives Birth, is used to distinguish mammals from other warm-

blooded creatures, which are mostly birds.

Classifying a test record is straightforward once a decision tree has been constructed.

Starting from the root node, we apply the test condition to the record and follow the

appropriate branch based on the outcome of the test.

As an illustration, the above Figure traces the path in the decision tree that is used to

predict the class label of a flamingo. The path terminates at a leaf node labeled Non-

mammals.

How to Build a Decision Tree

Hunt's Algorithm

UNIT IV

Page No. : 6

In Hunt's algorithm, a decision tree is grown in a recursive fashion by

partitioning the training records into successively purer subsets. Let Dt be the set of

training records that are associated with node t and y = {y1, y2, ... ,yc} be the class

labels. The following is a recursive definition of Hunt's algorithm.

Step 1: If all the records in Dt, belong to the same class yt then t is a leaf node

labeled as yt.

Step 2: If Dt contains records that belong to more than one class, an attribute test

condition is selected to partition the records into smaller subsets. A child node is

created for each outcome of the test condition and the records in Dt are distributed to

the children based on the outcomes. The algorithm is then recursively applied to

each child node.

In the example shown in following Figure each record contains the personal

information of a borrower along with a class label indicating whether the borrower

has defaulted on loan payments.

Figure: Training set for predicting borrowers who will default on loan payments.

The initial tree for the classification problem contains a single node with class label

Defaulted = No (see following Figure (a)), which means that most of the borrowers

successfully repaid their loans. The tree, however, needs to be refined since the root

node contains records from both classes. The records M" subsequently divided into

smaller subsets based on the outcomes of the Home Owner test condition, as shown

in following Figure (b). Hunt's algorithm is then applied recursively to each child of

the root node. From the training set given in above Figure, notice that all borrowers

who are home owners successfully repaid their loans. The left child of the root is

therefore a leaf node labeled Defaulted = No (see following Figure (b)). For the right

child, we need to continue applying the recursive step of Hunt's algorithm until all

UNIT IV

Page No. : 7

the records belong to the same class. The trees resulting from each recursive step are

shown in following Figures (c) and (d).

Figure: Hunts algorithm for inducing decision trees.

Design Issues of Decision Tree Induction

A learning algorithm for inducing decision trees must address the following two

issues.

1. How should the training records be split? Each recursive step of the tree-growing

process must select an attribute test condition to divide the records into smaller

subsets.

2. How should the splitting procedure stop? A stopping condition is needed to

terminate the tree-growing process. A possible strategy is to continue expanding a

node until either all the records belong to the same class or all the records have

identical attribute values.

Methods for Expressing Attribute Test Conditions

Decision tree induction algorithms must provide a method for expressing an attribute

test condition and its corresponding outcomes for different attribute types.

Binary Attributes The test condition for a binary attribute generates two potential

outcomes, as shown in following Figure.

UNIT IV

Page No. : 8

Figure: Test condition for binary attributes.

Nominal Attributes Since a nominal attribute can have many values its test

condition can be expressed in two ways, as shown in following Figure. For a multi

way split (following Figure (a), the number of outcomes depends on the number of

distinct values for the corresponding attribute. For example, if an attribute such as

marital status has three distinct values----single, married, or divorced-its test

condition will produce a three-way split. On the other hand, some decision tree

algorithms, such as CART, produce only binary splits by considering all 2
k-1

 - 1

ways of creating a binary partition of k attribute values. Following Figure (b)

illustrates three different ways of grouping the attribute values for marital status into

two subsets.

(b) Binary split {by grouping attribute values}

Figure: Test conditions for nominal attributes.

Ordinal Attributes Ordinal attributes can also produce binary or multi way splits.

Ordinal attribute values can be grouped as long as the grouping does not violate the

order property of the attribute values. The following Figure illustrates various ways

of splitting training records based on the Shirt Size attribute.

The groupings shown in Figures (a) and (b) preserve the order among the attribute

values, whereas the grouping shown in Figure (c) violates this property because it

UNIT IV

Page No. : 9

combines the attribute values Small and Large into the same partition while Medium

and Extra Large are combined into another partition.

Figure: Different ways of grouping ordinal attribute values.

Continuous Attributes For continuous attributes, the test condition can be

expressed as a comparison test (A < v) or (A ≥ v) with binary outcomes, or a range

query with outcomes of the form Vi ≤ A < Vi+l, for i = 1, ... , k. The difference

between these approaches is shown in following Figure

Figure: Test condition for continuous attributes.

Measures for Selecting the Best Split

Attribute selection measure:- The information gain measure is used to select the test

attribute at each node in the tree. Such a measure is referred to as an attribute

selection measure or a measure of the goodness of split. The attribute with the

highest information gain (or greatest entropy reduction) is chosen as the test attribute

for the current node.

Let S be a set consisting of s data samples. Suppose the class label attribute has m

distinct values defining m distinct classes, Ci (for i = 1,..,m). Let si be the number of

samples of S in class Ci. The expected information needed to classify a given sample

is given by:

The entropy, or expected information based on the partitioning into subsets by A is

given by:

UNIT IV

Page No. : 10

The smaller the entropy value is, the greater the purity of the subset partitions. The

encoding information that would be gained by branching on A is

Example: Induction of a decision tree. The following Table presents a training set of

data tuples taken from the All Electronics customer database. (The data are adapted

from [Quinlan 1986b]). The class label attribute, buys computer, has two distinct

values (namely {yes, no}), therefore, there are two distinct classes (m = 2). Let C1

correspond to the class yes and class C2 correspond to no. There are 9 samples of

class yes and 5 samples of class no. To compute the information gain of each

attribute, we first use first Equation to compute the expected information needed to

classify a given sample. This is:

Next, we need to compute the entropy of each attribute. Let's start with the attribute

age. We need to look at the distribution of yes and no samples for each value of age.

We compute the expected information for each of these distributions.

Table. Training set

Using second equation the expected information needed to classify a given sample if

the samples are partitioned according to age is

UNIT IV

Page No. : 11

Hence, the gain in information from such a partition would be:

Similarly, we can compute Gain (income) = 0.029, Gain(student) = 0.151, and

Gain(credit rating) = 0.048. Since age has the highest information gain among the

attributes, it is selected as the test attribute. A node is created and labeled with age,

and branches are grown for each of the attribute's values. The samples are then

partitioned accordingly, as shown in following Figure.

Notice that the samples falling into the partition for age = 30-40 all belong to the

same class. Since they all belong to class yes, a leaf should therefore be created at

the end of this branch and labeled with yes. The final decision tree returned by the

algorithm is shown in following Figure.

Algorithm: (generate_decision_tree) generate a decision tree from the given training

data

UNIT IV

Page No. : 12

Some examples of impurity measures include

where c is the number of classes and 0 log2 0 = 0 in entropy calculations

We provide several examples of computing the

different impurity measures.

Splitting of Binary Attributes

Consider the diagram shown in following Figure. Suppose there are two ways to

split the data into smaller subsets. Before splitting, the Gini index is 0.5 since there

are an equal number of records from both classes. If attribute A is chosen to split the

data, the Gini index for node N1 is 0.4898, and for node N2, it is 0.480. The

weighted average of the Gini index for the descendent nodes is (7/12) x 0.4898 +

(5/12) x 0.480 = 0.486. Similarly, we can show that the weighted average of the Gini

UNIT IV

Page No. : 13

index for attribute B is 0.375. Since the subsets for attribute B have a smaller Gini

index, it is preferred over attribute A.

Figure: Splitting binary attributes.

Splitting of Nominal Attributes

As previously noted, a nominal attribute can produce either binary or multi way

splits. The computation of the Gini index for a binary split is similar to that shown

for determining binary attributes. For the first binary grouping of the Car Type

attribute, the Gini index of {Sports, Luxury} is 0.4922 and the Gini index of

{Family} is 0.3750. The weighted average Gini index for the grouping is equal to

16/20 X 0.4922 +4/20 X 0.3750 = 0.468.

Similarly, for the second binary grouping of {Sports} and {Family. Luxury}, the

weighted average Gini index is 0.167. The second grouping has a lower Gini index

because its corresponding subsets are much purer.

For the multiway split, the Gini index is computed for every attribute value. Since

Gini({Family}) = 0.375, Gini({Sports}) = 0, and Gini({Luxury}) = 0.219, the

overall Gini index for the multi way split is equal to 4/20 X 0.375 + 8/20 X 0 + 8/20

X 0.219 = 0.163.

The multiway split has a smaller Gini index compared to both two-way splits.

UNIT IV

Page No. : 14

Figure Splitting nominal attributes.

Splitting of Continuous Attributes

Consider the example shown in Figure 4.16, in which the test condition Annual

Income ≤ v is used to split the training records for the loan default classification

problem.

Figure: Splitting continuous attributes.

The best split position corresponds to the one that produces the smallest Gini index,

i.e., v = 97. This procedure is less expensive because it requires a constant

amount of time to update the class distribution at each candidate split position.

Model Over fitting

The errors committed by a classification model are generally divided into two types:

training errors and generalization errors. Training error, also known as

(resubstitution error or apparent error) is the number of misclassification errors

committed on training records) whereas generalization error is the expected error of

the model on previously unseen records. A good model must have low training error

as well as low generalization error. This is important because a model that fits the

training data too well can have a poorer generalization error than a model with a

higher training error. Such a situation is known as model over fitting.

Notice that the training and test error rates of the model are large when the size of

the tree is very small. This situation is known as model under fitting. As the number

of nodes in the decision tree increases, the tree will have fewer training and test

errors. However, once the tree becomes too large, its test error rate begins to

UNIT IV

Page No. : 15

increase even though its training error rate continues to decrease. This

phenomenon is known as model over fitting. Over fitting Due to Presence of Noise

Consider the training and test sets shown in following Tables for the mammal

classification problem. Two of the ten training records are mislabeled: bats and

whales are classified as non-mammals instead of mammals.

Table: An example of training set for classifying mammals. Class labels with

asterisk symbols represent mislabeled records.

Table: An example test set for classifying mammals.

A decision tree that perfectly fits the training data is shown in Figure (a). Although

the training error for the tree is zero, its error rate on the test set is 30%. Both

humans and dolphins were misclassified as non-mammals because their attribute

values for Body Temperature, Gives Birth, and Four-legged are identical to the

mislabeled records in the training set. In contrast, the decision tree M2 shown in

Figure 4.25(b) has a lower test error rate (10%) even though its training error rate is

somewhat higher (20%).

It is evident that the first decision tree, MI, has over fitted the training data because

there is a simpler model with lower error rate on the test set. The Four-legged

attribute test condition in model Ml is spurious because it fits the mislabeled training

UNIT IV

Page No. : 16

records, which leads to the misclassification of records in the test set.

Figure: Decision tree induced from the data set shown in above Table

Over fitting Due to Lack of Representative Samples

Models that make their classification decisions based on a small number of training

records are also susceptible to overfitting. Such models can be generated because of

lack of representative samples in the training data and learning algorithms that

continue to refine their models even when few training records are available.

Consider the five training records shown in following Table. All of these training

records are labeled correctly and the corresponding decision tree is depicted in

following Figure. Although its training error is zero, its error rate on the test set is

30%.

Table: An example training set for classifying mammals.

UNIT IV

Page No. : 17

Figure: Decision tree induced from the data set shown in above table

Humans, elephants, and dolphins are misclassified because the decision tree

classifies all warm-blooded vertebrates that do not hibernate as non-mammals.

The tree arrives at this classification decision because there is only one training

record, which is an eagle, with such characteristics. This example clearly

demonstrates the danger of making wrong predictions when there are not enough

representative examples at the leaf nodes of a decision tree.

Evaluating the Performance of a Classifier

Holdout Method

In the holdout method, the original data with labeled examples is partitioned into

two disjoint sets, called the training and the test sets, respectively. A classification

model is then induced from the training set and its performance is evaluated on the

test set. The proportion of data reserved for training and for testing is typically at the

discretion of the analysts (e.g., 50-50 or two thirds for training and one-third for

testing). The accuracy of the classifier can be estimated based on the accuracy of the

induced model on the test set.

The holdout method has several well-known limitations.

First, fewer labeled examples are available for training because some of the records

are withheld for testing. As a result, the induced model may not be as good as when

all the labeled examples are used for training.

Second, the model may be highly dependent on the composition of the training and

test sets. Smaller the training set size, the larger the variance of the model. On the

other hand, if the training set is too large, then the estimated accuracy computed

from the smaller test set is less reliable.

Finally, the training and test sets are no longer independent of each other. Because

the training and test sets are subsets of the original data, a class that is

overrepresented in one subset will be underrepresented in the other, and vice versa.

UNIT IV

Page No. : 18

Random Subsampling

The holdout method can be repeated several times to improve the estimation of a

classifier's performance. This approach is known as random subsampling. Let acci

be the model accuracy during the ith iteration. The overall accuracy is given by

Accsub = ∑i=
k
1acci/ k. Random subsampling still encounters some of the problems

associated with the holdout method because it does not utilize as much data as

possible for training. It also has no control over the number of times each record is

used for testing and training. Consequently, some records might be used for training

more often than others.

Cross-Validation

An alternative to random subsampling is cross-validation. In this approach, each

record is used the same number of times for training and exactly once for testing. To

illustrate this method, suppose we partition the data into two equal-sized subsets.

First, we choose one of the subsets for training and the other for testing. We then

swap the roles of the subsets so that the previous training set becomes the test set

and vice versa. This approach is called a twofold cross-validation. The total error is

obtained by summing up the errors for both runs. The k-fold cross-validation method

generalizes this approach by segmenting the data into k equal-sized partitions.

During each run, one of the partitions is chosen for testing, while the rest of them are

used for training.

This procedure is repeated k times so that each partition is used for testing exactly

once. Again, the total error is found by summing up the errors for all k runs. The

drawback of this approach is that it is computationally expensive to repeat the

procedure N times.

Bootstrapapproach

The methods presented so far assume that the training records are sampled without

replacement. As a result, there are no duplicate records in the training and test sets.

In the bootstrap approach, the training records are sampled with replacement; i.e., a

record already chosen for training is put back into the original pool of records so that

it is equally likely to be redrawn.

