
Page No. : 1

UNIT –III:

Data Warehouse and OLAP Technology: An Overview : What Is a Data

Warehouse? A Multidimensional Data Model, Data Warehouse Architecture,

Data Warehouse Implementation, From Data Warehousing to Data Mining.

(Han & Kamber)

Data Warehouse:- A data warehouse is a subject-oriented, integrated, time-variant,

and nonvolatile collection of data in support of management's decision making

process." The four keywords, subject-oriented, integrated, time-variant, and

nonvolatile, distinguish data warehouses from other data repository systems, such as

relational database systems, transaction processing systems, and file systems.

 Subject-oriented: A data warehouse is organized around major subjects rather

than concentrating on the day-to-day operations. Hence, data warehouses

provide a simple and concise view around particular subject by excluding data

that are not useful in the decision support process.

 Integrated: A data warehouse is usually constructed by integrating multiple

heterogeneous sources, such as relational databases, files, and on-line

transaction records. Data cleaning and data integration techniques are applied

to ensure consistency in data.

 Time-variant: Data are stored to provide information from a historical

perspective (e.g., the past 5-10 years). Every data in the data warehouse

contains, either implicitly or explicitly, an element of time.

 Nonvolatile: A data warehouse is always a physically separate store of data

when compared to the data at the operational environment. Due to this

separation, a data warehouse does not require transaction processing,

recovery, and concurrency control mechanisms. It usually requires only two

operations in data accessing: initial loading of data and access of data.

Diffierences between operational database systems and data warehouses:- The

major task of on-line operational database systems is to perform on-line transaction

and query processing. These systems are called on-line transaction processing

(OLTP) systems. They cover most of the day-today operations of an organization.

Data warehouse systems serve users or “knowledge workers" to perform data

analysis or decision making. Such systems can organize and present data in various

formats. These systems are known as on-line analytical processing (OLAP) systems.

 Users and system orientation: An OLTP system is customer-oriented and is

used for transaction and query processing by clerks, clients, and information

technology professionals. An OLAP system is market-oriented and is used for

data analysis by knowledge workers, including managers, business executives,

and analysts.

 Data contents: An OLTP system manages current detailed data to be used for

decision making. An OLAP system manages large amounts of historical data,

Page No. : 2

provides facilities for summarization and aggregation, and stores and manages

information at different levels.

 Database design: An OLTP system usually adopts an entity-relationship (ER)

data model and an application oriented database design. An OLAP system

typically adopts either a star or snowflake model and a subject-oriented

database design.

 View: An OLTP system focuses mainly on the current data within an

enterprise or department, without referring to historical data or data in

different organizations. In contrast, an OLAP system deals with information

that originates from different organizations, integrating information from

many data stores. Because of their huge volume, OLAP data are stored on

multiple storage media.

 Access patterns: The access patterns of an OLTP system consist of atomic

transactions. Such a system requires concurrency control and recovery

mechanisms. However, accesses to OLAP systems are mostly read-only

operations (since most data warehouses store historical rather than up-to-date

information).

Need for separate data warehouse:- Operational databases store huge amounts of

data, why not perform on-line analytical processing directly on such databases

instead of spending additional time and resources to construct a separate data

warehouse. A major reason for such a separation is to help promote the high

performance of both systems. An operational database is designed to answer simple

and pre defined queries. But data warehouse queries are complex. They involve the

computation of large groups of data at different levels, and may require the use of

multidimensional views. Processing OLAP queries on operational databases

degrades the performance of operational tasks. Moreover, an operational database

supports the concurrent processing of several transactions. Concurrency control and

recovery mechanisms are required to ensure the consistency of transactions. An

OLAP query often needs read-only access of data records for summarization and

aggregation. Concurrency control and recovery mechanisms, if applied for such

OLAP operations, may delay the execution of concurrent transactions and thus

substantially reduce the throughput of an OLTP system.

A multidimensional data model:- Data warehouses and OLAP tools are based on a

multidimensional data model. This model views data in the form of a data cube.

Data cube:- A data cube allows data to be modeled and viewed in multiple

dimensions. It is defined by dimensions and facts.

 Dimensions are the attributes with respect to which an organization wants to

keep records. For example, AllElectronics may create a sales data warehouse in

order to keep records with respect to the dimensions time, item, branch, and

location. These dimensions allow the store to keep track of things like monthly sales

of items, and the branches and locations at which the items were sold. Each

Page No. : 3

dimension may have a table associated with it, called a dimension table. Dimension

tables can be specified by users or experts, or automatically generated. A

multidimensional data model is typically organized around a central theme, like

sales, for instance. This theme is represented by a fact table. Facts are numerical

measures. Facts are the quantities used to analyze relationships between

dimensions. Examples of facts for a sales data warehouse include dollars sold (sales

amount in dollars), units sold (number of units sold), and amount budgeted. The fact

table contains the names of the facts, or measures, as well as keys to each of the

related dimension tables.

Fig below represents 2-D view of sales details for the city Vancouver with respect

to the dimensions time and item .

Fig below represents 3-D view of sales details with respect to the dimensions time

and item and loaction. 3-D data of tables are represented as a series of 2-D tables.

Fig below represents 3-D data cube view of sales details with respect to the

dimensions time and item and loaction.

Fig below represents 4-D data cube view of sales details with respect to the

dimensions time ,item, location and supplier.

Page No. : 4

In the data warehouse, a data cube of the above is referred to as a cuboid. Each data

cube consists of lattice of cuboids, each showing the data at a different level of

summarization. The lattice of cuboids is thus referred to as a data cube.

Figure shows a lattice of cuboids forming a data cube for the dimensions time, item,

location, and supplier. The cuboid which holds the lowest level of summarization is

called the base cuboid. For example, the 4-D cuboid in the above Figure is the base

cuboid for the given time, item, location, and supplier dimensions. 3-D (non-base)

cuboid for time, item, and location, summarized for all suppliers. The 0-D cuboid

which holds the highest level of summarization is called the apex cuboid. The apex

cuboid is typically denoted by all.

Page No. : 5

Stars, snowflakes, and fact constellations: Schemas for multidimensional

databases:- The entity-relationship model is commonly used in the design of

relational databases. It consists of a set of entities or objects, and the relationships

between them. Such a data model is appropriate for online transaction processing.

Data warehouses, require a concise, subject-oriented schema which facilitates on-

line data analysis. The most popular data model for data warehouses is a

multidimensional model. This model can exist in the form of a star schema, a

snowflake schema, or a fact constellation schema.

 Star schema: The star schema is a modeling paradigm in which the data

warehouse contains (1) a large central table (fact table), and (2) a set of

smaller dimension tables one for each dimension. The schema graph

resembles a starburst, with the dimension tables displayed in a radial pattern

around the central fact table.

An example of a star schema for AllElectronics sales is shown in above

Figure. Sales are considered along four dimensions, namely time, item,

branch, and location. The schema contains a central fact table for sales which

contains keys to each of the four dimensions, along with two measures:

dollars sold and units sold. In the star schema, each dimension is represented

by only one table, and each table contains a set of attributes. For example, the

location dimension table contains the attribute set i.e location key, street, city,

state, country.

 Snowflake schema: The snowflake schema is a variant of the star schema

model, where some dimension tables are normalized, thereby further splitting

the data into additional tables. The resulting schema graph forms a shape

similar to a snowflake.

The major difference between the snowflake and star schema models is

that the dimension tables of the snowflake model may be kept in normalized

form. Such a table is easy to maintain and also saves storage space. However,

the snowflake structure can reduce the effectiveness since more joins will be

Page No. : 6

needed to execute a query. This may affect the system performance.

Snowflake schema of a data warehouse for sales.

A compromise between the star schema and the snowflake schema is to

adopt a mixed schema where only the very large dimension tables are

normalized. Normalizing large dimension tables saves storage space, while

keeping small dimension tables unnormalized may reduce the cost and

performance degradation due to joins on multiple dimension tables. Doing

both may lead to an overall performance gain.

 Fact constellation: Sophisticated applications may require multiple fact tables

to share dimension tables. This kind of schema can be viewed as a collection

of stars, and hence is called a galaxy schema or a fact constellation.

Fig:- Fact constellation schema of a data warehouse for sales and shipping.

An example of a fact constellation schema is shown in Figure. This schema

specifies two fact tables, sales and shipping. A fact constellation schema

allows dimension tables to be shared between fact tables. The dimensions

tables for time, item, and location, are shared between both the sales and

shipping fact tables.

Examples for defining star, snowflake, and fact constellation schemas

How can I define a multidimensional schema for my data?"

Just as relational query languages like SQL can be used to specify relational queries,

a data mining query language can be used to specify data mining tasks. In particular,

we examine an SQL-based data mining query language called DMQL which

contains language primitives for defining data warehouses and data marts.

Data warehouses and data marts can be defined using two language primitives, one

for cube definition and one for dimension definition. The cube definition statement

has the following syntax.

define cube <cube name> [<dimension list>] : <measure list>

The dimension definition statement has the following syntax.

Page No. : 7

define dimension <dimension name> as (<attribute or subdimension list>)

Let's look at examples of how to define the star, snowflake and constellations

schemas of Examples 2.1 to 2.3using DMQL.

Example 2.4 The star schema of Example 2.1 and Figure 2.4 is defined in DMQL as

follows.

define cube sales star [time, item, branch, location]:

dollars sold = sum(sales in dollars), units sold = count(*)

define dimension time as (time key, day, day of week, month, quarter, year)

define dimension item as (item key, item name, brand, type, supplier type)

define dimension branch as (branch key, branch name, branch type)

define dimension location as (location key, street, city, province or state, country)

The define cube statement defines a data cube called sales star, which corresponds to

the central sales fact table of Example. This command specifies the keys to the

dimension tables, and the two measures, dollars sold and units sold. The data cube

has four dimensions, namely time, item, branch, and location.

Measures: their categorization and computation

Measures can be organized into three categories, based on the kind of aggregate

functions used.

 distributive: An aggregate function is distributive if it can be computed in a

distributed manner as follows: Suppose the data is partitioned into n sets. The

computation of the function on each partition derives one aggregate value. If the

result derived by applying the function to the n aggregate values is the same as that

derived by applying the function on all the data without partitioning, the function

can be computed in a distributed manner. For example, count() can be computed for

a data cube by first partitioning the cube into a set of sub cubes, computing count()

for each subcube, and then summing up the counts obtained for each subcube. Hence

count() is a distributive aggregate function. For the same reason, sum(), min(), and

max() are distributive aggregate functions.

 algebraic: An aggregate function is algebraic if it can be computed by an algebraic

function with M arguments (where M is a bounded integer), each of which is

obtained by applying a distributive aggregate function.For example, avg() (average)

can be computed by sum()/count() where both sum() and count() are distributive

aggregate functions.

 holistic: An aggregate function is holistic if there is no constant bound on the

storage size needed to describe a subaggregate.

Concept hierarchy:- A concept hierarchy defines a sequence of mappings from a set

of low level concepts to higher level, more general concepts. Consider a concept

hierarchy for the dimension location. City values for location include Vancouver,

Toronto, New York, and Chicago. Each city can be mapped to the state to which it

Page No. : 8

belongs. For Example Vancover can be mapped to British Columbio and Chicago to

illinous.

Many concept hierarchies are implicit within the database schema. For

example, suppose that the dimension location is described by the attributes number,

street, city, state, and country. These attributes form a concept hierarchy such as

street < city < or state < country. A concept hierarchy that is a total or partial order

among attributes in a database schema is called a schema hierarchy.

Concept hierarchies may also be defined by discretizing or grouping values

for a given dimension or attribute, resulting in a set-grouping hierarchy. A total or

partial order can be defined among groups of values. An example a set-grouping

hierarchy is shown in Figure for the dimension price.

Concept hierarchies may be provided manually by system users, domain

experts, knowledge engineers, or automatically generated based on statistical

analysis of the data distribution. Concept hierarchies allow data to be handled at

varying levels of abstraction.

OLAP operations in the multidimensional data model:- In the multidimensional

model, data are organized into multiple dimensions and each dimension contains

multiple levels of abstraction defined by concept hierarchies. This organization

provides users with the flexibility to view data from different perspectives. Some of

the OLAP data cube operations are

 Roll-up: The roll-up operation (also called the “drill-up" operation) performs

aggregation on a data cube, either by climbing-up a concept hierarchy for a

Page No. : 9

dimension or by dimension reduction. The roll-up operation shown aggregates

the data by ascending the location hierarchy from the level of city to the level

of country.

 Drill-down: Drill-down is the reverse of roll-up. It navigates from less

detailed data to more detailed data. Drill-down can be realized by either

stepping-down a concept hierarchy for a dimension or introducing additional

dimensions. The drill-down operation shown aggregates the data by

descending the time hierarchy from the level of Quarter to the level of month.

 Slice and Dice: The slice operation performs a selection on one dimension of

the given cube, resulting in a subcube. Figure 2.10 shows a slice operation

where the sales data are selected from the central cube for the dimension time

using the criteria time=”Q2”. The dice operation defines a subcube by

performing a selection on two or more dimensions. Figure shows a dice

operation on the central cube based on the following selection criteria which

involves three dimensions: (location=”Montreal" or ”Vancouver”) and

(time=”Q1” or “Q2") and (item=”home entertainment" or “computer").

 Pivot (Rotate): Pivot (also called “rotate”) is a visualization operation which

rotates the data axes in view in order to provide an alternative presentation of

the data.

Page No. : 10

2.2.7 A starnet quer y model for quer ying multidi mensi onal databases

Page No. : 11

The querying of multidimensional databases can be based on a starnet model. A

starnet model consists of radial lines emanating from a central point, where each line

represents a concept hierarchy for a dimension. Each abstraction level in the

hierarchy is called a footprint. These represent the granularities available for use by

OLAP operations such as drill-down and roll-up.

Example 2.9 A starnet query model for the AllElectronics data warehouse is shown

in Figure 2.11. This starnet consists of four radial lines, representing concept

hierarchies for the dimensions location, customer, item, and time,respectively. Each

line consists of footprints representing abstraction levels of the dimension. For

example, the time line has four footprints: \day", \month", \quarter" and \year". A

concept hierarchy may involve a single attribute (like date for the time hierarchy), or

several attributes (e.g., the concept hierarchy for location involves the attributes

street, city, province or state, and country). In order to examine the item sales at

AllElectronics, one can roll up along the time dimension from month to quarter, or,

say, drill down along the location dimension from country to city. Concept

hierarchies can be used to generalize data by replacing low-level values (such as

\day" for the time dimension) by higher-level abstractions (such as \year"), or to

specialize data by replacing higher-level abstractions with lower-level values.

Data warehouse architecture:- To design an effective data warehouse one needs to

understand and analyze business needs, and construct a business analysis

framework. Four different views regarding the design of a data warehouse must be

considered:

 the top-down view, the data source view, the data warehouse view, and the

business query view.

Page No. : 12

 The top-down view allows the selection of the relevant information necessary

for the data warehouse. This information matches the current and coming

business needs.

 The data source view exposes the information being captured, stored, and

managed by operational systems. This information may be documented at

various levels of detail and accuracy

 The data warehouse view includes fact tables and dimension tables. It

represents the information that is stored inside the data warehouse, including

precalculated totals and counts, as well as information regarding the source,

date, and time of origin, added to provide historical context.

 The business query view is the perspective of data in the data warehouse

from the view point of the end-user.

A data warehouse can be built using a top-down approach, a bottom-up approach, or

a combination of both.

 The top-down approach starts with the overall design and planning. It is

useful in cases where the technology is well-known and where the business

problems that must be solved are clear and well-understood.

 The bottom-up approach starts with experiments and prototypes. This is

useful in the early stage of business and technology development. It allows an

organization to move forward at considerably less expense and to evaluate the

benefits of the technology before making significant commitments.

 In the combined approach, an organization can exploit the planned and

strategic nature of the top-down approach while retaining the rapid

implementation and opportunistic application of the bottom-up approach.

A three-tier data warehouse architecture:- Data warehouses often adopt a three-tier

architecture. The bottom tier is a ware-house database server which is almost always

a relational database system. The middle tier is an OLAP server which is typically

implemented using either a Relational OLAP (ROLAP) model or a

Multidimensional OLAP (MOLAP) model. The top tier is a client, which contains

query and reporting tools, analysis tools, and or data mining tools.

From the architecture point of view, there are three data warehouse models:

the enterprise warehouse, the data mart, and the virtual warehouse.

 Enterprise warehouse: An enterprise warehouse collects all of the

information about the entire organization. It provides corporate-wide data

integration. It typically contains detailed data as well as summarized data, and

can range in size from a few gigabytes to hundreds of gigabytes, terabytes, or

beyond. An enterprise data warehouse may be implemented on traditional

mainframes, UNIX superservers, etc., It requires extensive business modeling

and may take years to design and build.

Page No. : 13

 Fig:- A three-tier data warehousing architecture.

 Data mart: A data mart contains a subset of corporate-wide data which is

useful for a specific group of users. The scope is confined to specific,

selected subjects. For example, a marketing data mart may confine its subjects

to customer, item, and sales. The data contained in data marts tend to be

summarized. Data marts are usually implemented on low cost UNIX servers

or Windows/NT servers etc., The implementation of a data mart is within

weeks rather than months or years. Depending on the source of data, data

marts can be categorized into the following two classes: Independent data

marts are sourced from data captured from one or more operational systems or

external information providers, or from data generated locally within a

particular department or geographic area. Dependent data marts are sourced

ectly from enterprise data warehouses.

 Virtual warehouse: A virtual warehouse is a set of views over operational

databases. For efficient query processing, only some of the possible summary

views may be materialized. A virtual warehouse is easy to build but requires

excess capacity on operational database servers.

A recommended method for the development of data warehouse systems is to

implement the warehouse in an incremental and evolutionary manner. First, a

high-level corporate data model is defined within a reasonably short period of time

that provides a corporate-wide, consistent, integrated view of data on different

subjects. This high-level model is refined in the development of enterprise data

warehouses and departmental data marts. Second, independent data marts can be

implemented in parallel with the enterprise. Third, distributed data marts can be

Page No. : 14

constructed to integrate different data marts via hub servers. Finally, a multi-tier data

warehouse is constructed.

 Fig:- A recommended approach for data warehouse development.

OLAP server architectures: ROLAP vs. MOLAP vs. HOLAP:- OLAP engines

present business users with multidimensional data from data warehouses or data

marts, without knowing how or where the data are stored.

Relational OLAP (ROLAP) servers: These are the intermediate servers that stand

in between a relational back-end server and client front-end tools. They use a

relational or extended-relational DBMS to store and manage warehouse data, and

OLAP middleware to support missing pieces.

Multidimensional OLAP (MOLAP) servers: These servers support

multidimensional views of data through array-based multidimensional storage

engines. They map multidimensional views directly to data cube array structures.

The advantage of using a data cube is that it allows fast indexing to precomputed

summarized data. In multidimensional data stores, the storage utilization may be low

if the data set is sparse. In such cases, sparse matrix compression techniques should

be explored.

Hybrid OLAP (HOLAP) servers: The hybrid OLAP approach combines ROLAP

and MOLAP technology, benefitting from the greater scalability of ROLAP and the

faster computation of MOLAP. A HOLAP server may allow large volumes of detail

data to be stored in a relational database, while aggregations are kept in a separate

MOLAP store.

Page No. : 15

Data warehouse implementation:- Data warehouses contain huge volumes of

data. OLAP engines demand that decision support queries be answered in the order

of seconds. Therefore, it is important for data warehouse systems to support highly

efficient cube computation techniques, access methods, and query processing

techniques.

Efficient computation of data cubes:- In multidimensional data analysis the

efficient computation of aggregations is done by cube operator. The compute cube

operator computes aggregates over all subsets of the dimensions specified in the

operation. Based on the syntax of DMQL the data cube can be defined as

define cube sales [item, city, year]: sum(sales in dollars)

For a cube with n dimensions, there are a total of 2n cuboids, including the base

cuboid. The statement compute cube sales explicitly instructs the system to compute

the sales aggregation of cuboids for all of the eight subsets of the set item, city, year,

including the empty subset.

 The total number of cuboids for an n-dimensional data cube, is 2
n
. However,

in practice, many dimensions do have hierarchies. For example, the dimension time

is usually not just one level, such as year, but rather a hierarchy or a lattice, such as

day < week < month < quarter < year. For an n-dimensional data cube, the total

number of cuboids that can be generated (including the cuboids generated by

climbing up the hierarchies along each dimension) is:

where Li is the number of levels associated with dimension i. This formula is based

on the fact that at most one abstraction level in each dimension will appear in a

cuboid. For example, if the cube has 10 dimensions and each dimension has 4 levels,

the total number of cuboids that can be generated will be 5
10

_ 9.8 X 10
6
.

Partial materialization: Selected computation of cuboids:- There are three choices

for data cube materialization: (1) precompute only the base cuboid and none of the

remaining “non-base" cuboids (no materialization), (2) precompute all of the

cuboids (full materialization), and (3) selectively compute a proper subset of the

whole set of possible cuboids (partial materialization). The first choice leads to

computing expensive multidimensional aggregates on the dimensions, which could

be slow. The second choice may require huge amounts of memory space in order to

store all of the precomputed cuboids. The third choice presents an interesting trade-

of- between storage space and response time.

The partial materialization of cuboids should consider three factors:

(1) identify the subset of cuboids to materialize,

(2) exploit the materialized cuboids during query processing, and

 (3) efficiently update the materialized cuboids during load and refresh.

Page No. : 16

Multiway array aggregation in the computation of data cubes:- In order to ensure

fast on-line analytical processing, however, we may need to precompute all of the

cuboids for a given data cube. Since Relational OLAP (ROLAP) uses tuples and

relational tables as its basic data structures, while the basic data structure used in

multidimensional OLAP (MOLAP) is the multidimensional array, one would expect

that ROLAP and MOLAP each explore very different cube computation techniques.

ROLAP cube computation uses the following major optimization techniques.

1. Sorting, hashing, and grouping operations are applied to the dimension

attributes in order to reorder and cluster related tuples.

2. Grouping is performed on some subaggregates as a “partial grouping step".

These “partial groupings" may be used to speed up the computation of other

subaggregates.

3. Aggregates may be computed from previously computed aggregates, rather

than from the base fact tables.

MOLAP cube computation uses the following major optimization techniques.

1. Partition the array into chunks. A chunk is a subcube that is small enough to

fit into the memory available for cube computation. Chunking is a method for

dividing an n-dimensional array into small n-dimensional chunks, where each

chunk is stored as an object on disk.

2. Compute aggregates by visiting (i.e., accessing the values at) cube cells. The

order in which cells are visited can be optimized so as to minimize the number

of times that each cell must be revisited, thereby reducing memory access and

storage costs.

Indexing OLAP data:- To facilitate efficient data accessing, most data warehouse

systems support index structures and materialized views (using cuboids). OLAP data

can be indexed by bitmap indexing and join indexing.

 The bitmap indexing method is popular in OLAP products because it allows

quick searching in data cubes.

 The join indexing method gained popularity from its use in relational database

query processing.

Efficient processing of OLAP queries:- The purpose of materializing cuboids and

constructing OLAP index structures is to speed up query processing in data cubes.

Given materialized views, query processing should proceed as follows:

1. Determine which operations should be performed on the available

cuboids. This involves transforming any selection, projection, roll-up

(group-by) and drill-down operations specified in the query into

corresponding SQL and/or OLAP operations.

2. Determine to which materialized cuboid(s) the relevant operations

should be applied.

Metadata repository:- Metadata means data about data. When used in a data

warehouse, metadata is the data that define warehouse objects. A metadata

repository should contain a description of the structure of the data warehouse. This

Page No. : 17

includes the warehouse schema, view, dimensions, hierarchies, and derived data

definitions, as well as data mart locations and contents.

Data warehouse back-end tools and utilities:- Data warehouse systems use back-

end tools and utilities to populate and refresh their data. These tools and facilities

include the following functions:

1. data extraction, which typically gathers data from multiple, heterogeneous,

and external sources;

2. data cleaning, which detects errors in the data and rectifies them when

possible.

3. data transformation, which converts data format to warehouse format;

4. load, which sorts, summarizes, consolidates, computes views, checks

integrity, and builds indices and partitions and

5. refresh, which propagates the updates from the data sources to the warehouse.

Besides cleaning, loading, refreshing, and metadata definition tools, data warehouse

systems usually provide a good set of data warehouse management tools.

From data warehousing to data mining:-

Data warehouse usage:- Data warehouses and data marts are used in a wide range

of applications. Business executives in almost every industry use the data collected,

integrated, preprocessed, and stored in data warehouses and data marts to perform

data analysis and make strategic decisions. There are three kinds of data warehouse

applications: information processing, analytical processing, and data mining:

1. Information processing supports querying, basic statistical analysis, and

reporting using crosstabs, tables, charts or graphs. A current trend in data

warehouse information processing is to construct low cost Web-based

accessing tools which are then integrated with Web browsers.

2. Analytical processing supports basic OLAP operations, including slice-and-

dice, drill-down, roll-up, and pivoting. It generally operates on historical data

in both summarized and detailed forms. The major strength of on-line

analytical processing over information processing is the multidimensional

data analysis of data warehouse data.

3. Data mining supports knowledge discovery by finding hidden patterns and

associations, constructing analytical models, performing classification and

prediction, and presenting the mining results using visualization tools.

From on-line analytical processing to on-line analytical mining:- In the field of

data mining, substantial research has been performed for data mining at various

flatforms, including transaction databases, relational databases, spatial databases,

text databases, time-series databases, at files, data warehouses, etc. Among many

different paradigms and architectures of data mining systems, On-Line Analytical

Mining (OLAM) (also called OLAP mining), which integrates on-line analytical

processing (OLAP) with data mining .

Page No. : 18

Architecture for on-line analytical mining:- An OLAM engine performs analytical

mining in data cubes in a similar manner as an OLAP engine performs on-line

analytical processing. An integrated OLAM and OLAP architecture is shown in

Figure, where the OLAM and OLAP engines both accept user’s on-line queries (or

commands) via a User GUI API and work with the data cube in the data analysis via

a Cube API. A metadata directory is used to guide the access of the data cube. The

data cube can be constructed by accessing and/or integrating multiple databases

and/or by altering a data warehouse via a Database API which may support OLEDB

or ODBC connections. Since an OLAM engine may perform multiple data mining

tasks, such as concept description, association, classification, prediction, clustering,

time-series analysis, etc., it usually consists of multiple, integrated data mining

modules and is more sophisticated than an OLAP engine.

Fig:- An integrated OLAM and OLAP architecture.

