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UNIT –III: 

Data Warehouse and OLAP Technology: An Overview : What Is a Data 

Warehouse? A  Multidimensional Data Model, Data Warehouse Architecture, 

Data Warehouse Implementation, From Data Warehousing to Data Mining. 

(Han & Kamber) 

 

Data Warehouse:-  A data warehouse is a subject-oriented, integrated, time-variant, 

and nonvolatile collection of data in support of management's decision making 

process." The four keywords, subject-oriented, integrated, time-variant, and 

nonvolatile, distinguish data warehouses from other data repository systems, such as 

relational database systems, transaction processing systems, and file systems.   

 Subject-oriented: A data warehouse is organized around major subjects rather 

than concentrating on the day-to-day operations. Hence, data warehouses 

provide a simple and concise view around particular subject by excluding data 

that are not useful in the decision support process. 

 Integrated: A data warehouse is usually constructed by integrating multiple 

heterogeneous sources, such as relational databases, files, and on-line 

transaction records. Data cleaning and data integration techniques are applied 

to ensure consistency in data.  

 Time-variant: Data are stored to provide information from a historical 

perspective (e.g., the past 5-10 years). Every data in the data warehouse 

contains, either implicitly or explicitly, an element of time. 

 Nonvolatile: A data warehouse is always a physically separate store of data 

when compared to the data at the operational environment. Due to this 

separation, a data warehouse does not require transaction processing, 

recovery, and concurrency control mechanisms. It usually requires only two 

operations in data accessing: initial loading of data and access of data. 

 

Diffierences between operational database systems and data warehouses:-  The 

major task of on-line operational database systems is to perform on-line transaction 

and query processing. These systems are called on-line transaction processing 

(OLTP) systems. They cover most of the day-today operations of an organization. 

Data warehouse systems serve users or “knowledge workers" to perform data 

analysis or decision making. Such systems can organize and present data in various 

formats. These systems are known as on-line analytical processing (OLAP) systems. 

 Users and system orientation: An OLTP system is customer-oriented and is 

used for transaction and query processing by clerks, clients, and information 

technology professionals. An OLAP system is market-oriented and is used for 

data analysis by knowledge workers, including managers, business executives, 

and analysts. 

 Data contents: An OLTP system manages current detailed data to be used for 

decision making. An OLAP system manages large amounts of historical data, 
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provides facilities for summarization and aggregation, and stores and manages 

information at different levels.  

 Database design: An OLTP system usually adopts an entity-relationship (ER) 

data model and an application oriented database design. An OLAP system 

typically adopts either a star or snowflake model  and a subject-oriented 

database design. 

 View: An OLTP system focuses mainly on the current data within an 

enterprise or department, without referring to historical data or data in 

different organizations. In contrast, an OLAP system deals with information 

that originates from different organizations, integrating information from 

many data stores. Because of their huge volume, OLAP data are stored on 

multiple storage media. 

 Access patterns: The access patterns of an OLTP system consist of atomic 

transactions. Such a system requires concurrency control and recovery 

mechanisms. However, accesses to OLAP systems are mostly read-only 

operations (since most data warehouses store historical rather than up-to-date 

information). 

 

Need for  separate data warehouse:- Operational databases store huge amounts of 

data, why not perform on-line analytical processing directly on such databases 

instead of spending additional time and resources to construct a separate data 

warehouse. A major reason for such a separation is to help promote the high 

performance of both systems. An operational database is designed to answer simple 

and pre defined queries. But data warehouse queries are complex. They involve the 

computation of large groups of data at different  levels, and may require the use of 

multidimensional views. Processing OLAP queries on  operational databases 

degrades the performance of operational tasks. Moreover, an operational database 

supports the concurrent processing of several transactions. Concurrency control and 

recovery mechanisms are required to ensure the consistency of transactions. An 

OLAP query often needs read-only access of data records for summarization and 

aggregation. Concurrency control and recovery mechanisms, if applied for such 

OLAP operations, may delay the execution of concurrent transactions and thus 

substantially reduce the throughput of an OLTP system. 

 

A multidimensional data model:- Data warehouses and OLAP tools are based on a 

multidimensional data model. This model views data in the form of a data cube.  

Data cube:- A data cube allows data to be modeled and viewed in multiple 

dimensions. It is defined by dimensions and facts. 

           Dimensions are the attributes with respect to which an organization wants to 

keep records. For example, AllElectronics may create a sales data warehouse in 

order to keep records with respect to the dimensions time, item, branch, and 

location. These dimensions allow the store to keep track of things like monthly sales 

of items, and the branches and locations at which the items were sold. Each 
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dimension may have a table associated with it, called a dimension table. Dimension 

tables can be specified by users or experts, or automatically generated. A 

multidimensional data model is typically organized around a central theme, like 

sales, for instance. This theme is represented by a fact table. Facts are numerical 

measures. Facts are  the quantities used to analyze relationships between 

dimensions. Examples of facts for a sales data warehouse include dollars sold (sales 

amount in dollars), units sold (number of units sold), and amount budgeted. The fact 

table contains the names of the facts, or measures, as well as keys to each of the 

related dimension tables.  

Fig below  represents 2-D view of sales details for the city Vancouver with respect 

to the dimensions time and item .  

 
Fig below represents 3-D view of sales details with respect to the dimensions time 

and item and loaction. 3-D data of tables are represented as a series of 2-D tables. 

 
Fig below represents 3-D data cube view of sales details with respect to the 

dimensions time and item and loaction.  

 
Fig below represents 4-D data cube view of sales details with respect to the 

dimensions time ,item, location and supplier.  
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In the data warehouse, a data cube of  the above is referred to as a cuboid. Each data 

cube consists of lattice of cuboids, each showing the data at a different level of 

summarization. The lattice of cuboids is thus referred to as a data cube.  

 
Figure shows a lattice of cuboids forming a data cube for the dimensions time, item, 

location, and supplier. The cuboid which holds the lowest level of summarization is 

called the base cuboid. For example, the 4-D cuboid in the above Figure is the base 

cuboid for the given time, item, location, and supplier dimensions.  3-D (non-base) 

cuboid for time, item, and location, summarized for all suppliers. The 0-D cuboid 

which holds the highest level of summarization is called the apex cuboid. The apex 

cuboid is typically denoted by all. 

 



Page No. : 5 

Stars, snowflakes, and fact constellations: Schemas for multidimensional 

databases:- The entity-relationship model is commonly used in the design of 

relational databases. It consists of a set of entities or objects, and the relationships 

between them. Such a data model is appropriate for online transaction processing. 

Data warehouses,  require a concise, subject-oriented schema which facilitates on-

line data analysis. The most popular data model for data warehouses is a 

multidimensional model. This model can exist in the form of a star schema, a 

snowflake schema, or a fact constellation schema.  

 Star schema: The star schema is a modeling paradigm in which the data 

warehouse contains (1) a large central table (fact table), and (2) a set of 

smaller dimension  tables one for each dimension. The schema graph 

resembles a starburst, with the dimension tables displayed in a radial pattern 

around the central fact table. 

 
An example of a star schema for AllElectronics sales is shown in above 

Figure. Sales are considered along four dimensions, namely time, item, 

branch, and location. The schema contains a central fact table for sales which 

contains keys to each of the four dimensions, along with two measures: 

dollars sold and units sold. In the star schema, each dimension is represented 

by only one table, and each table contains a set of attributes. For example, the 

location dimension table contains the attribute set i.e  location key, street, city, 

state, country.  

 Snowflake schema: The snowflake schema is a variant of the star schema 

model, where some dimension tables are normalized, thereby further splitting 

the data into additional tables. The resulting schema graph forms a shape 

similar to a snowflake. 

 
The major difference between the snowflake and star schema models is 

that the dimension tables of the snowflake model may be kept in normalized 

form. Such a table is easy to maintain and also saves storage space. However, 

the snowflake structure can reduce the effectiveness since more joins will be 
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needed to execute a query. This may affect the system performance. 

Snowflake schema of a data warehouse for sales. 

A compromise between the star schema and the snowflake schema is to 

adopt a mixed schema where only the very large dimension tables are 

normalized. Normalizing large dimension tables saves storage space, while 

keeping small dimension tables unnormalized may reduce the cost and 

performance degradation due to joins on multiple dimension tables. Doing 

both may lead to an overall performance gain.  

 Fact constellation: Sophisticated applications may require multiple fact tables 

to share dimension tables. This kind of schema can be viewed as a collection 

of stars, and hence is called a galaxy schema or a fact constellation. 

 
Fig:- Fact constellation schema of a data warehouse for sales and shipping. 

An example of a fact constellation schema is shown in Figure. This schema 

specifies two fact tables, sales and shipping. A fact constellation schema 

allows dimension tables to be shared between fact tables. The dimensions 

tables for time, item, and location, are shared between both the sales and 

shipping fact tables.  

 

Examples for defining star, snowflake, and fact constellation schemas 

How can I define a multidimensional schema for my data?" 

Just as relational query languages like SQL can be used to specify relational queries, 

a data mining query language can be used to specify data mining tasks. In particular, 

we examine an SQL-based data mining query language called DMQL which 

contains language primitives for defining data warehouses and data marts.  

Data warehouses and data marts can be defined using two language primitives, one 

for cube definition and one for dimension definition. The cube definition statement 

has the following syntax. 

define cube <cube name> [<dimension list>] : <measure list> 

The dimension definition statement has the following syntax. 
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define dimension <dimension name> as (<attribute or subdimension list>) 

Let's look at examples of how to define the star, snowflake and constellations 

schemas of Examples 2.1 to 2.3using DMQL.  

Example 2.4 The star schema of Example 2.1 and Figure 2.4 is defined in DMQL as 

follows. 

define cube sales star [time, item, branch, location]: 

dollars sold = sum(sales in dollars), units sold = count(*) 

define dimension time as (time key, day, day of week, month, quarter, year) 

define dimension item as (item key, item name, brand, type, supplier type) 

define dimension branch as (branch key, branch name, branch type) 

define dimension location as (location key, street, city, province or state, country) 

The define cube statement defines a data cube called sales star, which corresponds to 

the central sales fact table of Example. This command specifies the keys to the 

dimension tables, and the two measures, dollars sold and units sold. The data cube 

has four dimensions, namely time, item, branch, and location.  

 

Measures: their categorization and computation 

Measures can be organized into three categories, based on the kind of aggregate 

functions used. 

 distributive: An aggregate function is distributive if it can be computed in a 

distributed manner as follows: Suppose the data is partitioned into n sets. The 

computation of the function on each partition derives one aggregate value. If the 

result derived by applying the function to the n aggregate values is the same as that 

derived by applying the function on all the data without partitioning, the function 

can be computed in a distributed manner. For example, count() can be computed for 

a data cube by first partitioning the cube into a set of sub cubes, computing count() 

for each subcube, and then summing up the counts obtained for each subcube. Hence 

count() is a distributive aggregate function. For the same reason, sum(), min(), and 

max() are distributive aggregate functions. 

 

 algebraic: An aggregate function is algebraic if it can be computed by an algebraic 

function with M arguments (where M is a bounded integer), each of which is 

obtained by applying a distributive aggregate function.For example, avg() (average) 

can be computed by sum()/count() where both sum() and count() are distributive 

aggregate functions.  

 

 holistic: An aggregate function is holistic if there is no constant bound on the 

storage size needed to describe a subaggregate. 

 

Concept hierarchy:- A concept hierarchy defines a sequence of mappings from a set 

of low level concepts to higher level, more general concepts. Consider a concept 

hierarchy for the dimension location. City values for location include Vancouver, 

Toronto, New York, and Chicago. Each city can be mapped to the state to which it 
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belongs. For Example Vancover can be mapped to British Columbio and Chicago to 

illinous.  

 
Many concept hierarchies are implicit within the database schema. For 

example, suppose that the dimension location is described by the attributes number, 

street, city, state, and country. These attributes form a concept hierarchy such as 

street < city <  or state < country. A concept hierarchy that is a total or partial order 

among attributes in a database schema is called a schema hierarchy.  

Concept hierarchies may also be defined by discretizing or grouping values 

for a given dimension or attribute, resulting in a set-grouping hierarchy. A total or 

partial order can be defined among groups of values. An example a set-grouping 

hierarchy is shown in Figure for the dimension price. 

 
Concept hierarchies may be provided manually by system users, domain 

experts, knowledge engineers, or automatically generated based on statistical 

analysis of the data distribution. Concept hierarchies allow data to be handled at 

varying levels of abstraction.   

 

OLAP operations in the multidimensional data model:-  In the multidimensional 

model, data are organized into multiple dimensions and each dimension contains 

multiple levels of abstraction defined by concept hierarchies. This organization 

provides users with the flexibility to view data from different perspectives. Some of 

the OLAP data cube operations are 

 Roll-up: The roll-up operation (also called the “drill-up" operation) performs 

aggregation on a data cube, either by climbing-up a concept hierarchy for a 
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dimension or by dimension reduction. The roll-up operation shown aggregates 

the data by ascending the location hierarchy from the level of city to the level 

of country.  

 Drill-down: Drill-down is the reverse of roll-up. It navigates from less 

detailed data to more detailed data. Drill-down can be realized by either 

stepping-down a concept hierarchy for a dimension or introducing additional 

dimensions. The drill-down operation shown aggregates the data by 

descending the time hierarchy from the level of Quarter to the level of month.  

 Slice and Dice: The slice operation performs a selection on one dimension of 

the given cube, resulting in a subcube. Figure 2.10 shows a slice operation 

where the sales data are selected from the central cube for the dimension time 

using the criteria time=”Q2”. The dice operation defines a subcube by 

performing a selection on two or more dimensions. Figure shows a dice 

operation on the central cube based on the following selection criteria which 

involves three dimensions: (location=”Montreal" or ”Vancouver”) and 

(time=”Q1” or “Q2") and (item=”home entertainment" or “computer"). 

 Pivot (Rotate): Pivot (also called “rotate”) is a visualization operation which 

rotates the data axes in view in order to provide an alternative presentation of 

the data.  
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2.2.7 A starnet quer y model  for quer ying multidi mensi onal databases  
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The querying of multidimensional databases can be based on a starnet model. A 

starnet model consists of radial lines emanating from a central point, where each line 

represents a concept hierarchy for a dimension. Each abstraction level in the 

hierarchy is called a footprint. These represent the granularities available for use by 

OLAP operations such as drill-down and roll-up. 

Example 2.9 A starnet query model for the AllElectronics data warehouse is shown 

in Figure 2.11. This starnet consists of four radial lines, representing concept 

hierarchies for the dimensions location, customer, item, and time,respectively. Each 

line consists of footprints representing abstraction levels of the dimension. For 

example, the time line has four footprints: \day", \month", \quarter" and \year". A 

concept hierarchy may involve a single attribute (like date for the time hierarchy), or 

several attributes (e.g., the concept hierarchy for location involves the attributes 

street, city, province or state, and country). In order to examine the item sales at 

AllElectronics, one can roll up along the time dimension from month to quarter, or, 

say, drill down along the location dimension from country to city. Concept 

hierarchies can be used to generalize data by replacing low-level values (such as 

\day" for the time dimension) by higher-level abstractions (such as \year"), or to 

specialize data by replacing higher-level abstractions with lower-level values.  

 

 
 

Data warehouse architecture:- To design an effective data warehouse one needs to 

understand and analyze business needs, and construct a business analysis 

framework. Four different views regarding the design of a data warehouse must be 

considered:  

       the top-down view, the data source view, the data warehouse view, and the 

business query view. 
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 The top-down view allows the selection of the relevant information necessary 

for the data warehouse. This information matches the current and coming 

business needs. 

 The data source view exposes the information being captured, stored, and 

managed by operational systems. This information may be documented at 

various levels of detail and accuracy 

 The data warehouse view includes fact tables and dimension tables. It 

represents the information that is stored inside the data warehouse, including 

precalculated totals and counts, as well as information regarding the source, 

date, and time of origin, added to provide historical context. 

 The business query view is the perspective of data in the data warehouse 

from the view point of the end-user. 

A data warehouse can be built using a top-down approach, a bottom-up approach, or 

a combination of both.  

 The top-down approach starts with the overall design and planning. It is 

useful in cases where the technology is well-known and where the business 

problems that must be solved are clear and well-understood.  

 The bottom-up approach starts with experiments and prototypes. This is 

useful in the early stage of business and technology development. It allows an 

organization to move forward at considerably less expense and to evaluate the 

benefits of the technology before making significant commitments.  

 In the combined approach, an organization can exploit the planned and 

strategic nature of the top-down approach while retaining the rapid 

implementation and opportunistic application of the bottom-up approach. 

A three-tier data warehouse architecture:- Data warehouses often adopt a three-tier 

architecture. The bottom tier is a ware-house database server which is almost always 

a relational database system. The middle tier is an OLAP server which is typically 

implemented using either a Relational OLAP (ROLAP) model or a 

Multidimensional OLAP (MOLAP) model. The top tier is a client, which contains 

query and reporting tools, analysis tools, and or data mining tools. 

From the architecture point of view, there are three data warehouse models:  

the enterprise warehouse, the data mart, and the virtual warehouse. 

 Enterprise warehouse: An enterprise warehouse collects all of the 

information about the entire organization. It provides corporate-wide data 

integration. It typically contains detailed data as well as summarized data, and 

can range in size from a few gigabytes to hundreds of gigabytes, terabytes, or 

beyond. An enterprise data warehouse may be implemented on traditional 

mainframes, UNIX superservers, etc., It requires extensive business modeling 

and may take years to design and build. 
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                                  Fig:- A three-tier data warehousing architecture. 

 Data mart: A data mart contains a subset of corporate-wide data which  is 

useful for  a specific group of users. The scope is confined to specific, 

selected subjects. For example, a marketing data mart may confine its subjects 

to customer, item, and sales. The data contained in data marts tend to be 

summarized. Data marts are usually implemented on low cost UNIX servers 

or  Windows/NT servers etc., The implementation of a data mart is within 

weeks rather than months or years.  Depending on the source of data, data 

marts can be categorized into the following two classes: Independent data 

marts are sourced from data captured from one or more operational systems or 

external information providers, or from data generated locally within a 

particular department or geographic area. Dependent data marts are sourced 

ectly from enterprise data warehouses. 

 Virtual warehouse: A virtual warehouse is a set of views over operational 

databases. For efficient query processing, only some of the possible summary 

views may be materialized. A virtual warehouse is easy to build but requires 

excess capacity on operational database servers. 

A recommended method for the development of data warehouse systems is to 

implement the warehouse in an incremental and evolutionary manner. First, a 

high-level corporate data model is defined within a reasonably short period of time 

that provides a corporate-wide, consistent, integrated view of data on different 

subjects. This high-level model is refined in the development of enterprise data 

warehouses and departmental data marts. Second, independent data marts can be 

implemented in parallel with the enterprise. Third, distributed data marts can be 
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constructed to integrate different data marts via hub servers. Finally, a multi-tier data 

warehouse is constructed. 

 
           Fig:- A recommended approach for  data warehouse development. 
 

OLAP server architectures: ROLAP vs. MOLAP vs. HOLAP:- OLAP engines 

present business users with multidimensional data from data warehouses or data 

marts, without knowing how or where the data are stored.  

Relational OLAP (ROLAP) servers: These are the intermediate servers that stand 

in between a relational back-end server and client front-end tools. They use a 

relational or extended-relational DBMS to store and manage warehouse data, and 

OLAP middleware to support missing pieces.  

Multidimensional OLAP (MOLAP) servers: These servers support 

multidimensional views of data through array-based multidimensional storage 

engines. They map multidimensional views directly to data cube array structures. 

The advantage of using a data cube is that it allows fast indexing to precomputed 

summarized data. In multidimensional data stores, the storage utilization may be low 

if the data set is sparse. In such cases, sparse matrix compression techniques should 

be explored.  

Hybrid OLAP (HOLAP) servers: The hybrid OLAP approach combines ROLAP 

and MOLAP technology, benefitting from the greater scalability of ROLAP and the 

faster computation of MOLAP. A HOLAP server may allow large volumes of detail 

data to be stored in a relational database, while aggregations are kept in a separate 

MOLAP store.  
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Data warehouse implementation:-  Data warehouses contain huge volumes of 

data. OLAP engines demand that decision support queries be answered in the order 

of seconds. Therefore, it is important for data warehouse systems to support highly 

efficient cube computation techniques, access methods, and query processing 

techniques. 

 

Efficient computation of data cubes:- In multidimensional data analysis the 

efficient computation of aggregations is done by  cube operator. The compute cube 

operator computes aggregates over all subsets of the dimensions specified in the 

operation. Based on the syntax of DMQL the data cube can be defined as  

define cube sales [item, city, year]: sum(sales in dollars) 

For a cube with n dimensions, there are a total of 2n cuboids, including the base  

cuboid. The statement compute cube sales explicitly instructs the system to compute 

the sales aggregation of cuboids for all of the eight subsets of the set item, city, year, 

including the empty subset. 

 The total number of cuboids for an n-dimensional data cube, is 2
n
. However, 

in practice, many dimensions do have hierarchies. For example, the dimension time 

is usually not just one level, such as year, but rather a hierarchy or a lattice, such as 

day < week < month < quarter < year. For an n-dimensional data cube, the total 

number of cuboids that can be generated (including the cuboids generated by 

climbing up the hierarchies along each dimension) is: 

                              
where Li is the number of levels associated with dimension i. This formula is based 

on the fact that at most one abstraction level in each dimension will appear in a 

cuboid. For example, if the cube has 10 dimensions and each dimension has 4 levels, 

the total number of cuboids that can be generated will be 5
10 

_ 9.8 X 10
6
. 

Partial materialization: Selected computation of cuboids:- There are three choices 

for data cube materialization: (1) precompute only the base cuboid and none of the 

remaining “non-base" cuboids (no materialization), (2) precompute all of the 

cuboids (full materialization), and (3) selectively compute a proper subset of the 

whole set of possible cuboids (partial materialization). The first choice leads to 

computing expensive multidimensional aggregates on the dimensions, which could 

be slow. The second choice may require huge amounts of memory space in order to 

store all of the precomputed cuboids. The third choice presents an interesting trade-

of- between storage space and response time. 

The partial materialization of cuboids should consider three factors:  

(1) identify the subset of cuboids to materialize, 

(2) exploit the materialized cuboids during query processing, and  

            (3) efficiently update the materialized cuboids during load and refresh. 
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Multiway array aggregation in the computation of data cubes:- In order to ensure 

fast on-line analytical processing, however, we may need to precompute all of the 

cuboids for a given data cube. Since Relational OLAP (ROLAP) uses tuples and 

relational tables as its basic data structures, while the basic data structure used in 

multidimensional OLAP (MOLAP) is the multidimensional array, one would expect 

that ROLAP and MOLAP each explore very different cube computation techniques. 

ROLAP cube computation uses the following major optimization techniques. 

1. Sorting, hashing, and grouping operations are applied to the dimension 

attributes in order to reorder and cluster related tuples. 

2. Grouping is performed on some subaggregates as a “partial grouping step". 

These “partial groupings" may be used to speed up the computation of other 

subaggregates. 

3. Aggregates may be computed from previously computed aggregates, rather 

than from the base fact tables. 

MOLAP cube computation uses the following major optimization techniques. 

1. Partition the array into chunks. A chunk is a subcube that is small enough to 

fit into the memory available for cube computation. Chunking is a method for 

dividing an n-dimensional array into small n-dimensional chunks, where each 

chunk is stored as an object on disk.  

2. Compute aggregates by visiting (i.e., accessing the values at) cube cells. The 

order in which cells are visited can be optimized so as to minimize the number 

of times that each cell must be revisited, thereby reducing memory access and 

storage costs.  

Indexing OLAP data:- To facilitate efficient data accessing, most data warehouse 

systems support index structures and materialized views (using cuboids). OLAP data 

can be indexed by bitmap indexing and join indexing. 

 The bitmap indexing method is popular in OLAP products because it allows 

quick searching in data cubes. 

 The join indexing method gained popularity from its use in relational database 

query processing. 

Efficient processing of OLAP queries:- The purpose of materializing cuboids and 

constructing OLAP index structures is to speed up query processing in data cubes. 

Given materialized views, query processing should proceed as follows: 

1. Determine which operations should be performed on the available 

cuboids. This involves transforming any selection, projection, roll-up 

(group-by) and drill-down operations specified in the query into 

corresponding SQL and/or OLAP operations.  

2. Determine to which materialized cuboid(s) the relevant operations 

should be applied.  

 

Metadata repository:- Metadata means data about data. When used in a data 

warehouse, metadata is  the data that define warehouse objects. A metadata 

repository should contain a description of the structure of the data warehouse. This 
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includes the warehouse schema, view, dimensions, hierarchies, and derived data 

definitions, as well as data mart locations and contents. 

  

Data warehouse back-end tools and utilities:- Data warehouse systems use back-

end tools and utilities to populate and refresh their data. These tools and facilities 

include the following functions: 

1. data extraction, which typically gathers data from multiple, heterogeneous, 

and external sources; 

2. data cleaning, which detects errors in the data and rectifies them when 

possible. 

3. data transformation, which converts data format to warehouse format; 

4. load, which sorts, summarizes, consolidates, computes views, checks 

integrity, and builds indices and partitions and 

5. refresh, which propagates the updates from the data sources to the warehouse. 

Besides cleaning, loading, refreshing, and metadata definition tools, data warehouse 

systems usually provide a good set of data warehouse management tools. 

 

From data warehousing to data mining:-  

Data warehouse usage:- Data warehouses and data marts are used in a wide range 

of applications. Business executives in almost every industry use the data collected, 

integrated, preprocessed, and stored in data warehouses and data marts to perform 

data analysis and make strategic decisions. There are three kinds of data warehouse 

applications: information processing, analytical processing, and data mining: 

1. Information processing supports querying, basic statistical analysis, and 

reporting using crosstabs, tables, charts or graphs. A current trend in data 

warehouse information processing is to construct low cost Web-based 

accessing tools which are then integrated with Web browsers. 

2. Analytical processing supports basic OLAP operations, including slice-and-

dice, drill-down, roll-up, and pivoting. It generally operates on historical data 

in both summarized and detailed forms. The major strength of on-line 

analytical processing over information processing is the multidimensional 

data analysis of data warehouse data.  

3. Data mining supports knowledge discovery by finding hidden patterns and 

associations, constructing analytical models, performing classification and 

prediction, and presenting the mining results using visualization tools. 

From on-line analytical processing to on-line analytical mining:- In the field of 

data mining, substantial research has been performed for data mining at various 

flatforms, including transaction databases, relational databases, spatial databases, 

text databases, time-series databases, at files, data warehouses, etc. Among many 

different paradigms and architectures of data mining systems, On-Line Analytical 

Mining (OLAM) (also called OLAP mining), which integrates on-line analytical 

processing (OLAP) with data mining . 
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Architecture for on-line analytical mining:- An OLAM engine performs analytical 

mining in data cubes in a similar manner as an OLAP engine performs on-line 

analytical processing. An integrated OLAM and OLAP architecture is shown in 

Figure, where the OLAM and OLAP engines both accept user’s on-line queries (or 

commands) via a User GUI API and work with the data cube in the data analysis via 

a Cube API. A metadata directory is used to guide the access of the data cube. The 

data cube can be constructed by accessing and/or integrating multiple databases 

and/or by altering a data warehouse via a Database API which may support OLEDB 

or ODBC connections. Since an OLAM engine may perform multiple data mining 

tasks, such as concept description, association, classification, prediction, clustering, 

time-series analysis, etc., it usually consists of multiple, integrated data mining 

modules and is more sophisticated than an OLAP engine. 

 
Fig:- An integrated OLAM and OLAP architecture. 


