
1

UNIT-VI
Application layer (WWW and HTTP): ARCHITECTURE : Client (Browser) ,Server ,Uniform Resource Locator HTTP: HTTP

Transaction, HTTP Operational Model and Client/Server Communication, HTTP Generic Message Format, HTTP Request Message

Format, HTTP Response Message Format. The wireless web : WAP—The Wireless Application Protocol

WWW and HTTP

The World Wide Web (WWW) is a repository of information linked together from points all over the

world. The WWW has a unique combination of flexibility, portability, and user-friendly features that

distinguish it from other services provided by the Internet. The WWW project was initiated by CERN

(European Laboratory for Particle Physics) to create a system to handle distributed resources necessary

for scientific research. In this chapter we first discuss issues related to the Web. We then discuss a

protocol, HTTP, that is used to retrieve information from the web.

ARCHITECTURE

The WWW today is a distributed client/server service, in which a client using a browser can access a

service using a server. However, the service provided is distributed over many locations called sites, as

shown i n t h e f i g u r e .

Each site holds one or more documents, referred to as Web pages. Each Web page can contain a link to other

pages in the same site or at other sites. The pages can be retrieved and viewed by using browsers. Let us go

through the scenario shown in Figure. The client needs to see some information that it knows belongs to

site A. It sends a request through its browser, a program that is designed to fetch Web documents. The

request, among other information, includes the address of the site and the Web page, called the URL.

The server at site A finds the document and sends it to the client. When the user views the document, she

finds some references to other documents, including a Web page at site B. The reference has the URL for

the new site. The user is also interested in seeing this document. The client sends another request to the new

site, and the new page is retrieved.

Clien t (Browser)

A variety of vendors offer commercial browsers that interpret and display a Web document, and all use

nearly the same architecture. Each browser usually consists of three parts: a controller, client protocol,

and interpreters. The controller receives input from the keyboard or the mouse and uses the client

programs to access the document. After the document has been accessed, the controller uses one of the

interpreters to display the document on the screen. The client protocol can be one of the protocols

described previously such as or HT IP . The interpreter can be HTML, Java, or JavaScript, depending

on the type of document.

2

S e rv e r

The Web page is stored at the server. Each time a client request arrives, the corresponding document is sent

to the client. To improve efficiency, servers normally store requested files in a cache in memory. Cache

memory is faster to access than disk. A server can also become more efficient through multithreading

or multiprocessing. In this case, a server can answer more than one request at a time.

Uniform Resource L o ca to r

A client that wants to access a Web page needs the address. To facilitate the access of documents distributed

throughout the world, HTTP uses locators. The uniform resource locator (URL) is a standard for

specifying any kind of information on the Internet. The URL defines four things: protocol, host computer,

port, and path.

URL

Protocol ://Host

The protocol is the client/server program used to retrieve the document. Many different protocols can

retrieve a document; among them are FTP or HTTP. The most common today is HTTP.

The host is the computer on which the information is located, although the name of the computer can be an

alias. Web pages are usually stored in computers, and computers are given alias names that usually begin

with the characters "www". This is not mandatory, however, as the host can be any name given to the

computer that hosts the Web page.

The URL can optionall y contain the port number of the server. I f the port is included, it is

inserted between the host and the path, and it is separated from the host by a colon.

Path is the pathname of the file where the information is located. Note that the path can itself contain

slashes that, in the UNIX operating system, separate the directories from the subdirectories and files.

Cookies

The World Wide Web was originally designed as a stateless entity. A client sends a request; a server

responds. Their relationship is over. The original design of WWW, retrieving publicly available

documents, exactly fits this purpose. Today the Web has other functions; some are listed here.

I. Some websites need to allow access to registered clients only.

2. Websites are being used as electronic stores that allow users to browse through the store, select wanted

items, put them in an electronic cart, and pay at the end with a credit card.

 Some websites are used as portals: the user selects the Web pages he wants to see.

4. Some websites are just advertising.

Creation and Storage o f Cookies

The creation and storage of cookies depend on the implementation; however, the principle is the same.

1. When a server receives a request from a client, it stores information about the client in a file or a string.

3

The information may include the domain name of the client, the contents of the cookie (information the

server has gathered about the client such as name, registration number, and so on), a timestamp, and

other information depending on the implementation.

2. The server includes the cookie in the response that it sends to the client.

3. When the client receives the response, the browser stores the cookie in the cookie directory, which is

sorted by the domain server name.

Using Cookies

When a client sends a request to a server, the browser looks in the cookie directory to see if it can find

a cookie sent by that server. I f found, the cookie is included in the request. When the server receives

the request, it knows that this is an old client, not a new one. Note that the contents of the cookie are

never read by the browser or disclosed to the user. It is a cookie made by the server and eaten by the

server. Now let us see how a cookie is used for the four previously mentioned purposes:

1. The site that restricts access to registered clients only sends a cookie to the client when the client

registers for the first time. For any repeated access, only those clients that send the appropriate cookie are

allowed.

2. An electronic store (e-commerce) can use a cookie for its client shoppers. When a client selects an

item and inserts it into a cart, a cookie that contains information about the item, such as its number and

unit price, is sent to the browser. If the client selects a second item, the cookie is updated with the new

selection information. And so on. When the client finishes shopping and wants to check out, the last

cookie is retrieved and the total charge is calculated.

3. A Web portal uses the cookie in a similar way. When a user selects her favorite pages, a cookie is

made and sent. I f the site is accessed again, the cookie is sent to the server to show what the client is

looking for.

H T T P

The H ypertex t Transfer Protocol (HTTP) is a protocol used mainly to access data on the World Wide Web.

HTTP functions as a combination of FTP and SMTP. It is similar to FfP because it transfers files and uses the

services of TCP. However, it is much simpler than FTP because it uses only one TCP connection. There is no

separate control connection; only data are transferred between the client and the server.

HTTP is like SMTP because the data transferred between the client and the server look like SMTP

messages. In addition, the format of the messages is controlled by MIME-like headers. Unlike SMTP, the

HTTP messages are not destined to be read by humans; they are read and interpreted by the HTTP server

and HTTP client (browser). SMTP messages are stored and forwarded, but HTTP messages are delivered

immediately. The commands from the client to the server are embedded in a request message. The contents

of the requested file or other information are embedded in a response message. HTTP uses the services of

TCP on well-known port 80.

H T T P T ran sacti on

Figure illustrates the HTTP transaction between the client and server. Although HTTP uses the services o f

TCP, HTTP itself is a stateless protocol. The client initializes the transaction by sending a request message.

The server replies by sending a response.

Messages

The formats of the request and response messages are similar; both are shown in Fig• ure 27.13. A request

message consists of a request line, a header, and sometimes a body. A response message consists of a status

line, a header, and sometimes a body.

4

Method Action

GET Requests a document from the server

HEAD Requests information about a document but not the document itself

POST Sends some information from the client to the server

PUT Sends a document from the server to the client

TRACE Echoes the incoming request

CONNECT Reserved

OPTION Inquires about available options

HTTP transaction

Request and response messages

Req u es t typ e: This field is used in the request message. In version 1.1 of HTTP, several request types

are defined. The request type is categorized into methods as defined in Table.

Methods

URL. We discussed the UR L earlier in the chapter.

Version. The most current version of HTTP is 1.1.

Status code: This field is used in the response message. The status code field is similar to those in the

FTP and the SMTP protocols. It consists of three digits. Whereas the codes in the 100 range are only

informational, the codes in the 200 range indicate a successful request. The codes in the 300 range

redirect the client to another URL, and the codes in the 400 range indicate an error at the client site.

Finally, the codes in the 500 range indicate an error at the server site. We list the most common codes

in Table.

S tatu s p h rase: This field is used in the response message. It explains the status code in text

form. Table also gives the status phrase.

5

Table Status codes

Code Phrase Description

Informational

100 Continue The initial part of the request has been received, and the

client may continue with its request.

101 Switching The server is complying with a client request to switch

protocols defined in the upgrade header.

Success

200 OK The request is successful.

201 Created A new URL is created.

202 Accepted The request is accepted, but it is not immediately acted upon.

204 No content There is no content in the body.

Code Phrase Description

Redirection

301 Moved permanently The requested URL is no longer used by the server.

302 Moved temporarily The requested URL has moved temporarily.

304 Not modified The document has not been modified.

Client Erro r

400 Bad request There is a syntax error in the request.

401 Unauthorized The request lacks proper authorization.

403 Forbidden Service is denied.

404 Not found The document is not found.

405 Method not allowed The method is not supported in this URL.

406 Not acceptable The format requested is not acceptable.

Server Erro r

500 Internal server error There is an error, such as a crash, at the server site.

501 Not implemented The action requested cannot be performed.

503 Service unavailable The service is temporarily unavailable, but may be requested

in the future.

Header

The header exchanges additional information between the client and the server. For example, the client

can request that the document be sent in a special format, or the server can send extra information about the

document. The header can consist of one or more header lines. Each header line has a header name; a

colon, a space, and a header value (see Figure 27.15). We will show some header lines in the examples

at the end of this chapter. A header line belongs to one of four categories: general header, request

header, response header, and entity header. A request message can contain only general, request, and

entity headers. A response message, on the other hand, can contain only general, response, and entity

headers.

Header format

Gen era l h ead er: t h e general header gives general information about the message and can be present in

both a request and a response. Table 27.3 lists some general headers with their descriptions.

General headers

Header Description

Cache-control Specifies infonnation about caching

Connection Shows whether the connection should be closed or not

Date Shows the current date

6

Header Description

Accept Shows the medium fonnat the client can accept

Accept-charset Shows the character set the client can handle

Accept-encoding Shows the encoding scheme the client can handle

Accept-language Shows the language the client can accept

Authorization Shows what pennissions the client has

From Shows the e-mail address of the user

Host Shows the host and port number of the server

If-modified-since Sends the document if newer than specified date

If-match Sends the document only if it matches given tag

If-non-matc
_
h
._---. ..

_ -

Sends the document only if it does not match given tag

If-range

Sends only the portion of the document that is missing

If-unmodified-since Sends the document if not changed since specified date

Referrer Specifies the URL of the linked document

User-agent Identifies the client program

MIME-version Shows the MIME version used

Upgrade Specifies the preferred communication protocol

Req u es t h ead er : The request header can be present only in a request message. It specifies the client's

configuration and the client's preferred document format. See Table 27.4 for a list of some request headers

and their descriptions.

Request headers

--

Response h ead er: The response header can be present only in a response message. It specifies the

server's configuration and special information about the request. See Table for a list of some response

headers with their descriptions.

Response headers

Header Description

Accept-range Shows if server accepts the range requested by client

Age Shows the age of the document

Public Shows the supported list of methods

Retry-after Specifies the date after which the server is available

Server Shows the server name and version number

Entity h ead er : The entity header gives information about the body of the document. Although it is

mostly present in response messages, some request messages, such as POST or PUT methods, that contain

a body also use this type of header. See Table for a list of some entity headers and their descriptions.

Entity headers

Header Description

Allow Lists valid methods that can be used with a URL

Content-encoding Specifies the encoding scheme

Content-language Specifies the language

Content-length Shows the length of the document

Content-range Specifies the range of the document

Content-type Specifies the medium type

Etag Gives an entity tag

Expires Gives the date and time when contents may change

Last-modified Gives the date and time of the last change

Location Specifies the location of the created or moved document

Body :The body can be present in a request or response message. Usually, it contains the document to be

sent or received.

7

Example 27.3

HTTP uses ASCII characters. A client can directly connect to a server using TELNET, which logs

into port 80. The next three lines show that the connection is successful.

We then type three lines. The first shows the request line (GET method), the second is the

header (defining the host), the third is a blank, terminating the request.

The server response is seven lines starting with the status line. The blank line at the end

nates the server response. The file of 14,230 lines is received after the blank line (not shown here). The

last line is the output by the client.

$ teinet www.mhhe.com 80

Trying 198.45.24.104 .. .

Connected to www.mhhe.com (198.45.24.104).

Escape character is 11\]'.

GET /engcslcompscilforouzan HT TP /I. t

From: forouzanbehrouz@fbda.edu

HTTP/t.l 200 OK

Date: Thu, 28 Oct 2004 16:27:46 GMT

Server: Apache/l.3.9 (Unix) ApacheJServ/1.1.2 PHP/4.1.2 PHP/3.0.18

MIME-version: 1.0

Content-Type: text/html

Last-modified: Friday, 15-0ct-04 02:11:31

G MT Content-length: 14230

Connection closed by foreign host

Persistent Versus Nonpersistent Connection

HTTP prior to version 1.1 specified a nonpersistent connection, while a persistent connection is the

default in version 1.1.

Nonpersistent Connection

In a nonpersistent connection, one TCP connection is made for each request/response. The following

lists the steps in this strategy:

1. The client opens a TCP connection and sends a request.

2. The server sends the response and closes the connection.

3. The client reads the data until it encounters an end-of-file marker; it then closes the connection.

In this strategy, for N different pictures in different files, the connection must be opened and closed N

times. The nonpersistent strategy imposes high overhead on the server because the server needs N

different buffers and requires a slow start procedure each time a connection is opened.

Persistent Connection

HTTP version 1.1 specifies a persistent connection by default. In a persistent connection, the server leaves

the connection open for more requests after sending a response. The server can close the connection at

the request of a client or if a time-out has been reached. The sender usually sends the length of the data

with each response. However, there are some occasions when the sender does not know the length of the

data. This is the case when a document is created dynamically or actively. In these cases, the server

informs the client that the length is not known and closes the connection after sending the data so the client

knows that the end of the data has been reached.

The Wireless Web

There is considerable interest in small portable devices capable of accessing the Web via a wireless link. We

will focus on the first two wide area wireless Web systems to hit the market: WAP and i-mode.

WAP-The Wireless Application Protocol

Once the Internet and mobile phones had become commonplace, it did not take long before somebody got the

idea to combine them into a mobile phone with a built-in screen for wireless access to e-mail and the Web. The

''somebody'' in this case was a consortium initially led by Nokia, Ericsson, Motorola, and phone.com (formerly

Unwired Planet) and now boasting hundreds of members. The system is called WAP (Wireless Application

Protocol).

A WAP device may be an enhanced mobile phone, PDA, or notebook computer without any voice capability.

The specification allows all of them and more. The basic idea is to use the existing digital wireless

infrastructure. Users can literally call up a WAP gateway over the wireless link and send Web page requests to

it. The gateway then checks its cache for the page requested. If present, it sends it; if absent, it fetches it over the

http://www.mhhe.com/
http://www.mhhe.com/
mailto:forouzanbehrouz@fbda.edu

8

wired Internet. In essence, this means that WAP 1.0 is a circuit-switched system with a fairly high per-minute

connect charge. To make a long story short, people did not like accessing the Internet on a tiny screen and

paying by the minute, so WAP was something of a flop (although there were other problems as well). However,

WAP and its competitor, i-mode (discussed below), appear to be converging on a similar technology, so WAP

2.0 may yet be a big success. Since WAP 1.0 was the first attempt at wireless Internet, it is worth describing it

at least briefly.

WAP is essentially a protocol stack for accessing the Web, but optimized for low-bandwidth connections using

wireless devices having a slow CPU, little memory, and a small screen. These requirements are obviously

different from those of the standard desktop PC scenario, which leads to some protocol differences. The layers

are shown in Fig.

The WAP protocol stack.

The lowest layer supports all the existing mobile phone systems, including GSM, D-AMPS, and CDMA. The

WAP 1.0 data rate is 9600 bps. On top of this is the datagram protocol, WDP (Wireless Datagram Protocol),

which is essentially UDP. Then comes a layer for security, obviously needed in a wireless system. WTLS is a

subset of Netscape's SSL, which we will look at in Chap. 8. Above this is a transaction layer, which manages

requests and responses, either reliably or unreliably. This layer replaces TCP, which is not used over the air link

for efficiency reasons. Then comes a session layer, which is similar to HTTP/1.1 but with some restrictions and

extensions for optimization purposes. At the top is a microbrowser (WAE).

Besides cost, the other aspect that no doubt hurt WAP's acceptance is the fact that it does not use HTML.

Instead, the WAE layer uses a markup language called WML (Wireless Markup Language), which is an

application of XML. As a consequence, in principle, a WAP device can only access those pages that have been

converted to WML. However, since this greatly restricts the value of WAP, the architecture calls for an on-the-

fly filter from HTML to WML to increase the set of pages available. This architecture is illustrated in Fig..

The WAP architecture.

In all fairness, WAP was probably a little ahead of its time. When WAP was first started, XML was hardly

known outside W3C and so the press reported its launch as WAP DOES NOT USE HTML. A more accurate

headline would have been: WAP ALREADY USES THE NEW HTML STANDARD. But once the damage

was done, it was hard to repair and WAP 1.0 never caught on. We will revisit WAP after first looking at its

major competitor.

file://172.16.12.72/a/acn/ComputerNetworks-AndrewTanenbaumFourthEdition/0130661023_ch08.html%23ch08
file://172.16.12.72/a/acn/ComputerNetworks-AndrewTanenbaumFourthEdition/0130661023_ch07lev1sec3.html%23ch07fig49

