
Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

Topics:

Unit-3

Inheritance, types of inheritance, super keyword, final keyword, overriding and abstract

class. Interfaces, Creating the packages, using packages, importance of CLASSPATH and

java.lang package. Exception handling, importance of try, catch, throw, throws and finally

block, user- defined exceptions, Assertions.

Inheritance Basics

Inheritance is the process by which one class acquires the properties of another class.

This is important because it supports the concept of hierarchical classification. The class that

is inherited is called super class. The class that is inheriting the properties is called subclass.

Therefore the subclass is the specialized version of the super class. The subclass inherits all

the instance variable and methods using the extends keyword, and adds its own code. Super

class is also known as Parent class, and Base class. The sub class is also known as Child class

and Derived class.

Aggregation is the process of making an object combining number of other objects.

The behavior of the bigger object is defined by the behavior of its component objects. For

example, cars contain number of other components such as engine, clutches, breaks, starter

etc.

To inherit a class, we simply incorporates the definition one class into another class

using the extends keyword.

Syntax:

class A

{
}

class B extends A

{

}

(a) Write a JAVA program to implement Single Inheritance (Lab Exercise – 5 (a))

class A

{

//body of the class A

void methodA()

{

System.out.println("Class A method");

}

}

class B extends A

{

//body of the class B

void methodB()

{

System.out.println("Class B method");

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

}

}

class InheritDemo

{

public static void main(String args[])

{

B b=new B();

b.methodA();

b.methodB();

}

}

Private member access and Inheritance

Although sub class has the right to access members of the super class, but it cannot

access private members of the super class.

Example Program:

class A

{

//body of the class A

private void methodA() //private member of the super class

{

System.out.println("Class A method");

}

}

class B extends A

{

//body of the class B

void methodB()

{

System.out.println("Class B method");

}

}

class InheritDemo

{

public static void main(String args[])

{

B b=new B();

b.methodA(); //generates error

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

class A

{

int i; // public by default

private int j; // private to A

void setij(int x, int y)

{

 i = x;

j = y;

}

}

// A's j is not accessible here.

class B extends A

{ int total;

void sum()

{

 total = i + j; // ERROR, j is not accessible here

}

}

class Access

{

public static void main(String args[])

{

B b = new B(); // creating the object b

b.setij(10, 12);

b.sum(); // Error, private members are not accessed

System.out.println("Total is " + subOb.total);

}

}

b.methodB();

}

}

Output:

Another example:

// Create a superclass.

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

Note: This program will not compile because the reference to j inside the sum() method of B

causes an access violation. Since j is declared as private, it is only accessible by other

members of its own class. Subclasses have no access to it.

Types of Inheritance

There are five different types of

Inheritances:

i. Single Inheritance

ii. Multiple Inheritance iii.

Multilevel Inheritance iv.

Hierarchical Inheritance v.

Hybrid Inheritance

Single Inheritance:

In this one class acquires the properties from another class and adds its own code to it.
Example Program is shown below.

A more practical example to illustrate the Inheritance (Single Inheritance)

class Box

{

double width,height,depth;

Box(double w,double h,double d)

{

width=w;

height=h;

depth=d;

}

}

class BoxVolume extends Box

{

BoxVolume(double w,double h,double d)

{

super(w,h,d); //calling the super class constructor

}

void boxVolume()

{

double v=width*height*depth;

System.out.println("The volume of the Box is "+v);

}

}

class BoxTest

{

public static void main(String args[])

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

{

BoxVolume bv=new BoxVolume(12.3,13.2,14.3);
bv.boxVolume();

}

}

Output:

E:\ksr>javac BoxTest.java

E:\ksr>java BoxTest

The volume of the Box is 2321.7480000000005

Multiple Inheritance:

In this one class acquires the properties from two or more classes at a time and adds

its own code to it. This is not supported by Java among the classes, but is supported among

the Interfaces. We will see this example in the Interface section.

Multilevel Inheritance:

In this one class acquires the properties from another class, which in turn has acquired

the properties from another class. Hence, in this there are many levels in the process of

Inheritance. The example program is below.

class A

{

public void methodA()

{

Multi Level Inheritance

System.out.println("class A method");

}

}

class A{

methodA()

class B extends A

{

public void methodB()

{

System.out.println("class B method");

class B{

methodB()

}

}

class C extends B

{

public void methodC()

{

class C{

methodC()

}

}

class MLI

{

System.out.println("class C method");

public static void main(String args[])

{

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

C obj = new C();

obj.methodA(); //calling grand parent class method

obj.methodB(); //calling parent class method

obj.methodC(); //calling child class method

}

}

Output:

E:\ksr>javac MLI.java

E:\ksr>java MLI

class A method

class B method

class C method

Hierarchical Inheritance:
In this two or more classes will acquire the properties from only one same class and add their

own code. The example program is given below.

class A

{

public void methodA()

{

System.out.println("class A method");

}

}

class B extends A

{

public void methodB()

{

System.out.println("class B method");

}

}

class C extends A

{

public void methodC()

{

}

}

class MLI

{

System.out.println("class C method");

public static void main(String args[])

{

B b=new B();

C c = new C();

System.out.println("calling the methodA() and methodB() with B's object");

b.methodA(); // calling the methodA() and methodB() with B's object

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

b.methodB();

System.out.println("calling the methodA() and methodC() with C's object");

c.methodA(); // calling the methodA() and methodC() with C's object

c.methodC();

}

}

Output:

E:\ksr>javac MLI.java

E:\ksr>java MLI
calling the methodA() and methodB() with B's object

class A method

class B method

calling the methodA() and methodC() with C's object

class A method

class C method

Hybrid Inheritance:
In this different types of Inheritances are used to acquire the properties from number of
classes to a single class. We will discuss this example in the interface section.

Note: Java Supports Single and Multilevel Inheritances between classes and Multiple

Inheritance among the Interfaces.

A Superclass Reference Variable Can be assigned a Subclass Object

Any sub class reference variable can be assigned to the super class reference variable. When

a reference to a subclass object is assigned to a super class reference variable, we will have

access only to those parts of the object defined by the super class.

For example,

class Box

{

double width,height,depth;

}

class Boxweight extends Box

{

double weight;

Boxweight(double x,double y,double z,double z)

{

width=x; height=y; depth=z; weight=a;

}

void volume()

{

System.out.println("The volume is :"+(width*height*depth));

}

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

}

//main class
class BoxDemo

{

//creating super class object

public static void main(String args[])

{

Box b=new Box();

//creating the subclass object

Boxweight bw=new Boxweight(2,3,4,5);

bw.volume();

//assigning the subclass object to the superclass object
b=bw; // b has been created with its own data, in which weight is not a member

System.out.println ("The weight is :"+b.weight);

}

}

Super keyword

There are three uses of the super keyword.

i. super keyword is used to call the super class constructor

ii. super keyword is used to access the super class methods

iii. super keyword is used to access the super class instance variables.

Using the super to call the super class constructor
A subclass can call the constructor of the super class by the using the super keyword in the

following form:

super(arg_list);

Here, the arg_list, is the list of the arguments in the super class constructor. This must be the

first statement inside the subclass constructor. For example,

// BoxWeight now uses super to initialize its Box attributes.

class Box

{

double width,height,depth;

//superclass constructor

Box(double x,double y,double z)

{

width=x;height=y;depth=z;

}

class BoxWeight extends Box

{

double weight; // weight of box

// initialize width, height, and depth using super()

BoxWeight(double w, double h, double d, double m)

{

super(w, h, d); // call super class constructor

weight = m;

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

}

}

Using the super to access the super class members (methods or instance variable)

The second form of super acts somewhat like this, except that it always refers to the super

class of the subclass in which it is used. This usage has the following general form:

super.member;

Here, member can be either a method or an instance variable.

This second form of super is most applicable to situations in which member names of a

subclass hide members by the same name in the super class. Consider this simple class

hierarchy:

Write a JAVA program give example for “super” keyword. (Lab Exercise - 6 (a))

class A

{

int i;

void show()

{

System.out.println(" i in A is: "+i);

}

}

// Create a subclass by extending class A.

class B extends A

{

int i; // this i hides the i in A

B(int a, int b)

{

super.i = a; // i in A

i = b; // i in B

}

void show()

{

super.show(); //calling the super class method

System.out.println("i in A : " + super.i); // accessing the super class variable

System.out.println("i in B : " + i);

}

}

class UseSuper

{

public static void main(String args[])

{

B subOb = new B(1, 2);

subOb.show();

}

}

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

Output:

E:\ksr>javac UseSuper.java

E:\ksr>java UseSuper

i in A is: 1

i in A : 1

i in B : 2

Note: In the above program the super and sub classes have common names for variables and

methods. When we want to execute the super class method, at run time actually the sub class

method is executed, because of method overriding. To overcome this problem and hide the

sub class members from the super class members, the keyword super is used with help of

.(dot) operator along with member.

final keyword

The "final" keyword is used for the following purposes.

 to declare constants

 to prevent method overriding

 to prevent inheritance.

When a variable is declared as final through the program its value should not be changed by

the program statement. If any modification is done on the final variable, that can lead to error,

while compiling the program.

Example program: demonstrating (1) and (2)

FinalTest.java

import java.io.*;

class A

{

final int MAX=100; // (1) constant declaration

final void disp() //(2) prevents overriding

{

// MAX++ or MAX-- operations are illegal

System.out.println("The super class disp method MAX is:"+MAX);

}

}

class B extends A

{

void disp()

{

System.out.println("The SUB class disp method :");

}

}

class FinalTest

{

public static void main(String args[])

{

B b=new B();

b.disp();

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

}

}

Output:

E:\ksr>javac FinalTest.java

FinalTest.java:14: disp() in B cannot override disp() in A; overridden method is

final

void disp()

^

1 error

Explanation:

In the above program, the super class method is declared as final, and hence the sup
class cannot override this. So we should not redefine the same method in the sub class. If we

do so, it leads to an error. If we do the same program without disp() method in the sub class,

it will produce the following output.

Example Program: removing the disp() method in the sub class

import java.io.*;

class A

{

final int MAX=100; // (1) constant declaration

final void disp() //(2) prevents overriding

{

// MAX++ or MAX-- operations are illegal

System.out.println("The super class disp method MAX is:"+MAX);

}

}

class B extends A

{ /*void disp() multiple comments

{

System.out.println("The SUB class disp method :");

}*/

}

class FinalTest

{ public static void main(String args[])

{ B b=new B();

b.disp();

}

}

Output:

E:\ksr>javac FinalTest.java

E:\ksr>java FinalTest

The super class disp method MAX is:100

Example program: Demonstrating "final" to Prevent Inheritance

Sometimes you will want to prevent a class from being inherited. To do this, precede

the class declaration with final. Declaring a class as final implicitly declares all of its

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

methods as final, too. As you might expect, it is illegal to declare a class as both abstract and

final since an abstract class is incomplete by itself and relies upon its subclasses to provide

complete implementations.

Here is an example of a final class:

final class A

{

// ...

}

// The following class is illegal.

class B extends A

{

// ERROR! Can't subclass A

// ...

}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

Method overriding

In the Inheritance, when a method in the sub class has the same name as the super

class method name and signature, then the method in the sub class is executed. The method in

the sub class is said to be override the method in the super class. The super class version of

the method is hidden. This is called “method overriding”.

Example Program on method overriding

class A

{

void disp()

{

System.out.println("Method of class A");

}

}

class B extends A

{

void disp()

{

System.out.println("Method of class B");

}

}

class MOTest

{

public static void main(String args[])

{

B b=new B();

b.disp();

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

}

}

Output:

E:\ksr>javac MOTest.java

E:\ksr>java MOTest

Method of class B

Using Abstract Classes

Sometimes it may be need by the super class to define the structure of the every

method without implementing it. The subclass can fill or implement the method according to

its requirements. This kind of situation can come into picture whenever the super class unable

to implement the meaningful implementation of the method. For example, if we want to find

the area of the Figure given, which can be Circle, Rectangle, and Triangle. The class Figure

defines the method area(), when subclass implements its code, it implements its own version

of the method. The Java's solution to this problem is abstract method.

To declare anabstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present.

To declare a class abstract, you simply use the abstract keyword in front of the class

keywordat the beginning of the class declaration. There can be no objects of an abstract class.

That is,an abstract class cannot be directly instantiated with the new operator. Such objects

wouldbe useless, because an abstract class is not fully defined.

Example Program:

FigureDemo.java
c). Write a java program for abstract class to find areas of different shapes (Exercise 5 (c))

import java.util.Scanner;

abstract class CalcAreas

{

abstract void findTriangle(double b, double h);

abstract void findRectangle(double l, double b);

abstract void findSquare(double s);

abstract void findCircle(double r);

}

class FindArea extends CalcAreas

{

void findTriangle(double b, double h)

{

double area = (b*h)/2;

System.out.println("Area of Triangle: "+area);

}

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

void findRectangle(double l, double b)

{

double area = l*b;

System.out.println("Area of Rectangle: "+area);

}

void findSquare(double s)

{

double area = s*s;

System.out.println("Area of Square: "+area);

}

void findCircle(double r)

{

double area = 3.14*r*r;

System.out.println("Area of Circle: "+area);

}

}

class Areas

{

public static void main(String args[])

{

double l, b, h, r, s;

FindArea area = new FindArea();

Scanner get = new Scanner(System.in);

System.out.print("\nEnter Base & Vertical Height of Triangle: ");

b = get.nextDouble(); h

= get.nextDouble();

area.findTriangle(b, h);

System.out.print("\nEnter Length & Breadth of Rectangle: ");

l = get.nextDouble(); b

= get.nextDouble();

area.findRectangle(l, b);

System.out.print("\nEnter Side of a Square: ");

s = get.nextDouble();

area.findSquare(s);

System.out.print("\nEnter Radius of Circle: ");

r = get.nextDouble();

area.findCircle(r);

}

}

Output:

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

Dynamic Method Dispatch (Runtime Polymorphism) (Topic Beyond Syllabus)
Dynamic method dispatch is the mechanism by which a call to an overridden method

is resolved at run time, rather than compile time. Dynamic method dispatch is important

because this is how Java implements run-time polymorphism.

Let’s begin by restating an important principle: a super class reference variable can

refer to a subclass object. Java uses this fact to resolve calls to overridden methods at run

time. Here is how. When an overridden method is called through a super class reference, Java

determines which version of that method to execute based upon the type of the object being

referred to at the time the call occurs. Thus, this determination is made at run time.

Here is an example that illustrates dynamic method dispatch:

Write a JAVA program that implements Runtime polymorphism class A (Exercise 8 (a))

{

void callme()

{

System.out.println("Inside A's callme method");

}

}

class B extends A

{

// override callme()

void callme()

{

System.out.println("Inside B's callme method");

}

}

class C extends A

{

// override callme()

void callme()

{

System.out.println("Inside C's callme method");

}

}

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

class Dispatch

{

public static void main(String args[])

{

A a = new A(); // object of type A

B b = new B(); // object of type B

C c = new C(); // object of type C

A r; // obtain a reference of type A r =

a; // r refers to an A object r.callme();

// calls A's version of callme r = b; // r

refers to a B object

r.callme(); // calls B's version of callme

r = c; // r refers to a C object

r.callme(); // calls C's version of callme

}

}

The output from the program is shown here:

Introduction to Interfaces

Java supports the concept of Inheritance, that is acquiring the properties from one class to

other class. The class that acquires properties is called "subclass", and the class from which it

acquire is called "super class". Here, one class can acquire properties from other class using the

following statement:

class A extends B

{

}

But, Java does not allow to acquire properties from more than one class, which we call it as

"multiple inheritance". We know that large number of real-life applications require the use of

multiple inheritance. Java provides an alternative approach known as "interface" to support the

concept of multiple inheritance.

Defining Interface

An interface is basically a kind of class. Like classes, interfaces contain the methods and

variables but with major difference. The difference is that interface define only abstract methods

and final fields. This means that interface do not specify any code to implement these methods and

data fields contain only constants. Therefore, it is the responsibility of the class that implements an

interface to define the code for these methods.

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

The syntax of defining an interface is very similar to that of class. The general form of an

interface will be as follows:

interface Intyerface_name

{

//variables inside interface are by default final, publicand static

type id=value;

//by default abstract methods

return_type method_name(paprameter_list);

return_type method_name(paprameter_list);

return_type method_name(paprameter_list);

}

// Here, interface is the keyword and the Calculator is name for interface. The variables are declared

as follows:

Note: 1) variables inside interface are by default final, public and static

2) by default methods are public and abstract

These methods must be implemented any class that want to acquire the properties.

Here is an example of an interface definition that contain two variable and one method

interface Calculator

{

//variables inside interface are by default final, public and static

double PI=3.14;

//by default abstract methods

int add(int a,int b);

int sub(int a,int b);

int mul(int a,int b);

int div(int a,int b);

double area(int r);

}

Implementing the interface

Interfaces are used as "superclasses" whose properties are inherited by the classes. It is

therefore necessary to create a class that inherits the given interface. This is done as follows:

class Class_Name implements Interface_Name

{

//Body of the class

}

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

Here, Class_Name class, implements the interface "Interface_Name". A more general form

of implementation may look like this:

class Class_Name extends Superclass_Name implements interface1,

interface2,interface3..

{

// body of the class

}

This shows that a class can extend another class while implementing interfaces. When a class

implements more than one interface they are separated by a comma.

Example program using interface

interface Calculator

{

InterfaceTest.Java

//variables inside interface are by default final, publi and static

double PI=3.14;

//by default abstract methods

int add(int a,int b);

int sub(int a,int b);

int mul(int a,int b);

int div(int a,int b);

double area(int r);

}

class NormCal implements Calculator

{

public int add(int x,int y)

{

return(x+y);

}

public int sub(int x,int y)

{

return(x-y);

}

public int mul(int x,int y)

{

return(x*y);

}

public int div(int x,int y)

{

return(x/y);

}

public double area(int r)

{

return(PI*r*r);

}

public static void main(String args[])

{

NormCal nc=new NormCal();

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

System.out.println("The sum is:"+nc.add(2,3));

System.out.println("The sum is:"+nc.sub(2,3));

System.out.println("The sum is:"+nc.mul(2,3));

System.out.println("The sum is:"+nc.div(4,2));

System.out.println("area of Circle is:"+nc.area(5));

}

}

OutPut:

E:\ksr>javac NormCal.java

E:\ksr>java NormCal

The sum is:5

The sum is:-1

The sum is:6

The sum is:2

area of Circle is:78.5

Extending the Interfaces

Like classes interfaces also can be extended. That is, an interface can be sub interfaced from

other interface. The new sub interface will inherit all the members from the super interface in the

manner similar to the subclass. This is achieved using the keyword extends as shown here:

interface Interface_Name1 extendsInterface_Name2

{

//Body of the Interface_name1

}

For example, MenuTest.java

interface Const

{

static final int code=501;

static final String branch="CSE";

}

interface Item extends Const

{

void display();

}

class Menu implements Item

{

public void display()

{

System.out.println("The Branch code is "+code+" and the Branch is "+branch);

}

}

class MenuTest{

public static void main(String args[])

{

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

}

}

Output:

Menu m=new Menu(); // this contains the interfaces Item and Const

m.display();

Interfaces Vs Abstract classes

Sl Interface Abstract

1 Multiple Inheritance possible Multiple Inheritance not possible

2 implements keyword is used extends keyword is used

3 By default all the methods are
public, and abstract. No need to

tag as public and abstract

Methods have to be tagged as public and abstract.

4 All methods of interface need to
be overridden

Only abstract methods need to be overridden

5 All variable declared in interface
are By default public, final and

static

Variable if required, need to be declared in
interface as public, final and static

6 Methods cannot be static Non-abstract methods can be static

Packages

Introduction to Packages

One of the main features of the Object Oriented Programming language is the ability

to reuse the code that is already created. One way for achieving this is by extending the

classes and implementing the interfaces. Java provides a mechanism to partition the classes

into smaller chunks. This mechanism is the Package. The Package is container of classes.

The class is the container of the data and code. The package also addresses the problem of

name space collision that occurs when we use same name for multiple classes. Java provides

convenient way to keep the same name for classes as long as their subdirectories are

different.

Benefits of packages:

1. The classes in the packages can be easily reused.
2. In the packages, classes are unique compared with other classes in the other packages.

3. Packages provide a way to hide classes thus prevent classes from accessing by other

programs.

4. Packages also provide way to separate "design" from "coding".

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

Categories of Packages
The Java Packages are categorized into two categories (i) Java API Packages (ii) User

Defined Packages.

1. Java API Packages –Java API provides large number of classes grouped into different

packages according to the functionality. Most of the time we use the package available
with Java API.

java

io lang util awt net applet

Fig 1 Some of the Java API packages

Table 1 Java System Packages and their Classes

Sl No Package Name Contents

1 java.lang Contains language support classes. The java compiler
automatically uses this package. This includes the

classes such as primitive data types, String,

StringBuffer, StringBuilde etc;

2 java.util Contains the language utility classes such asa Vectors,
Hash Table , Date, StringTokenizer etc;

3 java.io Contains the classes that support input and output
classes.

4 java.awt Contains the classes for implementing the graphical
user interfaces

5 Java.net Contains the classes for networking

6 Java.applet Contains the classes for creating and implementing the
applets.

Java.lang Package
The java.lang package includes the following classes.

Boolean Enum Package StackTraceElement ThreadGroup

Byte Float Process StrictMath ThreadLocal

Character Integer ProcessBuilder String Throwable

Class Long Runtime StringBuffer Void

ClassLoader Math RuntimePermission StringBuilder

Compiler Number SecurityManager System

Double Object Short Thread

Using the System Packages

Packages are organized in hierarchical structure, that means a package can contain

another package, which in turn contains several classes for performing different tasks. There

are two ways to access the classes of the packages.

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

i. fully qualified class name- this is done specifying package name containing the

class and appending the class to it with dot (.) operator.

Example: java.util.StringTokenizer(); Here, "java.util" is the package and

"StringTokenizer()" is the class in that package. This is used when we want to

refer to only one class in a package.

ii. import statement –this is used when we want to use a class or many classes in

many places in our program. Example: (1) import java.util.*;

(2) import java.util.StringTokenizer;

Naming Conventions
Packages can be named using the Java Standard naming rules. Packages begin with

"lower case" letters. It is easy for the user to distinguish it from the class names. All the class

Name by convention begin with "upper case" letters. Example:

double d= java.lang.Math.sqrt(3);

Here, "java.lang" is the package, and "Math" is the class name, and "sqrt()" is the method

name.

2. User Define Packages
To create a package is quite easy: simply include a package command in the first line

of the source file. A class specified in that file belongs to that package. The package

statement defines a name space in which classes are stored. If you omit the package

statement, the class names are put in the default package, which has no name.

The general form of the package statement will be as followed: package pkg;

Here, "pkg" is the package name. Example: package MyPackage;

Java Uses file system directories to store packages. For example, the " .class" files

for any classes you declare to be part of the "MyPackage" must be store in the "MyPackage"

directory. The directory name "MyPackage" is different from "mypackage".

Notes: 1. The case for the package name is significant.

2. The directory name must match with package name.

We can create hierarchy of packages. To do so, simply separate package name from

the above one with it by use of the dot (.) operator. The general form of multileveled package

statement is shown here: package pkg1.pkg2.pkg3;

Example: package iicse.asection.java

Finding the Packages and CLASSPATH

Packages are mirrored by the directories. This raises an import question: how does Java-Run

time system look for the packages that you create? The answer has three parts: (1) By default, Java-

Run time system uses the current working directory as its starting point. Thus your package is in a

subdirectory of your directory, it will be found. (2) You can specify a directory path by setting the

CLASSPATH environment variable. (3) You can use - classpath option with java and iavac to specify

the path for the classes.

A Short Example Package: Calc.java

Write a JAVA program that import and use the defined your package in the previous

Problem (Exercise – 12 (c))

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

package Arith; //package name

public class Calc

{

public float add(float x,float y)

{

return (x+y);

}

public float sub(float x,float y)

{

return (x-y);

}

public float mul(float x,float y)

{

return (x*y);

}

public float div(float x,float y)

{

return (x/y);

}

public float rem(float x,float y)

{

return (x%y);

}

}

Using the package in another class called ͞MathTest.java͟

import Arith.*; //accessing the package

class MathTest

{

public static void main(String args[])

{

}

}

Output:

Calc c=new Calc();

System.out.println("The sum is:"+c.add(12,3));

System.out.println("The subtraction is is:"+c.sub(12,3));

System.out.println("The product is:"+c.mul(12,3));

System.out.println("The Division is:"+c.div(12,3));

System.out.println("The Rem is:"+c.rem(12,5));

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

Procedure for Creating and using the package:

 Open a text editor or notepad and type the above code of ͞Calc.java͟ and writing the

͞package Arith͞ as the first statement in it as shown in the program.

 Create a Folder with name ͞Arith͟ same as package name. Save the ͞Calc.java͟ in this file

and compile it with help of command prompt with directory path ͞

E:/ksr/Arith> javac Calc.java

 Open another text editor and type the code ͞MathTest.java͟ in it and save it in the directory

E:/ksr.

 Compile this file and run it, then we see the output.

Package and Member Accessing

The visibility of an element is specified by the access specifiers: public, private, and
protected and also the package in which it resides. The visibility of an element is determined

by its visibility within class, and visibility within the package.

- If any members explicitly declared as "public", they are visible everywhere, including

in different classes and packages.

- "private" members are accessed by only other members of its class. A private

member is unaffected by its membership in a package.

- A member specified as "protected" is accessed within its package and to all

subclasses.

Class Member Access:

Sl No Class

member

Private

Member

Default

Member

Protected

Member

Public

Member

1 Visible
within same

class

YES YES YES Yes

2 Visible
within the

same

package by

subclasses

No YES YES YES

3 Visible
within same

package by

non-subclass

No YES YES YES

4 Visible
within

different

packages by

subclasses

NO NO YES YES

5 Visible
within

different

packages by

Non-

subclasses

NO NO NO YES

Adding a class to a Package:

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

It is simple to add a class to already existing package. Consider the following Package:

A.java

package p1;

public class A
{

}

// body of the class

Here, the package p1 contains one public class by the name A. Suppose if we want to add

another class B to this package. This can be done as follows:

1. Define the class and make it public

2. Place the package statement in the begin of class definition

package p1;

public class B

{

//body of the class B

}

3. store this as "B.java" file under the directory p1.

4. Compile "B.java" file by switching to the subdirectory. This will create "B.class" file

and place it in the directory p1.

Now the package p1 will contain both A.class and B.class files

Exceptions and Assertions:

Introduction to Exception

An Exception is an abnormal condition that arises in a code sequence at run time. In

other words, an exception is run-time error. A Java exception is an object that describes an

exceptional (that is, error) condition that has occurred in a piece of code. When an

exceptional condition arises, an object representing that exception is created and thrown in

the method that caused the error. That method may choose to handle the exception itself, or

pass it on. Either way, at some point, the exception is caught and processed.

Importance of try, catch, throw, throws and finally block

Exception handling is managed by Java by via five keywords:

 try

 catch

 throw

 throws

 finally.

Working Exception handling Techniques:
1. Briefly, here is how they work. Program statements that you want to monitor for

exceptions are placed within a try block.

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

2. If an exception occurs within the try block, it is thrown. Your code can catch this

exception (using catch) and handle it in some rational manner.

3. System-generated exceptions are automatically thrown by the Java run-time system.

To manually throw an exception, use the keyword throw.

4. Any exception that is thrown out of a method must be specified as such by a throws

clause.

5. Any code that absolutely must beexecuted after a try block completes is put in a

finally block.

Syntax:

try

{

}

// block of code to monitor for errors

catch (ExceptionType1 exOb)

{

// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb)

{

}

// ...

finally

{

}

// exception handler for ExceptionType2

// block of code to be executed after try block ends

Exception Types
All exception types are subclasses of the built-in class Throwable. Thus, Throwable

is at the top of the exception class hierarchy. Immediately below (Fig 2) Throwable are two

subclasses that partition exceptions into two distinct branches. One branch is headed by

Exception. This class is used for exceptional conditions that user programs should catch.

This is also the class that you will subclass to create your own custom exception types. There

is an important subclass of Exception, called Runtime Exception. Exceptions of this type

are automatically defined for the programs that you write and include things such as division

by zero and invalid array indexing.

The other branch is topped by Error, which defines exceptions that are not expected

to be caught under normal circumstances by your program. Exceptions of type Error are

used by the Java run-time system to indicate errors having to do with the run-time

environment, itself. Stack overflow is an example of such an error. This chapter will not be

dealing with exceptions of type Error, because these are typically created in response to

catastrophic failures that cannot usually be handled by your program.

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

Throwable class

Exception class

Error

Run-Time Exception IOException

Fig 2: Exception Types
The Java Built-in Exceptions are broadly classified into two categories: Checked and

Unchecked exceptions. The Checked Exceptions are those for which the compiler checks to

see whether they have been handled in your program or not. Unchecked or Run-Time

Exceptions are not checked by the compiler. These Unchecked Exceptions are handled by the

Java Run-Time System automatically.

Checked Exceptions Unchecked Exceptions

ClassNotFoundException Arithmetic Exception

NoSuchFieldException ArrayIndexOutOfBoundsException

NoSuchMethodException NullPointerException

InerruptedException ClassCastException

IOException BufferOverFlowException

IllegalAccessException BufferUnderFlowException

Uncaught Exceptions:

Before you learn how to handle exceptions in your program, it is useful to see what happens

when you don’t handle them. This small program includes an expression that intentionally

causes a divide-by-zero error:

class Exc0

{

public static void main(String args[])

{

int d = 0;

int a = 42 / d;

}

}

When the Java run-time system detects the attempt to divide by zero, it constructs

anew exception object and then throws this exception. This causes the execution of Exc0 to

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

stop, because once an exception has been thrown, it must be caught by an exception handler

and dealt with immediately.

In the above program we have not provided any exception handler, in this context the

exception is caught by the default handler. The default handler displays string describing

the exception.

Here is the exception generated when this example is executed:

java.lang.ArithmeticException: / by zero

at Exc0.main(Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename, Exc0.java;and the

line number, 4, are all included in the simple stack trace. Also, notice that the type of

exception thrown is a subclass of Exception called ArithmeticException, which more

specifically describes what type of error happened.

Using try and catch

Although the default exception handler provided by the Java run-time system is useful for

debugging, you will usually want to handle an exception yourself. Doing so provides two

benefits.

 First, it allows you to fix the error.

 Second, it prevents the program from automatically terminating.

Most users would be confused (to say the least) if your program stopped running and printed

a stack trace whenever an error occurred! Fortunately, it is quite easy to prevent this.

To guard against and handle a run-time error, simply enclose the code that you want

to monitor inside a try block. Immediately following the try block, include a catch clause

that specifies the exception type that you wish to catch. To illustrate how easily this can be

done, the following program includes a try block and a catch clause that processes the

ArithmeticException generated by the division-by-zero error:

class Exc2

{

public static void main(String args[])

{

Exc2.java

int d, a;

try {

// monitor a block of code.

d = 0;

a = 42 / d;

System.out.println("This will not be printed.");

}

catch (ArithmeticException e)

{ // catch divide-by-zero error

System.out.println("Division by zero.");

}

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

System.out.println("After catch statement.");

}

}

Note: println() statement inside the "try" will never execute, because once the exception is

raised the control is transferred to the "catch" block. Here is catch is not called, hence it will

not return the control back to the "try" block. The "try" and "catch" will form like a unit. A

catch statement cannot handle the exception thrown by another "try" block.

Displaying a Description of an Exception

Throwable overrides the toString() method (defined by Object) so that it returns a string

containing a description of the exception. You can display this description in a println(

)statement by simply passing the exception as an argument. For example, the catch block in

the preceding program can be rewritten like this:
catch (ArithmeticException e)

{

System.out.println("Exception: " + e);

a = 0; // set a to zero and continue

}

When this version is substituted in the program, and the program is run, each divide-by-zero

error displays the following message:

Exception: java.lang.ArithmeticException: / by zero

Multiple catch Clauses
In some cases, more than one exception could be raised by a single piece of code. To handle
this type of situation, you can specify two or more catch clauses, each catching a different

type of exception. When an exception is thrown, each catch statement is inspected in order,

and the first one whose type matches that of the exception is executed. After one catch

statement executes, the others are bypassed, and execution continues after the try/catch

block. The following example traps two different exception types:

// Demonstrate multiple catch statements.

class MultiCatch

{

public static void main(String args[])

{

try

{

int a = args.length;

System.out.println("a = " + a);

int b = 42 / a;

int c[] = { 1 };

c[42] = 99;

}

catch(ArithmeticException e)

{

System.out.println("Divide by 0: " + e);

}

catch(ArrayIndexOutOfBoundsException e)

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

{

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

}

Nested try Statements

The try statement can be nested. That is, a try statement can be inside the block of another

try. Each time a try statement is entered, the context of that exception is pushed on the stack.

If an inner try statement does not have a catch handler for a particular exception, the stack is

unwound and the next try statement’s catch handlers are inspected for a match. This

continues until one of the catch statements succeeds, or until all of the nested try statements

are exhausted. If no catch statement matches, then the Java run-time system will handle the

exception.

throw:

So far, you have only been catching exceptions that are thrown by the Java run-time system

implicitly. However, it is possible for your program to throw an exception explicitly, using

the throw statement. The general form of throw is shown here:

throwThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of Throwable.

Example Program:

class ThrowDemo

{

ThrowDemo.java

public static void main(String args[])

{

method1();

}

static void method1()

{

System.out.println("Inside the method1:");

try

{

method2();

}

catch(Exception e)

{

System.out.println("The Exception is:"+e);

}

System.out.println("After Method 2");

}

static void method2()

{

throw new ArithmeticException(" Testing Throw");

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

}

}

throws:

If a method is capable of causing an exception that it does not handle, it must specify this

behavior so that callers of the method can guard themselves against that exception. You do

this by including a throws clause in the method’s declaration. A throws clause lists the types

of exceptions that a method might throw. This is necessary for all exceptions, except those of

type Error or RuntimeException, or any of their subclasses. All other exceptions that a

method can throw must be declared in the throws clause. If they are not, a compile-time error

will result.

This is the general form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list

{
// body of method

}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.

Example Program:

ThrowsDemo.java

import java.io.*;

class ThrowsDemo

{

public static char prompt(String str) throws IOException,ArithmeticException

{

//called method throws two exceptions
System.out.println(str+":");
int x=20,y=0;

int z=x/y;

return (char) System.in.read();

}

public static void main(String args[])

{

char ch;

try

{

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

//calling a method- here main is caller
ch=prompt("Enter a Character:");

//it is the responsibility of the caller to handle it

}

catch(IOExceptione)

{

System.out.println("Exception is:"+e);

}

catch(ArithmeticExceptionae)

{

}

}

}

Output:

finally:

System.out.println("Exception is:"+ae);

The finally block is always is executed. It is always used to perform house keeping

operations such as releasing the resources, closing the files that already opened etc,. That

means the statement that put inside the finally block are executed compulsorily.It is always

followed by the try-catch statements.

Syntax:

try

{

// statements

}

catch(Exception e)

{

}

finally
{

}

//Handlers

//statements

Exception encapsulation and enrichment

The process of wrapping the caught exception in a different exception is called
"Exception Encapsulation". The Throwable super class has added one parameter in its

constructor for the wrapped exception and a "getCause()" method to return the wrapped

exception. Wrapping is also used to hide the details of implementation.

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

Syntax:
try
{

}

throw new ArithmeticException();

catch(AritmeticExceptions ae)

{

//wrapping exception

throw new ExcepDemo("Testing User Exception",ae);

}

Disadvantages of wrapping:

 It leads to the long Stack traces.

 It is a difficult task to figure out where the exception is

Solution:
The possible solution is Exception enrichment. Here we don’t wrap exception but we add

some information to the already thrown exception and rethrow it.

Example program:

class ExcepDempo extends Exception

{

String message;

ExcepDemo(String msg)

{

message=msg;

}

public void addInformation(String msg)

{

message=message+msg;

}

}

class ExcepEnrich

{

static void testException()

{

try{

}

throw new ExcepDemo("Testing user Exceptio:");

catch(ExcepDemo e)

{

e.addInformation("Example Exception");

}

}

public static void main(String args[])

{

try

{

testException();

}

catch(Exception e)

{

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

System.out.println(e);

}

}

}

user- defined exceptions

Java has rich set of Built-in Exceptions which can handle almost all the exceptions. If

we want to create our own exceptions, java provides a simple way to do so. This is possible

by defining a sub class of Exception super class. The Exception is the sub class of Throwable

class from which it acquires the properties.

Example program on User defined Exception

import java.util.*;

class NoBalanceException extends Exception
{

public NoBalanceException(String problem)

{

super(problem);

}

}

public class YesBank

{

public static void main(String args[])

{

int balance=2000, withdraw ;

Scanner in=new Scanner(System.in);

System.out.println("Enter the Withdrawal amount:");

withdraw=in.nextInt();

try

{

if (balance < withdraw)

{

NoBalanceException e = new NoBalanceException("No balance please");

throw e;

}

else

{

System.out.println("Draw & enjoy, Best wishes of the day");

}

}

catch(Exception exp)

{

System.out.println(" The Exception is: "+exp);

}

}

}

Output:

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

Assertions

Assertions are added after java 1.4 to always create reliable programs that are Correct

and robust programs. The assertions are Boolean expressions. Conditions such as positive

number or negative number are examples.

Syntax:

assert expression1;

or

assert expression1:expression2;

Where assert is the keyword. Expression 1 is the Boolean expression, expression2 is the

string that describes the Exceptions.

Note: assertions must be explicitly enabled. The –ea option is used to enable the exception

and –da is used to disable the exception.

import java.io.*;

class AI
{

void check(int i)

{

AI.java

assert i>0:" I must be positive:";

System.out.println("Your I value is fine");

}

public static void main(String args[]) throws IOException

{

AI a=new AI();

a.check(Integer.parseInt(args[0]));

}

}}

Unit 3: Inheritance ,Interfaces, Packages, Exceptions and Assertions

