
Unit 2: Classes

Topics to be covered:

UNIT – 2

Classes and objects, class declaration, creating objects, methods, constructors and constructor

overloading, garbage collector, importance of static keyword and examples, this keyword, arrays,

command line arguments, nested classes.

Introduction to classes

Fundamentals of the class

A class is a group of objects that has common properties. It is a template or blueprint from

which objects are created. The objects are the instances of class. Because an object is an

instanceof a class, you will often see the two words object and instance used interchangeably.

A class is used to define new type of the data. Once defined, this new type can be used to create

objects of its type. The class is the logical entity and the object is the logical and physical entity.

The general form of the class

A class is declared by use of the class keyword. The classes that have been used up to thispoint

are actually very limited examples of its complete form. Classes can (and usually do) get much

more complex. A simplified general form of a class definition is shown here:

class classname

{

type instance-variable1;

type instance-variable2;

………………………………..
……………………………….
type instance-variableN;

type method1(parameterlist)

{

//body of the method1

}

type method2(parameterlist)

{

//body of the method2

}

……………………………………..
……………………………………..
type methodN(parameterlist)

{

//body of the methodN

Unit 2: Classes

}

}

 The data or variables, defined within the class are called, instance variable.

 The methods also contain the code.

 The methods and instance variable collectively called as members.

 Variable declared within the methods are called local variables.

A Simple Class

Let’s begin our study of the class with a simple example. Here is a class called Box that defines

three instance variables: width, height, and depth. Currently, Box does not contain any

methods.

class Box

{ //instance variables

double width;

double height;

double depth;

}

As stated, a class defines new data type. The new data type in this example is, Box. This defines

the template, but does not actually create object.

Note: By convention the First letter of every word of the class name starts with Capital letter, but

not compulsory. For example ―box‖ is written as ―Box‖ The First letter of the word of the

method name begins with small and remaining first letter of every word starts with Capital letter,

but not compulsory. For example ―boxVolume()‖

Creating the Object

There are three steps when creating an object from a class:

 Declaration: A variable declaration with a variable name with an object type.

 Instantiation: The 'new' key word is used to create the object.

 Initialization: The 'new' keyword is followed by a call to a constructor. This call

initializes the new object.

Step 1:
Box b;

Effect: b null

Declares the class variable. Here the class variable contains the value null. An attempt to access

the object at this point will lead to Compile-Time error.

Step 2:

Box b=new Box();

Unit 2: Classes

Here new is the keyword used to create the object. The object name is b. The new operator

allocates the memory for the object, that means for all instance variables inside the object,

memory is allocated.

Effect: b

Width

Height

Depth

Box Object

Step 3:

There are many ways to initialize the object. The object contains the instance variable.

The variable can be assigned values with reference of the object.

b.width=12.34;

b.height=3.4;

b.depth=4.5;

Here is a complete program that uses the Box class:

BoxDemo.java
class Box

{

double width;

double height;

double depth;

}

// This class declares an object of type Box.

class BoxDemo

{

public static void main(String args[])

{

//declaring the object (Step 1) and instantiating (Step 2) object

Box mybox = new Box();

double vol;

// assign values to mybox's instance variables (Step 3)

mybox.width = 10;

mybox.height = 20;

mybox.depth = 15;

// compute volume of box
vol = mybox.width * mybox.height * mybox.depth;

System.out.println("Volume is " + vol);

}

}

When you compile this program, youwill find that two .class files have been created, one for

Box and one for BoxDemo. The Javacompiler automatically puts each class into its own .class

Unit 2: Classes

file. It is not necessary for both theBox and the BoxDemo class to actually be in the same source

file.

To run this program, you must execute BoxDemo.class. When you do, you will see the

following output:

Volume is 3000.0

As stated earlier, each object has its own copies of the instance variables. This means thatif you

have two Box objects, each has its own copy of depth, width, and height. It is importantto

understand that changes to the instance variables of one object have no effect on the

instancevariables of another. For example, the following program declares two Box objects:

// This program declares two Box objects.

class Box
{

double width;

double height;

double depth;

}

class BoxDemo2

{

public static void main(String args[])

{

Box mybox1 = new Box();

Box mybox2 = new Box();

double vol;

// assign values to mybox1's instance variables
mybox1.width = 10;

mybox1.height = 20;

mybox1.depth = 15;

/* assign different values to mybox2's

instance variables */

mybox2.width = 3;
mybox2.height = 6;

mybox2.depth = 9;

// compute volume of first box
vol = mybox1.width * mybox1.height * mybox1.depth;

System.out.println("Volume is " + vol);

// compute volume of second box
vol = mybox2.width * mybox2.height * mybox2.depth;

System.out.println("Volume is " + vol);

}
}

Assigning Object Reference Variables
Object reference variables act differently than you might expect when an assignment takes
place. For example, what do you think the following fragment does?

Box b1 = new Box();

Box b2 = b1;

You might think that b2 is being assigned a reference to a copy of the object referred to byb1.

That is, you might think that b1 and b2 refer to separate and distinct objects. However,this would

Unit 2: Classes

be wrong. Instead, after this fragment executes, b1 and b2 will both refer to thesame object. The

assignment of b1 to b2 did not allocate any memory or copy any part of theoriginal object. It

simply makes b2 refer to the same object as does b1. Thus, any changesmade to the object

through b2 will affect the object to which b1 is referring, since they are thesame object.

This situation is depicted here:

Introduction to Methods

Classes usually consist of two things: instance variables and methods. The topic of methods is a

large one because Java gives them so much power and flexibility. In fact, much of the next

chapter is devoted to methods.

This is the general form of a method:

type name(parameter-list)

{

// body of method

}

Here, type specifies the type of data returned by the method. This can be any valid type,including

class types that you create. If the method does not return a value, its return typemust be void.

The name of the method is specified by name. This can be any legal identifierother than those

already used by other items within the current scope. The parameter-list is asequence of type and

identifier pairs separated by commas. Parameters are essentially variablesthat receive the value

of the argumentspassed to the method when it is called. If the methodhas no parameters, then the

parameter list will be empty.

Methods that have a return type other than void return a value to the calling routine usingthe

following form of the return statement:

return value;

Here, value is the value returned.

Adding a method to the Box class

class Box

{

Box.java

double width, height, double depth;

// display volume of a box

void volume()

Unit 2: Classes

{

System.out.print("Volume is ");

System.out.println(width * height * depth);

}
}

Here the method name is "volume()". This methods contains some code fragment for computing
the volume and displaying. This method cane be accessed using the object as in the following

code:

class BoxDemo3

{

BoxDemo3.java

public static void main(String args[])

{

Box mybox1 = new Box();
// assign values to mybox1's instance variables

mybox1.width = 10;

mybox1.height = 20;
mybox1.depth = 15;

/* assign different values to mybox2's

// display volume of first box

mybox1.volume();

// display volume of second box
}

}

Returning a Value

A method can also return the value of specified type. In this case the type of the method should

be clearly mentioned. The method after computing the task returns the value to the caller of the

method.

Box

{

double width, height, depth;

BoxDemo3.java

double volume()

{

return (width*height*depth);

}

}

class BoxDemo3

{

public static void main(String args[])

{

Box mybox1 = new Box();

// assign values to mybox1's instance variables

mybox1.width = 10;

Unit 2: Classes

mybox1.height = 20;

mybox1.depth = 15;

double vol;

/* assign different values to mybox2's

//calling the method vol=
mybox1.volume();

System.out.println("the Volume is:"+vol);

}

}

Adding a method that takes the parameters

We can also pass arguments to the method through the object. The parameters separated with

comma operator. The values of the actual parameters are copied to the formal parameters in the

method. The computation is carried with formal arguments, the result is returned to the caller of

the method, if the type is mentioned.

double volume(double w,double h,double d)

{

width=w;

height=h;

depth=d;

return (width*height*depth);

}

Constructors

It can be tedious to initialize all of the variables in a class each time an instance is

created. Even if we use some method to initialize the variable, it would be better this

initialization is done at the time of the object creation.

Aconstructorinitializes an object immediately upon creation. It has the same name as

theclass in which it resides and is syntactically similar to a method. Once defined, the

constructoris automatically called immediately after the object is created, before the new

operator completes.Constructors look a little strange because they have no return type, not even

void. This isbecause the implicit return type of a class’ constructor is the class type itself. It is the

constructor’sjob to initialize the internal state of an object so that the code creating an instance

will havea fully initialized, usable object immediately.

Example Program:
class Box

{

double width;

double height;

double depth;
// This is the constructor for Box.

Box()

Unit 2: Classes

{

System.out.println("Constructing Box");

width = 10;

height = 10;

depth = 10;

}

// compute and return volume

double volume()

{

return width * height * depth;

}
}

class BoxDemo6 {

public static void main(String args[]) {

// declare, allocate, and initialize Box objects
Box mybox1 = new Box();

double vol;
// get volume of first box vol =

mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box
}}

Parameterized Constructors

While the Box() constructor in the preceding example does initialize a Box object, it is notvery

useful—all boxes have the same dimensions. What is needed is a way to construct Boxobjects of

various dimensions. The easy solution is to add parameters to the constructor.

/* Here, Box uses a parameterized constructor to

initialize the dimensions of a box.

*/

class Box

{

double width;

double height;

double depth;

// This is the constructor for Box.

Box(double w, double h, double d)

{

width = w;

height = h;

depth = d;

}
// compute and return volume

double volume() {

return width * height * depth;

}

}

class BoxDemo7 {

Unit 2: Classes

public static void main(String args[]) {

// declare, allocate, and initialize Box objects

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box(3, 6, 9);

double vol;

// get volume of first box vol =

mybox1.volume();

System.out.println("Volume is " + vol);

// get volume of second box vol =

mybox2.volume();

System.out.println("Volume is " + vol);

}

}

Constructor-overloading

In Java it is possible to define two or more class constructors that share the same name, as

long as their parameter declarations are different. This is called constructor overloading.

When an overloaded constructor is invoked, Java uses the type and/or number

ofarguments as its guide to determine which version of the overloaded constructor to

actuallycall. Thus, overloaded constructors must differ in the type and/or number of their

parameters.

Example: All the constructors names will be same, but their parameter list is different.

OverloadCons.java
class Box {

double width;

double height;

double depth;
// constructor used when all dimensions specified
Box(double w, double h, double d) {

width = w;

height = h;

depth = d;

}
// constructor used when no dimensions specified
Box() {

width = -1; // use -1 to indicate

height = -1; // an uninitialized

depth = -1; // box

}
// constructor used when cube is created
Box(double len) {

width = height = depth = len;
}
// compute and return volume

double volume() {

return width * height * depth;
}
}

Unit 2: Classes

class OverloadCons

{

public static void main(String args[])
{
// create boxes using the various constructors
Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);
double vol;
// get volume of first box
vol = mybox1.volume();

System.out.println("Volume of mybox1 is " + vol);
// get volume of second box
vol = mybox2.volume();

System.out.println("Volume of mybox2 is " + vol);
// get volume of cube
vol = mycube.volume();

System.out.println("Volume of mycube is " + vol);
}
}

The output produced by this program is shown here:

Volume of mybox1 is 3000.0

Volume of mybox2 is -1.0

Volume of mycube is 343.0

Garbage Collection

Since objects are dynamically allocated by using the new operator, you might be

wonderinghow such objects are destroyed and their memory released for later reallocation. In

somelanguages, such as C++, dynamically allocated objects must be manually released by use

ofa delete operator. Java takes a different approach; it handles deallocation for you

automatically.The technique that accomplishes this is called garbage collection.Java has its own

set of algorithms to do this as follow.

There are Two Techniques: 1) Reference Counter 2) Mark and Sweep. In the

Reference Counter technique, when an object is created along with it a reference counter is

maintained in the memory. When the object is referenced, the reference counter is incremented

by one. If the control flow is moved from that object to some other object, then the counter value

is decremented by one. When the counter reaches to zero (0), then it's memory is reclaimed.

In the Mark and Sweep technique, all the objects that are in use are marked and are called

live objects and are moved to one end of the memory. This process we call it as compaction. The

memory occupied by remaining objects is reclaimed. After these objects are deleted from the

memory, the live objects are placed in side by side location in the memory. This is called

copying.

It works like this: when noreferences to an object exist, that object is assumed to be no

longer needed, and the memoryoccupied by the object can be reclaimed. There is no explicit

need to destroy objects as in C++.Garbage collection only occurs during the execution of your

Unit 2: Classes

program. The main job of this is to release memory for the purpose of reallocation.

Furthermore,different Java run-time implementations will take varying approaches to garbage

collection

The finalize() Method

Sometimes an object will need to perform some action when it is destroyed. For example,
if an object is holding some non-Java resource such as a file handle or character font, then you

might want to make sure these resources are freed before an object is destroyed. To handle such

situations, Java provides a mechanism called finalization. By using finalization, you candefine

specific actions that will occur when an object is just about to be reclaimed by thegarbage

collector.

To add a finalizer to a class, you simply define the finalize() method. The Java run time

calls that method whenever it is about to recycle an object of that class. Inside the finalize(

)method, you will specify those actions that must be performed before an object is destroyed.The

garbage collector runs periodically, checking for objects that are no longer referenced byany

running state or indirectly through other referenced objects

The finalize() method has this general form:

protected void finalize()

{

// finalization code here

}

Here, the keyword protected is a specifier that prevents access to finalize() by code defined

outside its class.

Overloading methods

In Java it is possible to define two or more methods within the same class that share thesame

name, as long as their parameter declarations are different. When this is the case, themethods are

said to be overloaded, and the process is referred to as method overloading. Methodoverloading

is one of the ways that Java supports polymorphism.

When an overloaded method is invoked, Java uses the type and/or number ofarguments as its

guide to determine which version of the overloaded method to actuallycall. Thus, overloaded

methods must differ in the type and/or number of their parameters.While overloaded methods

may have different return types, the return type alone isinsufficient to distinguish two versions of

a method. When Java encounters a call to anoverloaded method, it simply executes the version of

the method whose parameters matchthe arguments used in the call.

Here is a simple example that illustrates method overloading:
// Demonstrate method overloading.

Unit 2: Classes

class OverloadDemo

{

void test()

{

System.out.println("No parameters");

}

// Overload test for one integer parameter.

void test(int a)

{

System.out.println("a: " + a);

}

}

class Overload

{

public static void main(String args[])

{

OverloadDemo ob = new OverloadDemo();

double result;

// call all versions of test()

ob.test();

ob.test(10);

}

}

The test() method is overloaded two times, first version takes no arguments, second

version takes one argument. When an overloaded method is invoked, Java looks for a match

between arguments of the methods.Method overloading supports polymorphism because it is

one way that Java implementsthe ―one interface, multiple methods‖ paradigm.

static keyword

There will be times when you will want to define a class member that will be

usedindependently of any object of that class. Normally, a class member must be accessed onlyin

conjunction with an object of its class. However, it is possible to create a member that canbe

used by itself, without reference to a specific instance.

To create such a member, precedeits declaration with the keyword static. When a

member is declared static, it can be accessedbefore any objects of its class are created, and

without reference to any object. You can declareboth methods and variables to be static. The

most common example of a static member ismain(). main() is declared as static because it

must be called before any objects exist.

Instance variables declared as static are, essentially, global variables. When objects of
its class are declared, no copy of a static variable is made. Instead, all instances of the classshare

the same static variable.These variables are also called as "Class Variable".

Methods declared as static have several restrictions:

• They can only call other static methods.

• They must only access static data.

Unit 2: Classes

• They cannot refer to this or super in any way.

If you need to do computation in order to initialize your static variables, you can declare astatic

block that gets executed exactly once, when the class is first loaded. The followingexample

shows a class that has a static method, some static variables, and a static initializationblock:

class UseStatic

{

//static variable
static int a = 3;

static int b;

//static method
static void meth(int x)

{

System.out.println("x = " + x);

System.out.println("a = " + a);

System.out.println("b = " + b);

}

//static block
static
{

System.out.println("Static block initialized.");

b = a * 4;

}

public static void main(String args[])

{

//static methods are called without object
meth(42);

}

}

Note: Static blocks are executed first, even than the static methods.

static variables a and b, as well as to the local variable x.Here is the output of the program:

Static block initialized.

x = 42

a = 3

b = 12

The this Keyword
Sometimes a method will need to refer to the object that invoked it. To allow this, Java
definesthe this keyword. this can be used inside any method to refer to the current object. That

is,this is always a reference to the object on which the method was invoked. You can use

thisanywhere a reference to an object of the current class’ type is permitted.To better understand

what this refers to, consider the following version of Box():

// A redundant use of this.

Unit 2: Classes

Box(double w, double h, double d)

{

this.width = w;

this.height = h;

this.depth = d;

}

Note: This is mainly used to hide the local variables from the instance variable.

Example:
class Box

{

//instance variable
double width, height, depth;
Box(double width, double height, double depth)

{

//local variables are assigned, but not the instance variable
width=width;
height=height;

depth=depth;

}

}

To avoid the confusion, this keyword is used to refer to the instance variables, as follows:

class Box

{

//instance variable
double width, height, depth;
Box(double width, double height, double depth)

{

//the instance variable are assigned through the this keyword.
this.width=width;
this.height=height;

this.depth=depth;

}

}

Introduction to Arrays

An Array is a collection of elements that share the same type and name. The elements from the

array can be accessed by the index. To create an array, we must first create the array variable of

the desired type. The general form of the One Dimensional array is as follows:

type var_name[];

Here type declares the base type of the array. This base type determine what type of elements

that the array will hold.

Example:

Unit 2: Classes

int month_days[];

Here type is int, the variable name is month_days. All the elements in the month are integers.

Since, the base type is int.

In fact, the value of month_days is set to null, which represents an arraywith no value. To link

month_days with an actual, physical array of integers, you must allocateone using new and

assign it to month_days. new is a special operator that allocates memory.

The general form of new as it applies to one-dimensional arrays appearsas follows:

array-var = new type[size];

Here, type specifies the type of data being allocated, size specifies the number of elements inthe

array, and array-var is the array variable that is linked to the array. That is, to use new toallocate

an array, you must specify the type and number of elements to allocate. The elementsin the array

allocated by new willautomatically be initialized to zero. This example allocatesa 12-element

array of integers and links them to month_days.

month_days = new int[10];

month_days

Element 0 0 0 0 0 0 0 0 0 0

Index 0 1 2 3 4 5 6 7 8 9

After this statement executes, month_days will refer to an array of 12 integers. Further, all

elements in the array will be initialized to zero.

Once you have allocated an array, you can access a specific element in the array byspecifying its

index within square brackets. All array indexes start at zero. For example,this statement assigns

the value 28 to the second element of month_days.

month_days[1] = 28;

Element 0 28 0 0 0 0 0 0 0 0

Index 0 1 2 3 4 5 6 7 8 9

The next line displays the value stored at index 3.

System.out.println(month_days[3]);

Example Program: Write a Java Program to read elements into array and display them?

ArrayTest.java
import java.io.*;

class ArrayTest

Unit 2: Classes

{

public static void main(String args[]) throws IOException

{

DataInputStream dis=new DataInputStream(System.in);

int a[]; //declaring array variable int n, i; //size

of the array System.out.println("Enter the size

of Array:");

n=Integer.parseInt(dis.readLine());

a=new int[n]; //allocating memory to array a and all the elements are set zero

//read the elements into array

System.out.println("Enter the elements into Array:");

for(i=0;i<n;i++)

{

a[i]=Integer.parseInt(dis.readLine());

}

//displaying the elements

System.out.println("The elements of Array:");

for(i=0;i<n;i++)

{

}

}

Output

System.out.print(a[i]+",");

}

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. These, as you might expect,

lookand act like regular multidimensional arrays. However, as you will see, there are a coupleof

Unit 2: Classes

subtle differences. To declare a multidimensional array variable, specify each additionalindex

using another set of square brackets. For example, the following declares a twodimensional

array variable called twoD.

int twoD[][] = new int[4][4];

This allocates a 4 by 4 array and assigns it to twoD. Internally this matrix is implemented as

an array of arrays of int.

 Right Index Determines the Columns

L
ef

t

in
d

ex

d
et

er
m

in
es

th
e

R
o

w
s

[0,0] [0,1] [0,2] [0,3]

[1,0] [1,1] [1,2] [1,3]

[2,0] [2,1] [2,2] [2,3]

[3,0] [3,1] [3,2] [3,3]

Example Program for Matrix Addition

import java.io.*;

class AddMatrix

{

public static void main(String args[]) throws IOException

{

int m, n, c, d;

DataInputStream dis=new DataInputStream(System.in);

System.out.println("Enter the number of rows and columns of matrix");

m = Integer.parseInt(dis.readLine());

n = Integer.parseInt(dis.readLine());

int first[][] = new int[m][n];

int second[][] = new int[m][n];

int sum[][] = new int[m][n];

System.out.println("Enter the elements of first matrix");

for (c = 0 ; c < m ; c++)

for (d = 0 ; d < n ; d++)

first[c][d] = Integer.parseInt(dis.readLine());

System.out.println("Enter the elements of second matrix");

for (c = 0 ; c < m ; c++)

for (d = 0 ; d < n ; d++)

second[c][d] = Integer.parseInt(dis.readLine());

Unit 2: Classes

for (c = 0 ; c < m ; c++)

for (d = 0 ; d < n ; d++)

sum[c][d] = first[c][d] + second[c][d]; //replace '+' with '-' to subtract matrices

System.out.println("Sum of entered matrices:-");

for (c = 0 ; c < m ; c++)

{

for (d = 0 ; d < n ; d++)

System.out.print(sum[c][d]+"\t");

System.out.println();

}

}

}

Example program for Matrix Multiplication

import java.io.*;

class MulMatrix

{

public static void main(String args[]) throws IOException

{

int m, n, p, q, sum = 0, c, d, k;

DataInputStream dis = new DataInputStream(System.in);

System.out.println("Enter the number of rows and columns of first matrix");

m = Integer.parseInt(dis.readLine());

n = Integer.parseInt(dis.readLine());

int first[][] = new int[m][n];

System.out.println("Enter the elements of first matrix");

for (c = 0 ; c < m ; c++)

for (d = 0 ; d < n ; d++)

first[c][d] = Integer.parseInt(dis.readLine());

System.out.println("Enter the number of rows and columns of second matrix");

p = Integer.parseInt(dis.readLine());

q = Integer.parseInt(dis.readLine());

if (n != p)

System.out.println("Matrices with entered orders can't be multiplied with each other.");

else

Unit 2: Classes

{

int second[][] = new int[p][q];

int multiply[][] = new int[m][q];

System.out.println("Enter the elements of second matrix");

for (c = 0 ; c < p ; c++)

for (d = 0 ; d < q ; d++)

second[c][d] = Integer.parseInt(dis.readLine());

for (c = 0 ; c < m ; c++)

{

for (d = 0 ; d < q ; d++)

{

for (k = 0 ; k < p ; k++)

{

sum = sum + first[c][k]*second[k][d];

}

multiply[c][d] = sum;

sum = 0;

}

}

System.out.println("Product of entered matrices:-");

for (c = 0 ; c < m ; c++)

{

for (d = 0 ; d < q ; d++)

System.out.print(multiply[c][d]+"\t");

System.out.print("\n");

}

}

}

}

Alternative Array Declaration Syntax

There is a second form that may be used to declare an array:

type[] var-name;

Here, the square brackets follow the type specifier, and not the name of the array variable.

For example, the following two declarations are equivalent:

Unit 2: Classes

int al[] = new int[3];

int[] a2 = new int[3];

The following declarations are also equivalent:

char twod1[][] = new char[3][4];

char[][] twod2 = new char[3][4];

This alternative declaration form offers convenience when declaring several arrays at the

same time. For example,

int[] nums, nums2, nums3; // create three arrays

creates three array variables of type int. It is the same as writing

int nums[], nums2[], nums3[]; // create three arrays

The alternative declaration form is also useful when specifying an array as a return type for

a method. Both forms are used.

Command Line arguments

The java command-line argument is an argument i.e. passed at the time of running the java

program.The arguments passed from the console can be received in the java program and it can

be used as an input.

So, it provides a convenient way to check the behavior of the program for the different values.

You can pass N (1,2,3 and so on) numbers of arguments from the command prompt. The

command line arguments can be accessed easily, because they are stored as Strings in String

array passed to the args in the main method. The first command line argument is stored in

args[0], the second argument is stored in args[1], the third argument is stored in args[2], and so

on.

Example program:

Write a Java program to read all the command line arguments?

import java.io.*;

class CommnadLine

{

public static void main(String args[])

{

Unit 2: Classes

for(int i=0;i<args.length();i++)

{

System.out.println(args[i]+" ");

}

}

}

Here the String class has a method length(), which is used to find the length of the string. This

length can be used to read all the arguments from the command line.

Nested classes
It is possible to define a class within another class; such classes are known as nested

classes. The scope of the nested class (inner class) is bounded by the scope of it’s enclosing

class (outer class). Some important points of nested class are as follow:

 The nested class has right to access members of the enclosing class, including the private

membersdirectly.

 However, the enclosing class has no right to access the members of nested class directly,

but with the help of the inner class object it can access.

Syntax

Following is the syntax to write a nested class. Here, the class Outer_Demo is the outer class

and the class Inner_Demo is the nested class.

class Outer{

class Nested

{

}

// body of the Inner class

//body of the outer class

}

There are two types of nested class: static and non-static.

Static inner class

A static inner class is a nested class which is a static member of the outer class. It can be

accessed without instantiating the outer class, using other static members. Just like static

members, a static nested class does not have access to the instance variables and methods of the

outer class. The syntax of static nested class is as follows −

Syntax

class MyOuter

{

Unit 2: Classes

static class Nested_Demo

{

}

}

Example program:

Outer.java Output

public class Outer
{

//inner static class
static class Nested_Demo

{

public void my_method()

{

System.out.println("This is my

nested class");

}

}

//body of outer class
public static void main(String args[])
{

//without creating the object of outer class
Outer.Nested_Demo nested = new

Outer.Nested_Demo();

nested.my_method();

}

}

Note: 1. static inner classes are rarely used in programs.

2. IF the static inner class is static method, we can directly call that method in the main()

function with creating the object. As follow: Outer.Nested_Demo.my_method();

Non-static inner class:

Creating an inner class is quite simple. You just need to write a class within a class.

Unlike a class, an inner class can be private and once you declare an inner class private, it

cannot be accessed from an object outside the class.

Following is the program to create an inner class and access it. In the given example, we make

the inner class private and access the class through a method.

Example program:

public class Outer2

Unit 2: Classes

{ int outer_x=100;

void test()

{ //creating the object of Inner class

Inner inn=new Inner();

inn.disp();

}

//inner non-static class

public class Inner

{ public void disp()

{

System.out.println("The value of x is:"+outer_x);

}

}

public static void main(String args[])

{ //creating the out class object

Outer2 out=new Outer2();

out.test();

}

}

Introduction to Strings (Topic beyond Syllabus)

String is probably the most commonly used class in Java’s class library. The obvious reason for

this is that strings are a very important part of programming.

 The first thing to understand about strings is that every string you create is actually an

object of type String. Even string constants are actually String objects.

For example, in thestatement

System.out.println("This is a String, too");

the string ―This is a String, too‖ is a String constant.

 The second thing to understand about strings is that objects of type String are

immutable; once a String object is created, its contents cannot be altered. While this may

seem like a serious restriction, it is not, for two reasons:

• If you need to change a string, you can always create a new one that containsthe

modifications.

Unit 2: Classes

• Java defines a peer class of String, called StringBuffer, which allows strings

to be altered, so all of the normal string manipulations are still available in Java

Strings can be created in a many ways. The easiest is to use a statement like this:

1. String initialization

String myString = "this is a test";
2. Reading from input device

DataInputStream dis=new DataInputStream(System.in);

String st=dis.readLine();

Once you have created a String object, you can use it anywhere that a string is allowed.

For example, this statement displays myString:

System.out.println(myString);

Java defines one operator for String objects: +. It is used to concatenate two strings.

For example, this statement:

String myString = "I" + " like " + "Java.";

results in myString containing ―I like Java.‖

The String class contains several methods that you can use.

Here are a few.

1. equals() - used to test whether two strings are equal or not

2. length() –used to find the length of the string

3. charAt(i) - used to retrieve the character from the string at the index i.

4. compareTo(String) –returns 0, if the string lexicographically equals to the argument,

returns greater than 0 if the argument is lexicographically greater than this string, returns

less than 0 otherwise.

5. indexOf(char) –returns the index of first occurrence of the character.

6. lastIndesOf(char)- returns the last index of the character passed to it.

7. concat(String) -Concatenates the string with the specified argument

Example :int n=myString.length(); //gives the length of the string

