FORMAL LANGUAGES & AUTOMATA THEORY

UNIT- VI
COMPUTABILITY



DEPARTMENT OF CSE

8

COMPUTABILITY THEORY

After going through this chapter, you should be able to understand :

o Chomsky hierarchy of Languages

« Linear Bounded Automata and CSLs
o LR{0)Grammar

« Decidability of problems

o HTMand PCP

e P and NP problems

8.1 CHOMSKY HIERARCHY OF LANGUAGES

Chomsky has classified all grammars in four categories ( type 0 to type 3 ) based on the right
hand side forms of the productions.

{a) Type O

These types of grammars are also known as phrase structured grammars, and RHS ofthese are
free from any restriction. All grammars are type 0 grammars.

Example : productions of types 4S — aS, B — 85,8 —e are type 0 production.
(b} Type 1

We apply some restrictions on type 0 grammars and these restricted grammars are known as
type 1 or context - sensitive grammars (CSGs). Suppose a type 0 production yad —» yf5

and the production & —» £ is restricted such that | o{<| fland S#<. Then these type of

productions is knownas type 1 production. if all productions of a grammar are oftype 1 production,
then grammar is known as type 1 grammar, The language generated by a context - sensitive
grammar is called context - sensitive language (CSL).



DEPARTMENT OF CSE

8.2 FORMAL LANGUAGES AND AUTOMATA THEGRY

In CSG, there is left context or right context or both, For example, consider the production
oA B> caff . Inthis, ¢ isleft contextand g isright contextofAand A is the varigble which is
replaced. ' '

The production of type § - « isallowed intype 1if eisin1(G), but S should not appear on
right hand side of any production.

Example : productions § —> 4B,S — €,4 - ¢ aretype | productions, but the production
oftype A -» S¢ isnotallowed . Almost every language can be thought as CSL.

Note : If left or right context is missing then we assume that & is the context.
(c) Type 2

We apply some more restrictions on RHS of type 1 productions and these productions are
known as type 2 or context - free productions. A production of the form a— 8, where

o, B eV UI)* is known as type 2 production. A grammar whose productions ate type 2
production is known as type 2 or context - free grammar (CFG) and the languages generated by

this type of grammars is called context - free languages (CFL).
Example : §->8+8,5->S*S, §->id are type 2 productions.

(d) Type3

Thisis the most restricted type. Productions of types 4 —» g or 4 — aBiBa ,where 4, BeV

and a e 5 are known as type 3 or regular grammar productions. A production of type 5 — < is
also allowed, if isin generated language.

Example : productions § > aS, §—» ¢ aretype 3 productions.
Left - linear production : Aproductionoftype 4> Ba iscalled left - linear production.
Right -linear production : Aproductionof type 4 — aB is called right - inear production.

Aleft - linear or right - linear grammar is called regular grammar. The language generated bya
regular grammar is known as regular language.



DEPARTMENT OF CSE
COMPUTABILITY THEORY 8.3

A productionoftype 4> w O 4~>wB OF 4—> Bw ,where w e £* canbe converted into
the forms 4 -sg OF 4—»gB OF 4> Ba,where d.BeV and s 5.

Example : 4> 10A canbereplaced by productions 4> 18, where B is a new variable
and B->04.

In general, if 4-> aa;....... a,a,, B, then this production can replaced by the following
productions.

A-»a; By,

B —a, B,

B, —>a; B;,

Bn ¥ Gy B
Similar result is obtained for left - linear grammars also.

8.1.1 Hierarchy of grammars

Type 0 or Phrase structured grammar

U Restrictions applied
Type 1 or Context - sensitive grammar

4 Restrictions applied
Type 2 or Context - free grammar

g Restrictions applied
Type 3 or Regular grammar

Example : Considerthe following and find the type of the grammar.
(a} $—> Aa, A-—>c|Ba, B> gbe

(b} S§->aSaic
{c) 5 — adS | SBb, 4S —> adS|aS, SB - Sh|SBb



DEPARTMENT OF CSE

8.4 FORMAL LANGUAGES AND AUTOMATATHEORY
Solution :
{a) Production Type
S -> Aa Type 3
A - ¢ Type 3
A -y Ba Type 3
B —y abe Type 3
So, given productions are of type 3 and hence grammar is regular.
(b) '
S iy aSa Type 2
S Y c Type 3

So, given productions are of type 2 and hence grammaris CFG,
Note : We select the higher type and higher type between type 3 and type 2istype 2).

{©) S - aAS Type 2
S ~> SBb Type 2
AS - aAS ' Type 1
AS —> as ' Type 1
SB - Sb Type 1
SB - SBb Type 1

So, given productions are of type 1 and hence grammar is CSG.
8.1.2 Relation Among Grammars and Languages

Type 0 is the super set and type 1 is contained in type 0, type 2 is contained in type 1, and
type 3 is contained in type 2.

Type 0 Type L Type 2¢ Type3
8.1.3 Languages and Their Related Automaton
| Mng.Maclzi.ma
Linear Bownded Autamaton

Poshdown Antemosten

P Pinite A ton

FIGIURE : l.anguages and their related Automaton



DEPARTMENT OF CSE

COMPUTABILITY THECORY 8.5

8.2 LINEAR BOUNDED AUTOMATA

" The Linear Bounded Automata (LBA) is a model which was originally developed as a model for
actual computers rather than model for computational process. A linear bounded automatonisa
- restricted form of a non deterministic Turing machine.

Alinear bounded automaton s a multitrack Turing machine which has only one tape and thistape
is exactly of same length as that of input.

The linear bounded automaton (LBA) accepts the string in the similar manner as that of Turing
machitie doos. For LBA halting means accepting. In LBA computation is restricted foan area
bounded by length of the input. This is very much similar to programming environment where size
of variable is bounded by its data type.

<} a|ajalb b bl >

5

Leftend Rightend
marker marker

Finite
control

FIGURE : Linear bounded automaton

The LBA is powerful than NPDAbut less powerful than Turing machine. The input is placed on
the input tape with beginning and end markers. In the above figure the input is bounded
by < and >. '

A linear bounded automata can be formally defimed as:

LBA is 7 - tuple on deterministic Turing machine with

M=(Q, %, T,8, qos Qaccen» Troject ) having
Two extra symbols of left end marker and right end marker which are notelementsof 1.
2. Theinput Ties between these end markers.

3. The TM cannot replace < or > with anything ¢lse nor move the tape head left of <or
rightof >.

oy
M



DEPARTMENT OF CSE

8.6

FORMAL LANGUAGES ANDAUTOMATATHEORY

Example : We canconsiruct alanguage [ = {o" " c"|{n = 1} using LBAas follows.

< a

b

b ¢ C >

d

Finite
control

The input is placed on the input tape which is enclosed within left end marker and right end
marker. We will apply the simple logic as : when we read 'a’ convertitto A then move right by
skipping all a's. On encountering first b we will convert it to B. Then moveright by skipping all
b's. On receiving first ¢ convert it to C. Move in left direction unless you get A. Repeat the above
procedure and convert equal number of a's, b's, and ¢'s to corresponding A's, B's and C's.
Finally move completely to the rightmost symbol if it is ™' a right end marker,then HALT. The

machine willbe:

B85
(CCRY
{2nL}
% ~CHED
u B E
RL
(BaR} b

{2a Ry {bb,R} CoL

@(<,<,a) o AR \@\&M) éé{cm.)“ o

Simuiation : Consider input aabbee

< aabbce >

1

< gabbee >

1
< Aabbce >

1
< Aabbee >

T
< AaBbec >

T

(A, A, R}

Moveright.

Convertto A, move right.

Move right.
Convert to B, moveright.

- Moveright.



DEPARTMENT OF CSE

COMPUTABILITY THEORY 8.7
<AaBbce > Convert to C, move [efi.
< AaB%ch > Move left
< AaB’EE\)Cc > Move left.
+ |
< AaBbCe > Move left.
< AszCc > Move right.
<LaBch > Convertto A, Move right.
< Aj;biCc > Moveright.
<AAEch > Convertto B, Move right.
<AAB1];3CC > Moveright.
< AABBEG > Convert to C, Move lefi.
< AABBCZE > Move left continuously by skipping B's.
< AABBgC > Moveright.
< AKBBCC > Ifwe geft B, we will move right fo check whether
6 all b's and ¢'s are converted to B and C.
<AABBCC> If we get right end marker ' then we HALT by
4 accepting the input aabbec.

Thus in LBA the length of tape exactly equal to the input string and tape head cannot move left
of '<right of >,



DEPARTMENT OF CSE

88 FORMAL LANGUAGES AND AUTOMATA THECORY

8.3 CONTEXT SENSITIVE LANGUAGES ( CSLs )

The context sensifive languages are the languages which are accepted by linear bounded automata.
These type of languages are defined by context sensitive grammar. In this grammar more than
one terminal or non terminal symbol may appear on the left hand side of the production rule.
Along with it, the context sensitive grammar follows following rules :

i, The number of symbols on the left hand side must not exceed number of symbols on the
right hand side.

i, Therule oftheform 4 —e isnotallowed unless A is a start symbol. It does not occur
on the right hand side of any rule.

The classic example of context sensitive language is L = {a" b” ¢" |n 2 1} . Thecontextsensitive

grammar can be written as

S - aBC

S i SABC

CA e AC

BA AB

CB - BC

aA - aa

aBB —> ab

bB - bb

bC -  be

cC -3 ce

Now to derive the string aabbce we will start from start symbol :

S eSS —» SARBC
SABC rleS —»  aBC
aBCABC rule CA — AC
aBACBC _ rule CB —» BC
aBABCC rule BA - AB
aABBCC ruleaA - aa
aaBBCC raleaB o> ab
aahBCC ralebB - bb
aabbCC mulebC — be
aabbeC recC —» ce

aabbee



DEPARTMENT QF CSE
; COMPUTABILITY THEORY

Note : The language o »" " where 5 » | isrepresented by context sensitive grammar but it

cannot berepresented by context free grammar.

Every context sensifive language can be represented by LBA.

8.4 LR (k) GRAMMARS

Before going to the topic of LR (k) grammar, let us discuss about some concepts which will be

helpful understanding it,

[n the unit of context free grammars you have seen that to check whether a particular string is
accepted by a particular grammar or not we try to derive that sentence using rightmost derivation
or lefimost derivation. If that siring is derived we say that it is a valid string.

Example :

E->E+T|T
T—>T*F| F
F>id | (E)

Suppose we want to check validity of a string id +id * id . Itsrightmost derivation is

E =

R (R R

FIGURE(a) : Rightmost Derivation of id +id * id

Since this sentence is derivable using the given grammar. It is a valid string. Here we have checked

Es+T

E+T*F
E+T*d
E+ F*id
E+id*id
T+id *id

F 4 id*id

id + id*id

the validity of string using process known as dexivation.



DEPARTMENT OF CSE

8.10 FORMAL LANGUAGES ANDAUTOMATA THEORY

The validity of a sentence can be checked using reverse process known as reduction. In this
method for a given x, inorder to know whether it is valid sentence of a grammar or not, we start
with x and replace a substring »; with variable Aif 4 X, isa production. We repeat this
process until we get starting state.

Consider the grammar,

E-» E+T\|T
E-— T*F|F
F - (E)| id

Letus check the validity of string id +id * id.

F+id * id Replaced F withid since F — id isa production
T +id * id Replaced I with T using production T > F

E +id * id Replaced T with E using productionE —> T

E +T * id Replaced id with F using production F ' — id

E+ T * id Replaced F with using preduction T — F
E+T* F Replaced id with F using production F — id
E+T Replaced T * F with T using production T — T *F
E Replaced E + T with Eusing productionE - E+T

FIGURE(b): Reductionofid+id*id

Here since we are able to reduce to starting state E, so thatid +id *idis accepted by the given
granymar. - :

Note : There may be different ways of selecting as substring in sentential form. In our reduction
we have used reverse of rightmost derivation shown in Figure(a).

The substring in right sentential form which canses reduction to starting state is known as handle
and corresponding production is known as handle production. For example, in right sentential
form E +T * id of Figure(b) we can either replace substring T with Fusing T ->F or replace
id with Fusing F > id. If we use the first reduction, the sentential form will become E+F *id.
This will not lead to starting state. Hence here F is not handle. Where as if we reduce, the
sentential form will be E-+T * F which can be reduced to starting state using subsequent reductions.
Ience here Fis ahandleand F > id is handle production.



DEPARTMENT OF CSE _
: COMPUTABILITY THEORY 8.11

In reduction process we have seen that we repeat the process of substitution until we get starting
state. But some times several choices may be available for replacement. In this case we have to
backtrack and try some other substring . For certain grammars it is possible to carry out the
process in deterministic. (i. e., having only one choice at each time ). LR grammars form one
such subclass of context free granmmars, Depending on the number of ook ahead symbolized to
determine whether a substring must be replaced by a non terminal or not, they are classified as
LR(0), LR(}).... and in general LR(k) grammars.

LR(k) stands for left to right scanning of input string using rightmost derivation in reverse
order ( we say reverse order because we use reduction which is reverse of derivation ) using
look ahead of k symbols.

8.4.1 LR(0) Grammar

LR(0) stands for left to right scanning of input string using rightmost derivation in reverse order
using 0 look ahead symbols. '

Before defining LR(0) grammars, let us know about few terms.

Prefix Property ; Alanguage L is said to have prefix property if whenever w in L, no proper
prefix of wis in L. By introducing marker symbol we can convert any DCFL to DCFL with prefix

property. Hence L$ = { w§|w e L} isa DCFL with prefix property wheneves wis inL.

Example : Consider a language L= { cat, cart, bat, art, car } . Here, we can see that sentence
cartis in L and its one of the prefixes car is also is in L. Hence, it is not satisfying property. But
L$ ={cat$, cart$ bat$ art§,car$}

Here, cart $ is in L$ but its prefix cart or car are not present in L$. Similarly no proper prefix is
present in L. Hence, it is satisfying prefix property.

Note : LR(0) grammar generates DCFL and every DCFL with prefix property has a LR(0)
gramInar.

LR items

Anitem fora CFG is a production with dot any where in right side including beginning orend. In
case of ¢ production, suppose 4—» € 4->. isanitem.



DEPARTMENT OF CSE

8.12 FORMAL LANGUAGES AND AUTOMATA THEORY

Example :

Consider the grammat,
§-> §
S cAd

A—> ale

The items for this grammar are,
St .8
S S
8-> .cdd
S ¢.dd
S cdd
S e¢dd.
A—> .
A-> a

A .
Anitem indicates how much of a production we have seen at a given pointin Parsing process.

Valid ltem : Wesayinitem 4 - «. § is validforaviable prefix (i ¢., most possible prefix)

v there is arightmost derivation § = édw = Jafwand Sa=y.
r m

Example :

S — cdr

A = ar
The sentence cart belongs to this grammar,
S#m CAt = cart

The possible or viable prefixes for cart are { c; ca, car, cart } forthe prefixca 4 > ar. isvaiid
jtem and for viable prefix car 4 => ar isvaliditem.



DEPARTMENT OF CSE '
COMPUTABILITY THEORY 8.13

Computing Valid ltem Sets

The main idea here is to construct from a given grammar a deterministic finite ardomata to recognize
viable prefixes. We group items fogether into sets which give to states of DFA. The items may be
viewed as states of NFA and grouped items may be viewed as states of DFA obtained using
subset construction algorithm.

To compute valid set of items we use two operations goto and closure.
Closure Operation

Tt 1is a set of items for a grammar G, then closure (I} is the set of items constructed from I by two
rules. : '
1. Initially, every item 1is added to closure (1),
2. I 4->a.Bp isinclosure (Dand g § is production then additem g § tol,ifitis
not already there. We apply this rule until no more new items can be added to closure (I).

Example : Forthe grammar,

§ - 8
S ->» cdd
4 —» g

S -> 8 issetofoneiteminstate Ithen closure of 1is,
L 8 - .8

S > 4D

The first item is added using rule 1 and § > .cAd is added using rule 2. Because '. 'is

followed by nonterminal S we add items having SinLHS.In § -> .c4d '."isfollowed by
terminal s0 1o new ifem is added.

Goto Function : It is written as goto { I, X) where I is set of items and X is grammar symbol.

If 4 -> a.Xf3 isin someitem set I then goto (1, X) will be closure of set of all item 4 —» a. X B.



DEPARTMENT OF CSE

8. 14 FORMAL LANGUAGES AND AUTOMATATHEORY
For example,

gow {1}, ¢)

closure (S -»¢. 4d)

i.e., S-»c.dd

A-—>» a

now let us see how all the valid sets of items are computed for the given grammar inexample 1.

Initially 7, will be the starting state. It contains orly the item S->. § we find its closure to find set
of items in this state for cach state 7, and symbol g after'.” we apply goto (1, B) . goto (Z,, )
and find its closure. This constitutes next state 7,, We continue this process goto (/,,q) untilne

new states are obtained.

AR

S Ad
L:§8— 8
It 8-> cdd

4 .a
goto (1,, A)

IL: §S->cAd
goto (1, a)

;i Ad-—ra
goto {1,,d)

Is: §->cdd.

This process is stopped because all possible complete items are obtained. A complete itemis the
one which has dot in rightmost position.

Ecah item set corresponds to a state of DFA. Hence, the DFA for given grammar will have six
states correspondingto 7, o Is.



DEPARTMENT OF CSE
COMPUTABILITY THEORY 8.15

DFA:

FIGURE(a) : DFA whose States are the Sets of Valid ltems

Definition of LR(0) Grammar : Wesay G is an LR (0) grammar if,

1. Itsstart symbol does not appear on the right hand side of any production and

2. Foreveryviable prefix y of G whenever 4 >« is a complete item valid for 7, thenno
other complete item nor any item with terminal to the right of the dotis valid for 7 . _

Condition 1 : For a grammar to be LR(0) it should satisfy both the conditions. The first

condition can be made to satisfy by all grammars by introduction of anew production §'-> § s

known augmented grammar.

Condition 2 : For the DFA shown in Figure(a), the second condition is also satisfied because

inthe item sets 1,, I, and J; each containinga complete item, there areno other complete items

nor any other conflict.

Example : Consider the DFA given in figure(b).

FIGURE(b) : DFA for the given Grammar



DEPARTMENT OF CSE

8. 16 FORMAL LANGUAGES AND AUTOMATATHEORY

DFA for grammar,

S—>»L=R
§> R
L -»*R
L > id
R L

i The first condition of LR(0) grammar is satisfied.

i. Considerstate 7, and viable prefixes of L=R {L,L=and L=R } forprefix LR L.

is a complete item and there is another item having the prefixLi.e,8 — L.=R
foliowed by terminal. Hence, violating second rule. So it is not LR(0) grammar.

8.5 DECIDABILITY OF PROBLEMS

In our general life, we have several problems and some of these have solution also, but some
have not. Simply, we say a problem is decidable if there is a solution otherwise undecidable.

Example : consider following problems and their possible answers.

1. Does the sun rise in the east 7 (YES)

2. Does the earth move around the sun ? (YES)

3. What is your name ? (FLAT)

4. Will tomorrow be a rainy day 7 ( No answer}
We have solutions (answers) for all problems except the last. We can not answer the last problem,
because we have no way to tell about the weather of tomorrow, but to some extent we can only
predict. So, the last problem is undecidable and remaining problems are decidable.

So, if a problem can be solved or answered based on some algorithm then it is decidable otherwise

undecidable. :
Problem

Selution - No solution

L

Decidable Undecidable



DEPARTMENT OF CSE
COMPUTARILITY THEORY : 8.17

Tach problem P is a pair consisting of asetand a question, where the question canbe applied to
each element in the set, The set is called the domain of the problem, and its elements are called
the instances of the problem.

Example :

Domain = { All regular languages over some alphabet 3. },
Instance : L={w:wisawordover g endinginabb},
Question : Is union of two regular languages regular ?

851 Decidable and Undecidable Probiems

A problem is said to be decidable if
1. ¥slanguage is recursive, Of
2. Ithas solution

Other probiems which do not satisfy the above are undecidable. We restrict the answer of
decidable problemsto " YES" or "NO" . If there is some algorithm exists for the problem, then
outcome of the algorithm is either "YES" or "NO" but not both. Restricting the answers 1o only
"YES" or "NO" we may not be able to cover the whole problemmns, still we can covera lotof
problems. One question here. Why weare restricting our answers to only " YES" or "NO™? The
answer is very simple ; we want the answers as simple as possible. '

Now, we say " If for a problem, there exists an algorithm which tells that the answer is either
“YES" or "NO" then problem is decidable."

. if for a problem both the answers are possible ; some times "YES" and sometimes "NO",
then problem is undecidable.

8.5.2 Decidable Problems for FA, Regular Grammars and Regular Languages

Some decidable problems are mentioned below :

1. Does FAacceptregular language ?

2. Isthe power of NFA and DFA same ?

3. 7, and I, are two regular languages. Are these closed under following :
(@  Union
(o)  Concatenation
{c) Intersection
(d)  Complement



DEPARTMENT OF CSE

8.18 FORMAL LANGUAGES AND AUTOMATATHEQRY

N o R

©) Transpose

iy Kleene Closure ( positive transitive closure )
For a given FA M and string w over alphabet 5, is w ¢ L{ M) ? This is decidable problem.
ForagivenFM, is L(M) = ¢ ? Thisisadecidable problem.
For a given FAM and alphabet 5 ,is L(M)= 2 *? Thisisadecidable problem.
For given two FA M, and M,, L(M)), L(M,) € S*,is L(M))= L(M,;)? Thisis a
decidable problem, ' .
For given two regular languages I, and I, over some alphabet 5,,is L, <o/, ? Thisisa
decidable problem.

8.5.3 Decidable And Undecidable Problems About CFLs, And CFGs

Pecidable Problems

Some decidable problems about CFLs and CFGs are given below.
1. If 2, and L, aretwo CFLs over some alphabet g, then L, w1, isCFL.

e R

If £, and L, aretwo CFLs over some alphabet 3., then L, L, is CFL.

IfLisa CFL over some alphabet 5, , then L*isa CFL.

If L, is aregular language, I, isa CFL then L, w1, isCFL.

If I, isaregular language, L, isa CFL over some alphabet 3, then £, L, isCFL.
Foragiven CFG G is L{(G) = ¢ ornot?

For a given CFQG G, finding whether L(G) is finite or not, is decidable.

For a given CFG G and a string wover 3, checking whether w ¢ Z(G) ornotisdecidable. '

Undécidabie Problems

Following are some undecidable problems about CFGsand CFLs

1.
2.

3.

For two given CFLs Z, and L,, whether I, ~ I, is CFL or not, isundecidable.

Fora given CFL L over some alphabet 5, whether complement of L. i.e. E*-LisCFL or
not, is undecidable.

Foragiven CFG G, isL(G) ambiguous ? This is undecidable problem.

For two arbitrary CFGs G, and G, , deciding L(G,) n L(G,) = ¢ ornot, is undecidable.

For two arbitrary CFGs G, and G, , deciding L(G,) ¢ L(G,) ornot, is undecidable.



DEPARTMENT OF CSE
COMPUIABILITY THEORY 8.18%

8.5.4 Decidability and Undecidability About TM

We have considered TM as a most powerful machine that can compute anything, which can
recognize any language. So, from where undecidability comes and why ? These questions are
really interesting. According to Church - Turing Thesis, we have considered TM as an algorithm
and an algorithm as a TM . So, for a problem, if there is an algorithm ( solution to find answer)
then problem is decidable and TM can solve that problem. We have several problems related to
computation and recognization that have no solution and these problerms are undecidable.

Partial Decidable and Decidable Probiems

A TM M is said to partially solve a given problem P if it provides the answer for each
instance of the problem and the problem is said to be partially solvable, If all the computations of
the TM are halting computations for P, then the problem P is said to solvable.

A TM s said to partially decide a problem ifthe following two conditions are satisfied.
(a) The problem is a decision problem, and
(b) The TM accepts a given input if and only if the problem has an answer "YES" forthe
input, that is the TM accepts the language L= {x:xisaninstance of the problem, and
the problem has the answer "YES" forx }.

A'TM is said to decide a problem if it partially decides the problem and all its computations
are halting computations. . _

The main difference betweena TM M, that partially solves ( partially decides) a problem
and aTM M, that solves { decides) the same problem is that M, mightrejectan inputbya
non - halting computation, whereas M, can reject the input only by 2 halting computation.

A problem is said to be unsolvable if no algorithm can solve it, and a problem is said to be
undecidable ifit is a decision problem and no algorithm can decide it.

Decidable Problems about Recursive and Recursive Enumerable Languages

As we have discussed earlier that if a problem has a solution then it is decidable. In this section,
we will discuss some decidable problems about recursive and recursive enumerable languages.

1. The complement of a recursive language I over some alphabet v is recursive.

Proof : We will discuss aconstructive algorithim to prove that complement of arecursive language
is also recursive i. e. recursive languages are closed under complementation.

Aswe know that for all strings w 7., 8 TM always halts and rejects those strings thatare -
notinl. So, " forall strings w < 1 " isalways decidable.



DEPARTMENT OF CSE

8.20 FORMAL LANGUAGES AND AUTOMATA THEORY

We construct a TM M, which recognizes the language L. We construct another TM M based on
M such that M" accepts those strings which are rejected by M. It means, ifMacceptsthen M'
does not. M rejects those strings that arc accepted by M. It means, all strings x ¢ are
accepted by M and for all strings w ¢ L ar¢ rejected . So, M also follows same kind of algorithm

_ " to decide whether a string v « £, ornot. Hence, complement of recursive languageLie Z*-L
is also recursive. The logic diagram of M' is shown in Figure(a).

_ o1 Accept e Rejocl
. ) ot AgCEDY

Reject

—

L : BN AF

Figure(a)
~ In general, recursive languages are closed under complement operation.

2. The union of two recursive languages is recursive.

Proof: Let Z, and L, be two recursive languages and Turing machines M, and M, recognize
1, and L, respectively shown in Figure(b) and Figure(c).

YES YES
mff}.i.._.. M, < _ .....wﬁ_.p _Ma <
NG

NG
Figure{b) Figure{c)
We construct a third TM M, , which follows either A, or M, asshown in figure(d).
YES L.
M, > ¥ YES
W NO
" | YES
My ” » NO
NO

Figure(d)



DEPARTMENT OF CSE :
COMPUTABILITY THEORY 8. 21

TM M, accepts if either M, acceptsor M, accepts and rejects if either M, rejects or M,
rejects . Since, M, and M, are based on algorithms, so M; isalso based on the same kind of

algorithm. Therefore, union of two recursive languages L, and L, tsalsorecursive. In general,
recursive languages are closed under union operation.

3. Alanguage isrecursive if and only ifits complementis recursive.

4. The union oftwo recursively enumerable languages is recursive enumerable.

Proof : Let I, and L, be two recursively enumerable languages and recognized by M, and
A, Toring machines, We construct another TM M, which accepts either £, or L, . Now, as
we know the problem about recursive enumerable languages that ifwisnotin L, and 1,,then
M, can not decide. So, the problem of recursive languages is persistent with A, also. So,

N(M,) isrecursive enumerable language andhence I, U I, isrecursive enumerable 1anguageb
Tn general, recursive enumerable languages are closed under union operation.

5. Tfa language L over some alphabet 5 and its complement I = S*~ L is recursive
enmmerable, thenl. and 7 arerecursive languages.

Proof : We construct two Turing machines A4, for Land M, for T . Now, we constructa
third TM M, based on A, and M, as shown in figure(e). T™M M, accepts w if TM' M,
accepts and rejects wif M, accepts.Itmeans,if wel, then wis accepted and if w ¢ then -
itis rejected. Since , for all w, either w is accepted or rejected. Hence, M, is based on algorithm
and produces either "YES" or "NO” for input string w, but not both. It means, M, decidesall the

strings over ¥ . Hence , Lis recursive. As we know that complement of a recursive language is
also recursive and hence J isalsorecursive.

- YIS

wr

» YES

[
FARE

i

1
I 1

Figure(e)



DEPARTMENT OF CSE

8.22 : FORMAL LANGUAGES AND AUTOMATATHEORY

6. We have following co - theorem based on above discussion for recursive enumerable and
recursive languages.

LetLand T aretwo languages, where 7 the complement of L, then one ofthe following
istrue: :

(2) Both Land 7 arerecursive languages,

(b) Neither L nor T istecursive languages,

(¢) IfL is recursive enumerable but not recursive, then 7/ is not recursive enumerable and
vice versa, ‘

Undecidable Problems about Turing Machines
Tn this section, we will first discuss about halting problem in general and then about ™.

Halting Problem (HP)
The halting problem is a decision problem which is infotmally stated as follows:

"Givena description of an algorithm and adescription of its injtial arguments, determine whether
the algorithm, when executed with these arguments, ever halts. The alternative is thata given
algorithm runs forever without halting.”

Alan Turing proved in 1936 that there is no general method or algorithm which can solve the
halting problem for all possible inputs. An algorithm may contain loops which may be infinite or
finite in Iength depending on the inputand behaviour of the algorithm. The amount of work done
in an algorithm usually depends on the input size. Algorithms may consist of various number of
loops, nested or in sequence. The HP asks the question ¢

Given a program and an input to the program, determine if the program will eventually stop when
it is given that input ?

One thing we can do here to find the solution of HP. Let the program run with the given input and
if the program stops and we conclude that problem is solved. But, ifthe program doesn't stop in
a reasonable amount of time, we can not conclude that it won't stop. The questionis: " how long
we canwait ..., 7" . The waiting time may be long enough to exhaust whole life. So, we can ot
take it as easier as it seems to be. We want specific answer, either "YES® or Q", and hence
some algorithm to decide the answer.



DEPARTMENT OF CSE
COMPUTABILITY THEORY 8.23

The importance of the halting problem lies in the fact that itis the first problem which was proved
undecidable. Subsequently, many other such problems have been described. '

Theorem : HP is undecidable.

Proof : This proof was devised by Alan Turing in 1936. Initially, we assume that HP is decidable
and the algorithm ( solution ) for HP is H. The halting problem solution H takes two inputs :

1. Description of TM M i.e. program P and
2, InputIfor the program P.

H generates an output "YES" if H determines that P stops on input I or it outputs "NO" if H
determines that P loops as shown in figure(a).

Program P

: YES
H
—— NO
Inputi
Figure(a)

Note : When an algorithm is coded, it is expressed as a string of characters . Input is also
coded into the same format. So, after coding, a program and data have no difference in their
format of tepresentation and so, a program can be treated a data sometimes and a datacanbe
treated as a program sometimes. '

So, now H can be modified to take P as both inputs ( the program and its input) and H should be
ableto determine if P will halt on P as if's input shown in figure(b).

Program P

NO.{ YES

P .
Program To0p

Y
pus

o

E

Input i

YES

Figure(b)



DEPARTMENT OF CSE

8,24 FORMAL LANGUAGES AND AUTOMATA THECRY

Let izs construct a new, simple algorithm Q that takes output of H as its input and does the
following : _

1. KHoutputs "NO" then Q outputs "YES" and halts.
2. Otherwise H's output "YES" causes Q to loop forever.

I means, Q does the opposite what H does.

We define Qas follows:

Function Q()
{
if (Function H()="NO")
{
return {"YES"),
}
else
{ | - |
while (1); // Loop forever
b
} // End of the function Q

Since, Q is a program, now let us use Q as the input to itself as shown in figure(c).

Program P
Program P -

Input i

Figure(c)




DEPARTMENT OF CSE

4

COMPUTABILITY THEORY 8.25

Now, we analyse the following :
1. If H outputs "YES" and says that Q halts then Q itself would loop ( that's how we
constructed it ),
2. IfHoutputs "NO" and says that Q loops then Q outputs "YES” and will halts,
Since , in either case Fl gives the wrong answer for Q. Therefore, H cannot work inall cases
and hence can't answer right for all the inputs. This contradicts our assumption made earlier for
HP Hence, HP is undecidable.

Theorem ; HP of TM is undecidable. _
Proof : HP of TM means to decide whether or not a TM halts for some input w. We canprove
this following the sirnilar steps discussed in above theorem.

8.6 UNIVERSAL TURING MACHINE

The Church - Turing thesis conjectured that anything that can be done on any existing digital
computer can also be done by a TM. To prove this conjecture. A. M. Turing was able to construct
a single TM which is the theoretical analogue of a general purpose digital computer. This machine
is called a Universal Turing Machine (UTM). He showed thatthe UTM is capable of initiating
the operation of any other TM, that is, it is a reprogrammable TM. We can define this machine in
more formal way as follows :

Definition : A Universal Turing Machine ( denoted as UTM) is a TM that can take as inputan
arbitrary TM 7, with anarbitrary input for 7, and thenperform the executionof T, onitsmput.

What Turing thus showed that a single TM can acts like a general purpose computer that stores
aprogram and its data in memory and then executes the program. We can describe UTM asa 3

-tape TM where the description of TM, T, and itsinput string x € 4 * are stored initially on the

first tape, ¢,. The second tape, ¢, used to hold the simulated tape of 7, , using the same format '

as used for describing the TM, 7, . The third tape , ¢, holds the state of T,

| Ta x

Cresceiprtion of Ty with s dnpurx

Contro} : . .
it . . -
ok LT E
i “Tape conteats of Ta

Stateaf Ta




DEPARTMENT OF CSE

8.26 FORMAL LANGUAGES ANDAUTOMATA THEORY

To construct a UTM, we thus require three essentials, viz.,
@) auniform method to describe or encode any TM into a string over a finite symbol set, L
(i asimilarmethod of encoding any input string for a TM into a string over [, and
(i) a set of TM programs (i. ¢., a set of instructions for any TM) that describe the TMs basic
cycle of operations.

Encoding an arbitrary TM

Since a TM can have only a finite munber of configurations defined by { s, 4, b, &', 4 ), wecan
describe or encode any TM in terms of fixed symbols of universal Turing machine.

Let the internal states of a T™, T, ,isgivenby
S £ {S(}’ Slg Sz, aares S}?Wl’ Sﬂ }
where S, is the initial state, and S, = H , halting state.

We define the encoding for T,s configurations as follows :

Originél _ Code
. Sf_ 31'4]
4 1+
R R
L L
N N

We use the symbol *0' as a separator between each encoded symbol of a configuration.

For éxample, in the TM for parity checking , we have
S = {Sy, Sy Sy, H},and
A={8, 0,1, ED,}
therefore, the encoding for the configuration (S, B, D, H, N ) willbe 1101011111011110N.



DEPARTMENT OF CSE
COMPUTABILITY THECRY 8. 27

Now, suppose that a Turing machine, T, , is consisting of a finite number of configurations,
denoted by, €. Gis €500 €, and let &, G y,ee0 €, represent the encoding of them. Then, we
can define the encoding of 7, as follows : |

YERE BEH .. B
Here, * and # are used only as separators, and cannot appear elsewhere. We use apair of*sto
enclose the encoding of each configurationof TM, T,

The case where 8(s,q) 1s undefined can be encoded as follows :

#5707 08 #
where the symbols 5 , @ and § stand for the encoding of symbols, s , a and B ( Blank character),
respectively. :
Working of UTM

Griven a description of a TM, T, and its inputs representation on the UTM tape, ¢ and the

starting symbol on tape , #,, the UTM starts executing the quintuples of the encoded TM as

follows :

1. The UTM gets the current state from tape, #, and the current input symbol from tape ¢, .

2. then, it matches the current state - symbol pair to the state symbol pairs in the program listed
ontape, 7,. '

3. ifno match oceurs, the UTM halts, otherwise it eopies the next state into the current state
cell of tape, 1,, and perform the corresponding write and move operations on tape, 7, .

4, ifthe current state ontape, #, is the halt state, then the UTM halts, otherwise the UTM goes

- back to step 2. :

8.7 POST'S CORRESPONDENCE PROBLEM (PCP)

Post's cotrespondence problem is a combinatorial problem formulated by Emil Post in 1946.
This problem has many applicationsin the field theory of formal languages.

Definition :

A correspondence system P is a finite set of ordered pairs of nonempty strings over some alphabet.



DEPARTMENT OF CSE

8.28 FORMAL LANGUAGES ANDAUTOMATATHEORY

Let 5. be an alphabet, then P is finite subset of £* x £*. A match or solution of Pisany
string v < ¥ such that paits (i, 0,), (i, Uy ), erives (24,5 0,) € P and w= Uy Uyereilly, = Bl Uy
forsomen > 0. The selected pairs (u,, v, )(#4,04 )swss {#,,0, ) are not necessarily distinct.

Let strings u,,u,, ...., u,arein Uandstrings v, v,, ..., v, areinV,then
Us={th,ty oty a0d V={ v, 1y, ..., 0,} Torsomem>0,

PCP is to determine whether there is any match or not for a given correspondence systom.

Theorem : PCP is undecidable
PCPis undecidable just like the HP of Turing machine.

Example 1: A correspondence system P = { (b, ), (ba.ba), (bab’, b*)} .
Is there any solution for P ?

Solution ;: We represent the P as follows :

1 uy t;
1 b a

2 ba ba
3 bub’ 5

Here, u,=b, u, =ba, u, =bab’, v,=a, v, =ba, v,=b".

We have asolution w= u, w4, 1, = v, DU, 0, =bab’ba.

Example 2 : Consider a correspondence system P= { (b, ca), ( a, ab), { ca, a), (abc, ¢} }.
Find a match ( if any).

Solution : We represent the P as follows :

i o 4 U;
1 b ca
2 a ab
3 abe e




DEPARTMENT OF CSE
COMPUTABILITY THEORY 8.28

Here, uy=b, u, =a, u; =abe, py=ca, v,=ab, vy=c.

We haveasolution w=u, u, = v, v =abea -

8.8 TURING REDUCIBILITY

Reduction is a technique in which ifa problem Ais reduced to problem B then any solutionof B
solves A. In general, if we have an algorithm to convert some instance of problem A to some
instance of problem B that have the same answer then it is called Areduces to B,

FIGURE: Reduction

Definition : Let Aand B be the twosetssuchthat 4, B ¢ N ofnatural numbers. Then Ais
Turing reducible to B and denotedas 4 <, B.

If there is an oracle machine that computes the characteristic function of A when it is executed
with oracle machine for B.

This is also called as Ais B - recursive and B - computable. The oracle machine is an abstract
machine used to study decision problem. 1t is also called as Turing machine with black box.

We say that A is Turing equivalentto Band write 4 =, Bif 45, Band B<; 4.

Properties :

1. Every setis Turing equivalent to its complement.

2. Bvery computable set is Turing equivalent to every other computable set.
3. A<, Band B, Cthen 4%, B.

8.9 DEFINITION OF P AND NP PROBLEMS

A problem is said to be solvabie if it has an algorithm to solve it. Problems can be categorized
into two groups depending on time taken for their execution.



DEPARTMENT OF CSE

8. 30 FORMAL LANGUAGES AND AUTOMATA THEOQRY

1. The problems whose solution times are bounded by polynomials of small degree.
Example: bubble sort algorithm obtains n numbers in sorted order in polynomial time

P(n) = n* —2n+1 wherenis the length of input. Hence, it comes under this group.

2. Second group is made up of problems whose bestknown algorithm are non polynomial
example, fravelling salesman problem has complexity of O( n* 2"} which is exponential.
Hence, it comes under this group.

A problem can be solved if there is an algorithm to solve the given problem and time required is
expressed as a polynomial p(n) , nbeing length of input string. The problems of first group are of
thiskind.

The problems of second group require large amount oftime to execute and even require moderate
size 5o these problems are difficult to solve. Hence, problems of first kind are tractable or easy
and problems of second kind are intractable or hard.

8.9.1 P.-Problem

P stands for deterministic polynomial time. A deterministic machine at each time executes an
instruction. Depending on instruction, it then goes to next state which is unique.

Hence, time complexity of deterministic TM is the maxirum mumber of moves made by Mis
processing any input string of lengthn, taken over all inputs of length n.

Definition : Alanguage . is said to be in class Pif there exists a( deterministic) TMMsuch
that M is of time complexity P(n) for some polynomial P and M accepts L.

Class P consists of those problem that are solvable in polynomial time by DTM.

8.9.2 NP -Problem

NP stands for nondeterministic poiyﬁomiai time.

The class NP consists of those problems that are verifiable in polynomial time. What we mean
here isthat if we are given certificate of a solution then we can verify that the certificate is correct
in polynomial ime in size of input problem,



DEPARTMENT OF CSE
COMPUTABILITY THEORY 8.31

Example :
Hamiltonian circuit problem. Given a directed graph G=<¥, E >, acertificate wouldbe a

sequence <V, W, W;,...V, > of V] vertices. It is easy to verify in polynomial time that

V,+V,+ D) e £ fori=1,2, ....[V|] -and () € £ as well using anondeterministic algorithm.

Hence it is in class NP. There doesnot appear any deterministic algorithms to recognize those
graphs with Hamiltonian circuit. Hence itisnot inclass P.

A nondeterministic machine has a choice of next steps. Itis free to choose any movethat it
wishes and if the problem has a solution one of these steps will lead to solution. :

Definition ; AlanguageLis in class NPif there is anondeterministic TM such that M is of time
complexity P(n) for some polynomial P and M accepts L.

The difference between P and NP problems is analogous to difference between efficiently finding
aproof of a statement  such as "This graph has Hamiltonian circuit" )} and efficiently verifyinga
proof of a statement ( "i. ., checking a particular circuit is Hamiltonian™). It is easier to check a
proofthan findingaone.

Tn other words class NP consists of problems for which solution are verified quickly. P consists
of problems which can be solved quickly.

Any problem in Pis also in NP, butitis not yet known that P =NP. Hence, commonly believed
- relationship between Pand NP s,

FIGURE: Relationship between P and NP Problems



DEPARTMENT OF CSE

8.32 FORMAL LANGUAGES AND AUTOMATA THEORY

8.10 NP - COMPLETE AND NP - HARD PROBLEMS

A problem 8 is said to be NP- Complete problem if it satisfies the following two conditions.
1. SeNP,and

2. For every other problems §, e NP for some i=1,2, n, there is polynomial - time
transformation from S, to § i.¢. every probleminNP classpolynorial -timereducibleto S,
We conclude one thing here that if S, is NP - complete then S is also NP - Complete.

As a consequence, if we could find a polynomial time algorithm for S, then we can solve all NP
problems in polynomial time, because all problems in NP classare polynomial - time reducible to
each other.

"A problem P is said to be NP - Hard_if it satisfies the second condition as NP - Complete, but
not necessarily the first condition ", '

The notion of NP - hardness plays an important role in the discussion about the relationship
between the complexity classes Pand NP, It is also often used to define the complexity class NP
- Complete which is the intersection of NP and NP - Hard. Consequently, the class NP - Hard
can be understood as the class of problems that are NP - complete or harder.

Example : AnNP- Hard problem is the decision problem SUBSET - SUM whichisas follows.

" Given a set of integers, do any non empty subset of them add up to zero? Thisis a yes/no
question, and happens to be NP - complete "

There are also decision problems that are NP - Hard but not NP - Complete , for example, the
halting problem of Turing machine. It is easy to prove that the halting problem is NP - Hard but
not NP - Complete. It is also easy to see that halting problem is not in NP since all problems in
NP are decidable but the halting problem is not ( voilating the condition first given for NP -
complete languages ). :

In Complexity theory, the NP~ complete problerns are the hardest problems NP class, inthe
sense that they are the ones most likely not to be in P class. The reason is that if we could find a
way to solve any NP - complete problem quickly, then you could use that algorithm to solve all
NP problems quickly.

Atpresenttime, all known algorithms for NP - complete problems require time whichis exponential
in the input size. It is unknown whether there are any faster algorithms for these are not.



DEPARTMENT OF CSE
COMPUTABILITY THEORY C 8.33

S. A. Cook in 1971 proved that the Boolean satisfiability problem is NP - Complete. After
Cook's original results, thousands of other problems have been shownto be NP - complete by
reductions from other problems previously shown to be NP - complete. -

Example : Consider an interesting problem in graphtheory knownas " Graph isomorphism’”.

Two graphs are isomorphic if one can be ransformed into the other simply by renaming vertices.
Consider these two problems given as follows

Graph isomorphism : Is graph G, isomorphic to graph G, ?

 Subgraph Isomorphism : Isgraph G, isomorphic to a subgraph of graph G, ?
The " Subgraph Isomorphism” problem is NP - complete, but the " Graph Isomorphism" problem
is suspected to be neither in Pnor in NP - Complete, though it is obviously inNP. Thisisan
example of a problem that is thought to be hard, but it is not thought to be NP - Complete.
Following are some other NP - complete and NP - Hard p_robiems :
(1) The Boolean Satisfiability Problem (SAT)
In mathematics, a formula of propositional logic is said to be satisfiable if truth - values can be
assigned to its free variables in sucha way that this assignment makes the formulatrue. The class

of satisfiable propositional formulae is NP - Complete problem.

Consider the logical operators defined as follows :

And : Thisisdenoted by ~and 0~ =170=0,
9N =01 N1 =
OR : This is denoted by v and gvi=ty 0=1,

tvi=1, 0v O“"'O,&ﬁ(i

NOT : Thisis denoted by 'and 0'=1, 1'=0.
Now, consider the expressions

(@) E, =x" v y,wherex,yare variables ; either O or 1 So, E, =1ifx=00ry= 1
Therefore, £, is satisfiable forx=0ory=1.



DEPARTMENT OF CSE

8.34 FORMAL LANGUAGES AND AUTOMATATHEORY

(b) E, =(x v ¥) Ax' A ¥ isnotsatisfiable because every assignment for the variables x
and y will make the value of £,=0.

(2) The Travelling Salesman or Salesperson Problem
The problem is defined as follows .

"Given a number of cities and the cost of travelling from one to the other, what is the cheapest
roundtrip route that visits each city and then returns to the starting city 7"

The most direct answer would be to try all the combinations and see which one is cheapest, but
given that the number of combinations of cities isn I (factorial n), this solution becommes impractical
for larger n, where n is the number of cities.

How fast are the best known deterministic algorithms ?

This problem has been shown to be NP - Hard, and the decision version of it which is given
below:

" Given the costs of routes between cities and a number N, decide whether there exists a tour
program for salesman to visit all the cities so that the total cost is less than or equal to N."

The above version of salesman problem is NP - Complete problem. |
(3} The Hamiltonian Cycle or Hamiltonian Circuit Problem

This problem is in graph theory to find a path through a given graph which starts and ends at the
same verfex and includes each vertex exactly once.

This isa special case of the travelling salesman problem obtained by setting the distance between
two cities to unity if they are adjacent and infinity otherwise. Like the traveling salesman problem,
the Hamiltonian cycle problem is NP - Complete.

{4) The Vertex Cover Problem
This problemis stated as follows .
" Given a graph G and a natural number K, does there exist a vertex covering for G withK

vertices.”
This is NP - complete problem.



