FORMAL LANGUAGES & AUTOMATA THEORY

UNIT- 11
CONTEXT FREE GRAMMARS

DEPARTMENT OF CSE

S

CONTEXT FREE GRAMMARS

After going through this chapter, you should be able to understand :

Context free grammars

Left most and Rightmost derivation of strings
Derivation Trees

Ambiguity in CFGs

Minimization of CFGs

Normal Forms (CNF & GNF)

Pumping Lemma for CFLs

Enumeration properties of CFLs

5.1 CONTEXT FREE GRAMMARS

A grammar G = (V, T, P, S) issaid to be a CFG if the productions of G are of the form :

A->a whereae(VuT)*
The right hand side of a CFG is not restricted and it may be null or a combination of variables and

terminals. The possible length of right hand sentential form ranges from 0to o ie., 0 < | o | <.

As we know that a CFG has no context neither left nor right. This is why, it is known as
CONTEXT - FREE. Many programming languages have recursive structure that can be
defined by CFG's.

Example 1 : Considerthe grammar G = (¥, T, P,) having productions :
S —> aSa | bSh| . Check the productions and find the language generated.

Solution :
Let B :S - aSa (RHSisterminal variable terminal)
P, : § - bSh (RHSisterminal variable terminal)
P:S — e (RHSisnullstring)
Since, all productions are of the form 4 — «, where @ (¥ U T') * ,hence ¢ isaCFG.

DEPARTMENT OF CSE
5.2

FORMAL LANGUAGES AND AUTOMATA THEORY

Language Generated :
S = aSa or bSh

= a"Sq" or b"SH"
= a"b"Sh"a" or b"a"Sa™b"

=> anbmbman or bnamambn

(Using n step derivation)
(Using m step derivation)
(Using § — €)

S0, I(G) = {ww®: w e(a + b)*)

Example 2: LetG=(V, T, P,S)whereV={S ,C}, T={a,b}
P={ S — aCa
¢ — aCa|b
} S is the start symbol
What is the language generated by this grammar ?

Solution : Consider the derivation

§ = aCa => aba(By applying the # and 3~ production)
So, the string aba & L(G)

Consider the derivation
S = aCa Byapplying § — aCa
=>aaCaa Byapplying C — aCa
= aaaCaaa Byapplying C-» aCa
= a"Ca" Byapplying ¢ - aCa ntimes
= a"ba" Byapplying C—»

So, the language L accepted by the grammar G is L(G) = {a"ba" |n =1}

i. e., the language L derived from the grammar G is "The string consisting of n number of a's
followed by a'b' followed by n number of a's.

Example 3 : Whatis the language generated by the grammar
S>04|¢

A—18

Solution : The null string e can be obtained by applying the production § —¢ and the
derivation is shown below :

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.3
S=e (By applying S— ¢)
Consider the derivation
§=04 (Byapplying s — 04)
= 01§ (Byapplying 4-»15)
= 0104 (Byapplying § —504)
= 01018 " (Byapplying 4 18)
= 0101 (Byapplying § »¢)

So, alternatively applying the productions 5 — 0.4 and 4 — 15 and finally applying the production
§ —e, we get string consisting of only of 01's. So, both null string i.e., ¢ and string consisting
01's can be generated from this grammar. So, the language generated by this grammar is

L={wlwe {01}*}or L = {(01)"|n=0}

Example 4 : Show that the language L ={ 4™ b" |m#n} is context free.

Solution :

If it is possible to construct a CFG to generate this language then we say that the language is
context free. Let us construct the CFG for the language defined. Assume thatm=ni.e., m
number of a's should be followed by m number of b's. The CFG for this can be

S—>aSble = ... (1)

But, L = {a" b" |m=n} means, a's should be followed by b's and number of a's should
not be equal to numberofb'si.e., m= n.
Let us see the different cases when m > n and whenm <n.

Case1:
m>n : This case occurs if the number of a's are more compared to number of b's. The extra
a's can be generated using the production

A->ad|a
and the extra a's generated from this production should be appended towards left of the string
generated from the production shown in production 1. This can be achieved by introducing one
more production.

S,—>AS
S0, even though from S we get n number of a's followed by n number of b's since it is preceded
by a variable A from which we could generate extra a's, number of a's followed by number of b's
are different.

DEPARTMENT OF CSE

5.4 FORMAL LANGUAGES AND AUTOMATA THEORY

Case 2:

m<n: This case occurs if the number of b's are more compared to number of a's. The extra
b's can be generated using the production.

B—> bBlb
and the extra b's generated from this production should be appended towards right of the string
generated from the production shown in production (1). This can be achieved by introducing one
more production

S,—SB
The context free grammar G = (¥, T, P, S) where

V={S,,S,4,B} , T={a,b}
P={

S, — AS|SB

S— aSb|e

A—> ad|la

B-> bB|b

} 8, isthe start symbol
generates the language L = { a™ b" | m# n }. Since a CFG exists for the language, the language is
context free.

Example 5 : Draw a CFG to generate a language consisting of equal number of a's and b's.

Solution : Note that initial production can be of the form
S > aB|bd
If'the first symbol is 'a", the second symbol should be a non - terminal from which we can obtain
either 'b' or one more 'a’ followed by two B's denoted by aBB ora 'b’ followed by S
denoted by bS.
Note that from all these symbols definitely we obtain equal number of a's and b's. The productions
corresponding to these can be of the form
B —baBB|bS
On similar lines we can write A - productions as
A—ra|bAA|aS
from which we obtain a'b' followed by either
1. 'a'or
2. a'b'followed by AA's denoted by bAA or
3. symbol 'a’ followed by S denoted by aS

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.5

The context free grammar G=(V, T, P, S) where
V={S,4,B},T={a, b}
P=4{ 8 — aB| b4
A > aS| bdd |a
B - bS| aBB |b

} S isthe start symbol
generates the language consisting of equal number of a's and b's.

Example 6 : Construct CFG for the language L which has all the strings which are all
palindromesover 7' ={a,b}

Solution : As we know the strings are palindrome if they posses same alphabets from forward

as well as from backward.
For example the string "LIRIL" is palindrome because
LIRIL
- «—
read read
Y
It is the same !

Since the language Lis over 7' ={a,b} . We want the production rules to be build a's andb's. As
< can be the palindrome, a can be palindrome even b can be palindrome. So we can write the
production rules as
G=({S}, {a, b}, P, S)
P canbe S>aSa
S>bSh
S— a
S—=> b
S— e
The string abaaba can be derived as
§ — aSa
-» abSha
— aba Saba
—> aba ea ba

— agba aba

which is a palindrome.

DEPARTMENT OF CSE

5.6 FORMAL LANGUAGES AND AUTOMATATHEORY

Example 7 : Obtain a CFG to generate integers .

Solution :

The sign of anumber can be '+ or ' or ¢. The production for this can be written as
S—>+-|e

A number can be formed from any of the digits 0, 1,2,9. The production to obtain these

digits can be written as D—-0|12]..]9

A number N can be recursively defined as follows .
1. AnumberNisadigitD (i.e, N-»D)
2. The number N followed by digit D is also anumber (i. ., N — ND)
The productions for this recursive definition can be written as
N->D
N — ND
An integer number [can be a number N or the sign S of a number followed by number N. The
production for this can be writtenas 7 — N| SN
So, the grammar G to obtain integer numbers can be writtenas G = (V, T, P, S) where
V={D BN 1}, T=1 450, 1,200 9}
p={
I - N|SN
N - D|ND
So+|-fe
D 0]1]2].... |9

¥
S =Iwhich is the start symbol

Example 8 : Obtain the grammar to generate the language
L={0"1"2"\m>1and n=20}.
Solution : Inthe language L ={ 0"1"2"},ifn =0, the language I contains m number of 0's and
~ mnumber of I's. The grammar for this can be of the form

A-> 01041 :
Ifnis greater than zero, the language L should contain m number of 0's followed by m number of
I's followed by one or more 2's i. e., the language generated from the non - terminal A should be
followed by n number of 2's. So, the resulting productions can be written as

$— 4|82
A 01|04

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.7

Thus, the grammar G to generate the language
L={0"12" | mz1land nz 0}
can be written as G=(V, T, P, S) where
V={§,A}, T={0,1,2}
Pomi{
S—> 4|82
A 011041
} S is the start symbol

Example 9 : Obtain a grammar to generate the language L = {0" 1" |[n =0} .
Solution :
Note : Itisclear from the language that total number of 1's will be one more than the fotal number

of 0's and all 0's precede all 1's. So, first let us generate the string 0" 1” and add the digit 1 attheend

of this string.

The recursive definition to generate the string 0" 1" can be written as
A—04le

Ifthe production 4 -»041 is applied ntimes we get the sentential form as shown below,
A=041=00411=> ... 0" A1"

Finally if we apply the production
A—> e

the derivation starting from the start symbol A will be of the form
A=041= 00411 041" =0"T°
Thus, using these productions we get the string 0" 1 . But, we should get the string 0" 1"*' i, .,an
extra 1 should be placed at the end. This can be achieved by using the production
S— Al

Note that from A we get string 0" 1” and 1 is appended at the end resulting in the string 0" 1.
So, the final grammar G to generate the language L = {0"1""'|n >0} will be G=(V,T,P,8)

where V={SA},T= {01}
R= g
S » Al
A—)OAlle

} S isthe start symbol

DEPARTMENT OF CSE

5.8 FORMAL LANGUAGES AND AUTOMATA THEORY

Example 10 : Obtain the grammar to generate the language
L ={w|n,(w)=n,(w)}

Solution :

Note: »,(w) = n,(w) means, number of a's in the string w should be equal to number of b's in
the string w. To get equal number of a's and b's, we know that there are three cases :
1. There are no a's and b's present in the string w .
2. The symbol ‘a’ can be followed by the symbol b’
3. The symbol 'b' can be followed by the symbol a'
The corresponding productions for these three cases can be written as

S—>e

S aSh

S§— bSa
Using these productions the strings of the form ¢, ab, ba, abab, baba etc., can be generated.
But, the stirngs such as abba, baab, etc., where the string starts and ends with the same symbol,
can not be generated from these productions (even though they are valid strings).
So, toobtain in the producitons to generate such strings, let us divide the string into two substrings.
For example, let us take the string 'abba'. This string can be split into two substrings 'ab' and 'ba'.
The substring "ab' can be generated from S and the derivation is shown below :

S = aSh (Byapplying S — aSh)
= ab (Byapplying S —»>€)
Similarly, the substring 'ba’ can be generated from S and the derivation is shown below :
8= bSa (Byapplying § — 5Sa)
= ba (Byapplying § >¢)

1. e, the first sub string 'ab' can be generated from S as shown in the first derivation and the
second sub string 'ba’ can also be generated from S as shown in second derivation,
So, to get the string 'abba’ from S, perform the derivation in reverse order as shown below :

abba
LN
! v
S\ SL/S

So, to get a string such that it starts and ends with the same symbol, the production to be used is
§—>88

DEPARTMENT OF CSE
CONTEXT FREE GRAMMARS 5.9

So, the final grammar to generate the language L= { w|n,(w) =n, (w)} isG=(V,T,P,S)
where

{8} , T ={ab}
{ S>¢€

S— aSh

S—> bSa

S§—> 8§
} S isthe start symbol

Vv
P

5.2 LEFTMOST AND RIGHTMOST DERIVATIONS
Leftmost derivation :

fG=W,T,P,S) isaCFGand w € L(G) then a derivation S >w is called leftmost
derivation ifand only if all steps involved in derivation have leftmost variable replacement only.
Rightmost derivation :

IfG=W,T, P,S) isaCFGand w € L(G), thenaderivation § = w is called rightmost
derivation if and only if all steps involved in derivation have rightmost variable replacement only.

Example 1 : Consider the grammar S — § + S| S * §|a| b. Find leftmost and rightmost
derivations forstring y = g * g + b.

Solution :

Leftmost derivation for w = g * g + b
=58 (Usings —» s *5)
=a*s (The first left hand symbol is a, sousing § — a)
:L>a*S+S (Using § — § + §,inordertoget 4 + 5)
=a *a+ S (Second symbol from theleftisa, sousing § — a)
=a*a+b (The last symbol from the leftis b, sousing § — »)

DEPARTMENT OF CSE

5.10 FORMAL LANGUAGES AND AUTOMATATHEORY

Rightmost derivation for w = g * g + b
=8*8+ 8 (Since, in the above sentential form second symbol from the right is * so,

we can not use S — a|b. Therefore, weuse § — § + §)
2S8*S+b (Usings - b)
:?S*a«rb (Using § - a)
:ﬂ>a*a+b (Using § — a)

Example 2 : ConsideraCFG S — bd|aB, 4 — aS|addja, B -» bS|aBB|b . Find
leftmost and rightmost derivations for v = aagbbabbba -

Solution :
Leftmost derivation for v - ggabbabbba :

S = aB (Using § — aB to generate first symbol of w)
= aaBB (Since, second symbol is o, so weuse B —» aBB)
= aaaBBB (Since, third symbol is a,soweuse B —» aBB)
=> aaabBB (Since fourth symbol is b, soweuse B — b)
=> aaabbB (Since, fifthsymbol is b,soweuse B —» b)
=> aaabbaBB (Since, sixth symbol isa, soweuse B — aBB)
= aaabbabB (Since, seventh symbol is b, soweuse B — b)
=> aaabbabbS (Since, eighth symbol is b, soweuse B — bS)
= aaabbabbbA (Since, ninth symbol is b, soweuse § — hA4)
= aaabbabbba (Since, the tenth symbolisa,sousing 4 — a)

Rightmost derivation for y = guabbabbba
S = aB (Using § — aB to generate first symbol of)

= aaBB (We need a as the rightmost symbol and second symbol from the left side, so we
use B — aBB)

= aaBbS (Weneed aas rightmost symbol and this is obtained from A only, weuse B — 5S)
= aaBbbA (Using § — b4)

= aaBbba (Using 4 — a)

= aaaBBbba (We need b as the fourth symbol from the right)

= aaaBbbba (Using B — b)

= aaabSbbba (Using B - bS)

DEPARTMENT OF CSE
CONTEXT FREE GRAMMARS 5.11

= aaabbAbbba (Using § - b4)
= aaabbabbba (Using 4 —» a)

5.3 DERIVATION TREES

Let G=(V, T, P, S) isaCFG Each production of G is represented with a tree satisfying the
following conditions:

1. If 4 5 o,a,0,...0, isaproduction in G, then 4 becomes the parent of nodes labeled

0y, Olg, Oy, . . O, , AN
2. The collection of children from left to right yields o, @ a,. .. o,

Example : ConsideraCFG § — § + §|S * §|a| b and construct the derivation trees
for all productions.

Solution :
For the production:>
S=>S+8 CS{
Figure (a)
For the production ﬁ ;
S—>8§*§ : /

Figure (b)

For the production (j For- the proguction I:)
S->-a S->b
(2) :o

Figure (c) Figure (d)

DEPARTMENT OF CSE

5.12 FORMAL LANGUAGES AND AUTOMATA THEORY

If w € L(G) thenitis represented by a tree called derivation tree or parse tree satisfying the
following conditions :

I

2.
3
4

<

The root has label g (the starting symbol),
The all internal vertices (or nodes) are labeled with variables,
The leaves or terminal nodes are labeled with ¢ or terminal symbols,

If 4 > o,a,04...a, isaproductionin G, then 4 becomes the parent of nodes labeled
Oy, Oy, Oy, ... O, , and
The collection of leaves from left to right yields the string w.

Example 1 : Considerthe grammar § — S + §| S * S| a| 5. Construct derivation tree for

Sting w =a*bh + a -

Solution : The derivation tree or parse tree is shown in below figure .
Leftmost derivationfor w = g% 4 + ¢ :

= a * § (Thefirstlefthand symbol is @, sousing § — a)

=a*S+85(Usings —» §+§,inordertoget p +)

§=85*5 (Usings » §*5) Cf,) / | h

O O fun
St
)

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.13

— a*b+ S (Second symbol from the leftisb, sousing § — 5)

Il
®
g © @
® & © W
®

— a*b+ a (Thelastsymbol from the leftis a,sousing S —a)

Figure : Parsetreefor g *b + a
Example 2 : Consider agrammar ¢; having productions § — adS|a, 4 — SbA| SS| ba .

Show that § = aabbaa and construct a derivation tree whose yield is aabbaa.

Solution :
S = ads
= aSbAS
—>aabAS
= gabbaS
= aabbaa

Hence, S = aabbaa
Parse tree is shown in figure .

Figure : Parse tree yielding aabbaa

WWW.CRUISERSELITE.CO.IN

http://www.cruiserselite.co.in/

DEPARTMENT OF CSE

5.14 FORMAL LANGUAGES AND AUTOMATATHEORY

Example 3 : Consider the grammar G whose productions are
S = 0Bl14, 4 - 0[0S]l44, B — 1|1S|0BB . Find
(a) Leftmost and(b) Rightmost derivation for string 00110101, and construct derivation tree also.

Solution :
(a) Leftmost derivation :
§ = 0B = 00BB
= 001B = 00118

= 001108 = 001101S
= 00110108 = 00110101
(b) Rightmost derivation :
S = 08B = 00BB
= 0081 = 00151
= 001141 = 0011051

= 00110141 = 00110101

(c) Derivation tree :
Derivation tree is shown in below figure .

Figure : Derivation tree for 00110101

5.4 AMBIGUITY IN CFGs

A grammar G is ambiguous if there exists some string w ¢ L(G) for which there are
two or more distinct derivation trees, or there are two or more distinct lefimost derivations.

DEPARTMENT OF CSE
CONTEXT FREE GRAMMARS 5.15

Example 1 : Considerthe CFG S — S + S|S * S|a|b andstring w = a * g + b ,and

derivations as follows:
Solution :

First leftmostderivation for v = g *a + »

S=>S8*S (Usings —» §*8)
= a*s (Using § — a)
=a*S5+8 (Usings - S+ 8)
=Sa*a+$ (Using § — a)
= a*a+b (Using s —» b)
Second leftmost derivation for w = g * g + b
S=>8+8 (Usings —» S+ §)
= S*S+S (Using s —» §*85)
> a*S+ S (Using § — a)
= a*a+ S (Using § — a)
= a*a+bh (Using § — 5)

Two distinct parse trees are shown in figure (a) and figure (b)
(s} &

& &) NNE
©) h
Figure(a) Parse tree for g * g + b Figure(b) Parse treefor g *a + b

Since, there are two distinct leftmost derivations (two parse trees) for string w, hence w is
ambiguous and there is ambiguity in grammar G

Example 2 : Show that the following grammars are ambiguous.
@S — SS|alb
(b) S — A|B|b, A > adB|ab, B —> abB| e

DEPARTMENT OF CSE

5.16 FORMAL LANGUAGES AND AUTOMATATHEORY
Solution :

(a) Consider the string \ = 566 , two leftimost derivations are as follows :

$=55 (Using s »s5) ST (Usings - s5)

S?bs (Using s - 5) :L)SSS (Using § — 85)

=bSS (Usings —» 55) PSS (Using § - b)

=bbS (Usings »b) TS (Usings >)

?bbb (Using § — &) ?bbb (Using § — 5)

Two parse trees are shown in figure(a) and figure(b) .

Figure (a) Parse tree for bbb Figure (b) Parse tree for bbb
So, the given grammar is ambiguous.

(b) Considerthe string y = ab,we gettwo leftmost derivations for w as follows :

S=4 S=B
L L
=ab (Using 4 — ab) = ahB (Using B —> abB)
:L“'b (Using B —>€)

Two parse trees are shown in figure () and figure (d).

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.17
Figure (c) Parse tree for w = ab Figure (d) Parse tree for w = ab
So, the given grammar is ambiguous.

541 Removal of Ambiguity

5.4.1.1 Left Recursion

A grammar can be changed from one form to another aceepting the same language. Ifa grammar
has left recursive property, it is undesirable and left recursion should be eliminated. The left
recursion is defined as follows.

Definition :A grammar G is said to be left recursive if there is some non terminal A such that
A4 =* Aa.Inotherwords, in the derivation process starting from any non - terminal A, if a sentential
form starts with the same non - terminal A, then we say that the grammar is having left recursion.

Elimination of Left Recursion
The left recursion in a grammar G can be eliminated as shown below. Consider the A - production

ofthe form A—>Aa|Aayjda......... Aa,|BB, | By v B
where g.'s do not start with A. Then the A productions can be replaced by

A= B A B A" | B e B, A"
A sa A A | d')] @, 4' | €
Note that «,'s do not start with 4!.
Example 1 : Eliminate left recursion from the following grammar
E— E+T|T
T—>T*F|F
F—>(E) |id

DEPARTMENT OF CSE

5.18

FORMAL LANGUAGES AND AUTOMATATHEORY

Solution : The left recursion can be eliminated as shown below :

Given Substitution ‘Without left recursion
A->Aap, A—-> B A'and A'>a, A'le
E—> E+T|T A=E E - TE'

a =+T E' > +TE' | e
=T
T—>T*F|F A=T T - FT'
‘ o =*F T' 5> *FT! | e
B =F
F— (E)|id Not applicable F—(E)|id

The grammar obtained after eliminating left recursion is
E - T1E'
E' 5 17E'|e
T — Fr
¥ 5 *Fr'le
F - (E)|id

Example 2 : Eliminate left recursion from the following grammar
S - 4bla
A - Ab|Sa

Solution :
The non terminal S, even though is not having immediate left recursion, it has left recursion

because S = Ab=> Sab i. €., § =* Sab - Substituting for S in the A - production can eliminate the
indirect left recursion from S. So, the given grammar can be written as

S Abla

A—> Ab| Aba|aa

Now, A - production has left recursion and can be eliminated as shown below :

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.19
Given Substitution Without left recursion
A= Ada,|p, A->f,4'and A’ — a,d'le
§—> Abla Notapplicable S 4b|a
A~ Ab | Aba |aa A=A A= aad
a=b A' 5ba' | bad!| e
a, =ba
B =aa

The grammar obtained after eliminating left recursion is
S —> 4bla

A > aad'
A -5 ba lbad' | &
5.4.1.2 Left Factoring

Definition :

Two or more productions of a variable A of the grammar G = (V, T, P,S) are said to have left
factoring if A - productions are of the form 4— of | af)....lap,, where B,e(V U T)* and
does not start (prefix) with & . All these A - productions have common left factor a.

Elimination of Left Factoring

Let the variable A has (left factoring) productions as follows :

A—> aﬂllaﬂz laﬁ:;] laﬁ',,;‘y, |}‘2 ’...‘?’M 5 Where ﬂl,ﬂz, ﬂg, ﬂ" a.nd Yi5.V2s sanve Yo do not
contain o asa prefix, then we replace A - productions by :

A= ad | Bl 7s) o | s Where 4 B | Bl ... B,
Example : Consider the grammar S — aSa | az and remove the left factoring (ifany).

Solution :

S-—>aSa and S->aa have « =a asaleft factor, so removing the left factoring, we get the
productions: S —aS', §'— Sa|a.

DEPARTMENT OF CSE

5.20 FORMAL LANGUAGES AND AUTOMATA THEORY

The problem associated with left factoring and left recursive grammars is back - tracking. We
can find « as a prefix in RHS in many ways and a string having « as a prefix can create
problem. In worst condition, to get appropriate remaining part of the string we have to search the
entire production list. We take the first production, if it is not suitable then take second production
and so on, This situation is known as back - tracking . For example, consider the above S -
productions § - aSa | aa and a string w=aa. We have choice of the both productions looking at

the first symbol on the RHS.
Iteration First: Iteration Second :
S = aSa S=aa=w

= aaaa # w
So, if we follow the iteration first, then we can not get the string w and we will have to return to
the iteration second i. e. the starting symbol. The problem, in which we proceed further and do
not get the desired string and we come to the previous step, is known as back - tracking. This
problem is a fundamental problem in designing of compilers (parser).

Procedure for Removal of Ambiguity :

We have no obvious rule or method defined for removing ambiguity as we have for left recursion
and left factoring. So, we will have to concentrate on heuristic approach most of the time.

Let us consider the ambiguous grammar § — §+S5| 8 *S]a| 5. Now, if we analyze the
productions, then we find that two productions are leftrecursive. So, first we try to remove the left recursion.
S—>S+85and §— S *S isreplaced by §->aS'|bs", S'—> +85'[*SS' | &
Now, we check the derivation for ambiguous string = o *4 + ¢ . We have only one left most
derivation or only one parse tree given as follows :
S = as"
= a*ss'
.=>a*aS'S'
= a*a+85'S
=a*a+as'S'S'
=a*ag+acs'S
=>a*a+acs
=a*a+ae (z=a*a+a)
So, we conclude that removal of left recursion (and left factoring also) helps in removal of
ambiguity of the ambiguous grammars,

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.21

5.5 MINIMIZATION OF CFGs

As we have seen various languages can effectively be represented by context free grammar. All
the grammars are not always optimized. That means grammar may consists of some extra symbols
(non - terminals). Having extra symbols unnecessary increases the length of grammar.
Simplification of grammar means reduction of grammar by removing useless symbols. The
properties of reduced grammar are given below :

1. Eachvariable (i. e. non - terminal) and each terminal of G appears in the derivation of some
word in L.

2. There should not be any production as .x —» ¥ where X and Y are non - terminals.
3. If ¢ isnotinthe language L then there need not be the production ¥ —e .

We see the reduction of grammar as shown below :

Reduced grammar
Removal of Elimination of Removal of
useless symbols & productions unit productions

5.5.1 Removal of useless symbols

Definition : A symbol X is useful if there is a derivation of the form
S=*aXp ="w
Otherwise, the symbol X is useless. Note that in a derivation, finally we should get string of

terminals and all these symbols must be reachable from the start symbol S. Those symbols and
productions which are not at all used in the derivation are useless.

Theorem 5.5.1 :letG= (V. T P, S)be a CFG We can find an equivalent grammar
G, = (V,,T;,P,,S) suchthatforeachAin (V{UT,) there exists & and £ in ({UT)* and x in
T* forwhich § ="' aAﬂ::f X

DEPARTMENT OF CSE

5.22 FORMAL LANGUAGES AND AUTOMATA THEORY

Proof: The grammar G, can be obtained from G in two stages.

STAGE 1:
Obtain the set of variables and productions which derive only string of terminals i. e., Obtaina

grammar G, = (V1,717 ,S) such that ¥, contains only the set of variables A for which 4" x
where x e 7 *.

The algorithm to obtain a set of variables from which only string of terminals can be derived
is shown below.

Step 1: [Initialize old _ variables denoted byovto ¢]

ov=¢

Step 2: Takeall productions of the form 4 — x where , o7+ i.e.,ifthe R. H. S of the
production contains only string of terminals consider those productions and
corresponding non terminals on L. H. S are added to new _ variables denoted by nv.
This can be expressed using the following statement :

w={A|A—>x and xeT'}

Step 3 : Compare ov and nv. As long as the elements in ov and nv are not equal, repeat the

following statements. Otherwise goto step 4.

a. [Copynew_varialbestoold variables]
ov=nv
b. Add all the elements in ov to nv. Also add the variables which derive a string
consisting of terminals and non terminals which are in ov.

nv =ov U{A|Ad—> yand ye(ov uT)"}
Step 4 : When the loop is terminated, nv (or ov) contains all those non terminals from which
only the string of terminals are derived and add those variables to ¥;.
L.e,V,=ov
Step 5: [Terminate the algorithm]
return ¥,

Note that the variable ¥, contains only those variables from which string of terminals are obtained.
The productions used to obtain ¥, arcadded to 7 and the terminals in these productions are
addedto 7;.The grammar G, = (¥}, 7;, P, S)contains those variablesAin ¥, suchthat 4"
for some x in 7+. Since each derivationin G, isaderivationof G L (G,) = L(G).

DEPARTMENT OF CSE
CONTEXT FREE GRAMMARS .23

STAGE 2 :

Obtain the set of variables and terminals which are reachable from the start symbol and the
corresponding productions. This can be obtained as shown below :

GivenaCFG G = (¥, T, P, §),wecan find an equivalent grammar G, = (V;,T,,R,S)
such that foreach Xin ¥, U 7, thereexists & suchthat § —* ¢ and X is asymbolin « i.e.,
ifXisavariable x e ¥, and if X is terminal x e T, . Each symbol Xin ¥, U T, isreachable from
the start symbol S. The algorithm for this is shown below.

V) ={S}
ForeachAin ,
if 4 « then
Add the variablesin 4 to ¥,

Add the terminalsin a 10 T,
, Endif
Endfor

Using this algorithm all those symbols (whether variables or terminals) that are not reachable
from the start symbol are eliminated. The grammar G, does not contain any useless symbol or

production. Foreach X €Z(G,) there is a derivation.
St aXp =" x
Using these two steps we can effectively find G, such that Z(G)=L(G,) and the two
grammars G and G, are equivalent.

Example 1 : Eliminate the useless symbols in the grammar
S - aA| bB
A - aA|a
B - bB
D - ab |Ea
E = aC|d
Solution :

Stage 1 : Applying the algorithm shown in stage 1 of the theorem 5.5.1, we can obtain a set of
variables from which we get only string of terminals and is shown below.

DEPARTMENT OF CSE

5.24 FORMAL LANGUAGES AND AUTOMATATHEORY
oV nVy Productions
A - a
¢ A,D,E D — ab
E - d
S — aA
A’ D’ E A) D, B, S A - a.A
D - Ea
A.D,E,S A,DE,S
Theresulting grammar G, = (¥,,7;, £, S) where
Vl = {A? D’ E7 S }
i = {a,b, d}
A = i
A > alaA
D - ab | Ea
E - d
S - aA

Stage 2:

Applying the algorithm given in stage 2 of the theorem 5.5.1, we obtain the symbols such that

+ S isthe start symbol
contains all those variables in ¥; suchthat 4 —* w where p - 7+.

each symbol X is reachable from the start symbol S as shown below.

Pl Tl Vl
- - S
S — ad a S, A
A—ala4 a S,A

The resulting grammar G, = (V,7,, B,,S) where V, ={S,4} , T, ={a}

P ={

such that each symbol X in (¥; UT;) hasaderivationofthe form § =" aXg=" w.

S

- ad

A — alad
} 8 isthe start symbol

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS

5.25

Example 2 : Eliminate the useless symbols in the grammar

Solution :

Stage 1:

gowy»w

VR

aA|a|Bb|cC

aB
alAa
cCD
ddd

Applying the algorithm shown in stage1 of theorem 5.5.1 , we can obtain a set of variables from
which we get only string of terminals and is shown below,

ov v Productions
S - a
¢ S,B,D B - a
D - ddd
S,B,D S,B,D,A S - Bb
A = aB
S,B,D,A S,B,D,A S - aA
B - Aa

Theresulting grammar G, = (¥, , 7;, P, S) where
{S, B,D,A}
{a,b, d }

V=
T)=
Py

S is the start symbol contains all those variables in ¥, suchthat 4 =* w.

Stage 2:

{

}

>ow®w

VI

a|Bb|aA
a|Aa
ddd

aB

Applying the algorithm given in stage 2 of the theorem 5.5.1, we obtain the symbols such that

each symbol X is reachable from the start symbol S as shown below.

DEPARTMENT OF CSE

5.26 FORMAL LANGUAGES AND AUTOMATA THEORY
Pl Tl Vl
- - S
S —» a|Bb|Aa a.b S.A,B
A - aB a,b S,A,B
B alAa a,b S,A,B
Theresulting grammar G, =(V,, 7,,FA,,S) where
v, = {S,A,B}
T, = {ab}
P, 3 {

S - a|BbjaA
A a0y aB
B - alAa

} S isthe start symbol

such that each symbol X in (¥, w 7}) hasaderivation of the form §=" axp =" w.
5.5.2 Eliminating < - productions

Aproduction of the form 4 —» e is undesirable in a CFG, unless an empty string is derived from
the start symbol. Suppose, the language generated from a grammar G does not derive any
empty string and the grammar consists of - productions. Such e - productions can be removed.
An ¢ - production is defined as follows :

Definition1: LetG=(V,T, P, S)beaCFG A production in P of the form

A-> e

is called an « - production or NULL production. After applying the production the variable A is
erased. For each Ain V, if there is a derivation of the form

A=>" ¢
then A is a nullable variable.
Example : Consider the grammar
S =¥ ABCa|bD
A - BC|b
B

A

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.27
C - ¢le
D - d
In this grammar, the productions
B—oe
C—e
.are ¢ - productions and the variables B, C are nullable variables. Because there is a production
A — BC

and both B and C are nullable variables, then A is also a nullable variable.

Definition2: LetG=(V,T,P, S)be a CFG where V is set of variables, T is set of terminals,
Pis set of productions and S is the start symbol. Anullable variable is defined as follows.
1. If 4 — eisaproductionin P, then A is a nullable variable.
2. If 4 - B, B,........ B, isaproductionin P, and if B, B,........ B, are nullable variables,
then A isalso a nullable variable

3. The variables for which there are productions of the form shownin step 1 and step 2 are
nullable variables.
Even though a grammar G has some ¢ - productions, the language may not derive a language
containing empty string. So, in such cases, the e - productions or NULL productions are not
needed and they can be eliminated.

Theorem 5.5.2 : LetG=(V,T,P,S)where L(G)+# . We can effectively find an equivalent
grammar G, with no e- productions such that L(G,) = L(G)- €.
Proof : The grammar G, can be obtained from G in two steps.

Step 1: Find the set of nullable variables in the grammar G using the following algorithm.

ov=¢
ny = {4|d—>e }
while (ov!=nvV)

{

ov=nv

nw=ov u {A|d>aand acov "}

}
V=ov
Once the control comes out of the while loop, the set V contains only the nullable variables.

DEPARTMENT OF CSE

5.28

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 2: Construction of productions P, . Consider a production of the form

A""’X]Xsz Xﬂ’ nzl

where each X, isin (¥ v T'). Inaproduction, take all possible combinations of nullable
variables and replace the nullable variables with ¢ one by one and add the resulting productions
to p, . If the given productionisnotan - production,additto », .

Suppose, A and B are nullable variables in the production, then

1.

I R

First add the productionto P, .

Replace A with cand add the resulting production to 7,

Replace B with ¢ and the resulting productionto 7, .

Replace Aand B with € and add the resulting productionto 7, .

Ifall symbols on right side of production are nullable variables, the resulting production is
an e production and do not add thisto P, .

Thus, the resulting grammar G, obtained, generates the same language as generated by G
without ¢ and the proof'is straight forward .

Example 1 : Eliminate all ¢ - productions from the grammar

S - ABCa|bD
A - BC|b
B - b| e
C SN cle
D - d
Solution :
Step 1 :

Obtain the set of nullable variables from the grammar. This can be done using step 1 of theorem
5.5.2 as shown below. A

ov v Productions
¢ B,C Boe

C -y €
B,C B,C,A A- BC
B,C.A B,C,A -

V= {B,C,A} areall nullable variables.

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.29
Step 2 : Construction ofproductions P
Productions Resulting productions (P,)
S - ABCa S — ABCa|BCa|ACa| ABa|Ca|
Aa|Bala
S — bD S - bD
A — BC|b A - BCiB|C|b
B -»ble B —>b
C—>cle C e
p>a D>d
The grammar G, = (¥;,T;,F,,S) where
v, = {S,A,B,C,D}
T, = {a,b,c,d}
3 = { S 5 ABCa|BCa| ACa |ABaCa|Aa|Baja | bD
A 5BC|B|C|b
Bob
C ¢
D-d

} S isthe start symbol
Example 2: Eliminate all - productions from the grammar

S - BAAB
A > 0A2]|2A0| ¢
B o AB|1B]| e
Solution :
Step 1 : Obtain the set of nullable variables from the grammar. This can be done using
step 1 of theorem 5.5.2 as shown below.

ov v Productions
¢ AB A—e

: B—>g
A B A,B,S A —» BAAB
A,B,S A,B,S -

V={8,A,B } are all nullable variables.

DEPARTMENT OF CSE

5.30 FORMAL LANGUAGES AND AUTOMATATHEORY

Step 2 : Construction of productions 7, .Addanon e- productioninPto 7, . Takeall the
combinations of nullable variables in a production, delete subset of nullable variables one by one
and add the resulting productionsto P, .

Productions Resulting productions (7,)

S - BAAB S -» BAAB|AAB |BAB|BAA|
AB|BB|BA|AA|A|B

A =3 0A2 A - 0A2]02

A > 2A0 A — 2A0]20

B - AB B > AB|B|A

B - 1B B> 1B|1

We can delete the productions of the form A —» A.In P, , the production B -» B canbe
deleted and the final grammar obtained after eliminating e -productions is shown below.

The grammar G, = (V,,T,,F,,S) where

v, = {S,ABCD}
r, = {ab,cd}
p, = {S-» BAAB|AAB|BAB|BAA|AB|BB|BA|AA|A|B

A 5 0A2|02[2A0]20
B 5 AB|A|1B|]
} S isthe start symbol

5.5.3 Eliminating unit productions

Consider the production 4 — B. The left hand side of the production and right hand side of the
production contains only one variable. Such productions are called unit productions. Formally, a
unit production is defined as follows.

Definition : Let G=(V, T, P, $)beaCFG. Any production in G of the form
A—> B
where A, B ey isaunit production,

In any grammar, the unit productions are undesirable. This is because one variable is simply
replaced by another variable.

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.31
Example : Consider the productions.

A—> B

B> aBlb
In this example,

B —> aB

B—b

are non unit productions. Since B is generated from A, whatever is generated by B, the same
things can be generated from A also. So, we can have
A— aB

A - b and the production 4 - B can be deleted.

Theorem 5.5.3 : LetG=(V, T, P, S) be a CFG and has unit productions and no «- productions.
An equivalent grammar G, without unit productions can be obtained such that L(G) = I(G)) i. e.,
any language generated by G is also generated by G, . But, the grammar G, has no unit productions.
Proof :
A unit production in grammar G can be eliminated using the following steps :
1. Remove all the productions of the form 4 - 4
2. Add all non unit productionsto A .
3. Foreach variable A find all variables B such that
: A="B
i. ., in the derivation process from A, if we encounter only one variable ina sentential
form say B (no terminals should be there), obtain all such variables.
4. Obtain a dependency graph. For example, if we have the productions
A-> B
B->C

C—-B
the dependency graph will be of the form

B9

5. Note from the dependency graph that

a. A =>* B 1. e., B can be obtained from A
So, all non - unit productions generated from B can also be generated from A
b. A=*(C i.e., Ccanbe obtained from A

So, all non - unit productions generated from C can also be generated from A

DEPARTMENT OF CSE

5.32 FORMAL LANGUAGES ANDAUTOMATATHEORY

¢. B=*C i, e., C can be obtained from B

So, all non - unit productions generated from C can also be generated from B
d. ¢ =* B i.e., B canbe obtained from C

So , all non - unit productions generated from B can also be generated from C.
6. Finally, the unit productions can be deleted from the grammar G.

7. The resulting grammar G, , generates the same language as accepted by G.

Example1 : Eliminate all unit productions from the grammar

S = AB
A - a

B —» Clb
c = D

D - E|bC
E — d|4b

Solution : The non unit productions of the grammar G are shown below :

S - AB
A - a
B - b
D - BC
E = didb e 1)
The unit productions of the grammar G are shown below :
B - C
¢ - D
- B - E

The dependency graph for the unit productions is shown below :

(BF—E)—D)—=Y

Tt is clear from the dependency graph that all non unit productions from E can be generated from
D. The non unit productions from E are

E - d|4b
© Since D =*E,

D—>d| 4b

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.33

The resulting D productions are

D - bC (from production(1))

D=dlab e 3)
From the dependency graph itis clear that, C = *E . So, the non unit productions from E shown
in (production(2)) can be generated from C. Therefore,

C—d| Ab
From the dependency graph it is clear that, C = *D. So, the non unit productions from D shown
in (production(3)) can be generated from C. Therefore,

C—bC

Codlab e 4)
From the dependency graphit is clear that B =*C, B=>*D, D=>*E . So,all the productions
obtained from B can be obtained using (productions (1), (2), (3) and (4)) and the resulting
productions are :

B—b

B-»d |Ab

BBC aesiess (5)
The final grammar obtained after eliminating unit productions can be obtained by combining the
productions (Productions (1), (2), (3), (4), and (5)) and is shown below :

v, = {S,A,B,C,D,E}
Tl'_‘{a:b’d} ;
P =1 AB
a
b|d|Ab|bC
bC |d|Ab
bC|d|Ab
d|Ab
} S isthe start symbol

R I/

moaQw» w

Example 2 : Eliminate unit productions from the grammar

S > AO0|B
B > AlM
A -~ 0]12|B

DEPARTMENT OF CSE

5.34 FORMAL LANGUAGES AND AUTOMATA THEORY

Solution : The unit productions of the grammar G are shown below :

S - B
B - A
A = B

The dependency graph for the unit productions is shown below.

Chane O M- 1

The non unit productions are :
S > A0
B > 11
A ST ¢ 1 SRR (1)

It is clear from the dependency graph that § = *B, S =>*4, B=>*4 and 4=*5.So, the
new productions from S, A and B are
S - 11|0]12
B - 0]12

A - B s (2)
The resulting grammar without unit productions can be obtained by combining Productions
(1) and (2) and is shown below :
v, = {S,A,B} , 1, = {0,1,2}
P, = { S - AOJ11]0]12

A - 0112}11
B £ 11|0]12
} S isthe start symbol

Note : Given any grammar, all undesirable productions can be eliminated by removing
1. e- productions using theorem 6.5.2
2. unit productions using theorem 6.5.3.
3. useless symbols and productions using theorem 6.5.1

in sequence. The final grammar obtained does not have any undesirable productions.

5.6 NORMAL FORMS

As we have seen the grammar can be simplified by reducing the ¢ production, removing useless
symbols, unit productions. There is also a need to have grammar in some specific form. As you
have seen in CFG at the right hand of the production there are any number of terminal or non -
terminal symbols in any combination. We need to normalize such a grammar. That means we
want the grammar in some specific format. That means there should be fixed number of terminals
and non - terminals, in the context free grammar.

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.35

In a CFG, there is no restriction on the right hand side of a production. The restrictions are
imposed on the right hand side of productionsina CFG resulting in normal forms. The different
normal formsare :

1. Chomsky Normal Form (CNF)
2. Greiback Normal Form (GNF)

5.6.1 Chomsky Normal Form (CNF)

Chomsky normal form can be defined as follows.

Non - terminal — Non - terminal Non - terminal
Non - terminal —» terminal

The given CFG should be converted in the above format then we can say that the grammar is in
CNF. Before converting the grammar into CNF it should be in reduced form. That means
remove all the useless symbols, e productions and unit productions from it. Thus this reduced
grammar can be then converted to CNF.

Definition :
LetG= (V, T,P,S)bea CFG The grammar G is said to be in CNF if all productions are
of the form '
A > BC
or
A - a

where A,Band CeV andaeT.

Note that if a grammar is in CNF, the right hand side of the production should contain two
symbols or one symbol. If there are two symbols on the right hand side those two symbols must
be non - terminals and if there is only one symbol, that symbol must be a terminal.

Theorem 5.6.1 : LetG=(V, TP, S) be a CFG which generates context free language
without <. We can find an equivalent context free grammar G, =(V,,T’ ,P,,S) inCNF such that

L(G)=L(G,) i.e., all productions in G, are of the form

A - BC
or
A - a

DEPARTMENT OF CSE

5.36 FORMAL LANGUAGES AND AUTOMATATHEORY

Proof: Let the grammar G hasno e - productionsand unit productions. The grammar G, can
be obtained using the following steps.

Step 1 : Consider the productions of the form

where n>2 andeach X, (¥ wT) i.e., consider the productions having more than two symbols
on the right hand side of the production. If X is a terminal say a, then replace this terminal by a
corresponding non terminal B, and introduce the production

B, a
The non - terminals on the right hand side of the production are retained. The resulting productions
are added to A,. The resulting context free grammar G, = (¥}, T, R, §) where each production
in A isofthe form

A—a
generates the same language as accepted by grammar G. So, L(G) = I(G)).

Step 2 : Restrict the number of variables on the right hand side of the production. Add all the
productions of G, which arein CNF to p, . Consider a production of the form

where n 23 (Note that if n= 2, the production is already in CNF and n can not be equal to 1.
Because if n= 1, there is only one symbol and it is a terminal which again isin CNF). The A -
production can be written as
A iy A Dy
D, - 4D
Dy, = AzD;

Dp.y3 = Ap 1Dy
These productions are added to P, and new variables are added to ¥, . The grammar thus
obtained is in CNF. The resulting grammar G, = (¥, T,R,S) generates the same language as

accepted by G L. e. L(G)=L(G,)-

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.37
Example 1: Consider the grammar

S > DOA|1B

A - O0AA]1S|1

B - 1BB|0S|0 Obtain the grammarin CNF :
Solution :

Step 1: All productions which are in CNF are added to . The productions which are in
standard form and added to A, are:

A - 1
B | (1)

Consider the productions, which are notin CNF. Replace the terminal a on righthand side
of the production by a non - terminal A and introduce the production A — a. This step hasto be
carried out for each production which are not in CNF.

The table below shows the action taken indicating which terminal is replaced by the
corresponding non - terminal and what is the new production introduced. The last column shows

the resulting productions.
Given Productions Action Resulting productions
S 5>0A[1B Replace O by B, and introduce S-» By A|B, B
the production By— 0 By—0
By—1
Replace 1 by B, and introduce the
production B; - 1
A - 0AA/IS Replace 0 by B, and introduce the | 4-> B, AA/ B S
production B; —» 0 By—0
B, =1
Replace 1 by B, and introduce the
production By — 1
B - 1BB/0S Replace 0 by B, and introduce the B —> B,BB/ ByS
production B, -0 By -1
By —~0
Replace 1 by 5, and introduce the
production B; - 1

DEPARTMENT OF CSE

5.38 FORMAL LANGUAGES AND AUTOMATA THEORY

The grammar G, = (¥, 7, £, S) can be obtained by combining the productions obtained from
the last column in the table and the productions shownin (1).

4 = {S,A,B, By, B }

L o= {0,1}

R = { S - B,A|B, B
A - B,AA|BS|]
B - BBB|B,S|0
B, - 0
B, - 1

¥ } S isthe start symbol
Step 2: ,

Restricting the number of variables on the right hand side of the production to 2. The productions
obtained after step 1 are:

S - ByA|BB
A - ByAA|BS|
B - BBB|BS|0
By = 0
B - 1
In the above productions, the productions which are in CNF are
S - ByABB

A = BS|1

B — BS|0

B, -» 0

B oem e 2)

and add these productions to P, . The productions which are not in CNF are

A - By AA
B = B,BB

The following table shows how these productions are changed to CNF so that only two variables
are present on the right hand side of the production.

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.39
Given Productions Action Resulting productions
A—> ByAA Replace AAonR.H.S with variable | A- ByD,

D, and introduce the production Dy = AA
Dy = AA
B — BBB Replace BB onR. H. S with variable | B —B,D,
D, and introduce the production D, —» BB
D,-»BB | e (3

The final grammar which is in CNF can be obtained by combining the productionsin (2) and (3).
The grammar G, = (¥,,T,P,,S) isin CNF where

¥ = {S,A,B, By,8,D,D,}

i = {0,1}

B = { S - ByA|BB

= BS|1| ByD,

B > B;S|0| BD,
By, -0
B, -1
D, = A4
D, — BB

} Sisthe start symbol

Example 2 : Find agrammar in CNF equivalent to the grammar :

S>-S|[STS]|alb
Solution : Given, grammaris:

So=-SISTSTVaIE s (A)
where, terminals are :
—~[.T.}aand b
In the given grammar (A) there is no any €—production, no any unit - productionand no any
useless symbols .
Now, in the given grammar (A), following are the productions which is already in the form
of CNF: S—a

S—b

DEPARTMENT OF CSE

5.40 FORMAL LANGUAGES AND AUTOMATATHEORY

Also, in the given grammar (A), following are the productions which are not in the form of CNF:
§—>-§
S8 18]
Thus: (a) Considering the production :
S—>-=8
We can write this production as :
S VS (1)
V, >— e kD)
where V/, isanew variable.
(b) Now, considering the production :

S>[sTS]

We can write this productionas :
S V, SV, 8V, e (3)
v, > e (4)
v,»1 e (5)
V,—>1] e (6)

where V,, ¥, and ¥, are new variables.
Thus, from (1),, (6), the result grammar becomes :
S>VS|V,SV, SV, alb

Kyoob=
e=>[B)
v,-»1
Vi=1
Now, in the resultant grammar (B), following is the production which is not in the form of CNF:
S—>V, SV, 5V,
(¢) Now,considering the production :
S WSSV,
We can write this production as :
Sy, (7)
V=8V, (8)

VoSV, ©)

DEPARTMENT OF CSE
CONTEXT FREE GRAMMARS A 5.41

Thus, from (7), (8) and (9), the resultant grammar becomes :
SV, S|VVY, la|b
V-
Al
=Sy, (C)
Vi~ S,
v,-»1
Vi—]

Now, in the resultant grammar (C), following is the production which is not in the form of CNE:
SSVV, Y,

We can write this production as :
SV, L (10)
iV L (11)

Thus, from (10)and (11), the resultant grammar becomes

' S > V,SW,V;|db
V-
A
A D)
v, > 8,
V> 5V,
v,-» 1T
V=]
Thus, the resultant grammar (D) is in the form of CNF, which is the required solution.

5.6.2 Greibach Normal form (GNF)

Greibach normal form can be defined as follows :

Non - terminal — one terminal. Any number of non - terminals

Example :
S — ad isin GNF
S—a isin GNF

DEPARTMENT OF CSE

5.42 FORMAL LANGUAGES AND AUTOMATA THEORY
But S > AA isnotin GNF
S Aa isnotin GNF

Definition : A CFG G = (V, T,P,S) isin Greibach normal form (GNF) if its all productions
areof type 4 — ao, Where a v (String of variables including null string) and @ € 7' . Agrammar
in GNF is the natural generalization of a regular grammar (right - linear).

Theorem 5.6.2 : Every CFL L without e is generated by grammar, where productions are of
type 4> aq,where aelV " and aeT .

Proof : We use removal of left recursion (without null productions) as given below.
Let the variable A has left recursive productions given as follows :

A Aay|Aay| Aas)...) Aa, | B B B....| B, , Where 8.5, f, ... B, donotbegin withA, then
we replace A - productions by the productions given below .
A= BABA)...| BA B B \Bs | |B,, » where
A= o dle, A'laz A\, Al | o, las L.da,
Method for Converting a CFG into GNF :
We consider CFG G = (v , T',P,S) .
Step 1: Renameall the variablesof Gas 4,, 4, 45, , A,
Step 2: Repeat Step 3 and Step4 for i=1, 2, , n

Step3: If 4, »aa,a,a;......a, ,Where a €T ,and «; isavariable or a terminal symbol,
Repeat for j=1,2,......... , m
If @, is a terminal then replace it by a variable 4,,; and add production 4,., ->;,and
n=n+1.Consider the next 4 — production and go to step 3.
Step4: If 4, — a,azyay........a,,, Where o isavariable, then perform the following :

If o, is same as 4, , then remove the left recursion and go to Step 3.

Else replace «; by all RHS of ¢, -productions one by one. Consider the remaining

4, -productions, which are not in GNF and go to Step 3.
Step 5: Exit
Advantages of GNF :
1. Avoids left recursion.
2. Always has terminal in leftmost position in RHS of each production.
3. Helps select production correctly.
4. Guarantees derivation length no longer than string length.

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.43

Example 1 : Consider the CFG §->S+S|S*S|a| b and find an equivalent grammar in GNF.

Solution:

Let G, is the equivalent grammar in GNF.
Renaming the variable, we get

P:8 =S5 +85 (Notin GNF)
P58 *S (Notin GNF)
Py:S, > a (In GNF)
PS> b (In GNF)

P, and P, are left recursive productions, so removing the left recursion, we get
S,—>aS,|bS ;| alb , where
S, >+ 8,85,* 8, 5,1+ 5,1 %S,

Now, all productions are in GNF.
Example 2 : Consider the grammar G = ({ 4,,4,,4,},{a,b},P,4,) , where P consists of

following production rules.
Ay > Ay Ay, A;—> Ay 4,|b, Ay — A, A,]a Convertitinto GNF.

Solution : (Renaming is not required)
Consider 4, - productions :

A = A 4, (Not in GNF)

Replacing 4, by its RHS, we get

A > bA; (In GNF)

A = Ay A 4; (Not in GNF)
Now , consider 4, - 4,4, 4;,and replacing 4, by its RHS, we get

A, = adi 4, (In GNF)

A = A A A A (Notin GNF)

So, 4,-productions are A4, —bA, | ad, 4; |4,4, 4 4;
Now, consider 4, — 4,4, 4, 4; and removing left recursion, we get

A = bAyA,|bA, (In GNF)
Ay >ad, A, Ay |ad 4, - (In GNF), where
Ay > Ay Ay Ay Ag| Ay Ay A

(A4, isanew variable and its production is not in GNF)
So,now all 4, - productions are in GNF .

DEPARTMENT OF CSE

5.44 FORMAL LANGUAGES AND AUTOMATA THEORY

Consider the 4, - productions :

Ay —b (In GNF)

Ay = Az A (Not in GNF)
Now, consider 4, — A4;4, and replacing 4, by its RHS, we get

As —>ad, (In GNF)

Ay - A A4 (Not in GNF)
Now, consider 4, — 4, 4,4, and replacing 4, by its RHS, we get

Ay = bA A A 4, (In GNF)

Ay —> bAs 4y A (In GNF)

A, > ad A A 4, A, (In GNF)

A, —ad, A, 4, 4 (In GNF)

So,all 4,-productions are in GNF.
Consider 4, - productions :
4; >a (In GNF)
Ay —> A4y (Not in GNF)
Now, consider 4; — 4,4, and replacing 4, by its RHS, we get
Ay —>bA A A, |bAA, |ad A Ay A, | ad A 4, (In GNF)
Consider 4, - productions :
Ay = Ay Ay Ay A Ay A Ay (Not in GNF)
Replacing 4, by its RHS, we get '
Ay >bA A A, | bA Ay | ad A Ay Ay | ad A Ay,
Ay > bAyAg Ay A A As Ay
Ay > bA Ay A A4y,
Ay > bAs 4y Ay A4 Ay,
Ay = bAs Ay Ay Ay 4,
A, >ad A A Ay A A Ay A,
A, —>ad A, A, A, A, 4,4y,
A, >ad, A, A, A, A, A, A, ,and
A, = ad A, A, A, A A,

Now, all 4, - productions are in GNF.

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.45

Productions in GNF are :
A —ad A | bA A |bA; | ad Ay A, | ad Ay
Ay ob|ady | b A, Ay Ay | bAA A, | ad 4 A, 4 4 ladi Ay Ay 4,
Ay —a|bA, A4, | b4 4, | ad A, A, 4, lad A4,
Ay >bAAA | bA Ay | ad A A A, \ad 4 Ay | bAA A A A A A,
Ay bAs 4, A A A A, | ad A A, A A A A A | ad A A A A A A,
Ay >bAAAMA A | bAAA A A | ad A A A A M, |ad 4 A, A A A,

Example 3 : Find equivalentgrammar in GNF.

(@) S > aB|bA,A > aS|bAA|a,B - bS|aBB|b
(b) S - abSb|a|aAb,A -> bS|aAAb
(c) S > AA]O,A —» SS|1
Solution :
(a) Renaming S, Aand Bby 4, 4,,and 4, respectively, we get the following productions.
A—> ady | bAy Ay—> ady | bAy Ay | a, Ay —> bA | ads 4, | b
Since, all productions are in GNF, so there is no need of any modification.

(b) Renaming S, and A by 4, and 4, respectively, we get the following productions.
A—> abA B a| adb, A, bA, | a Ay Ab
Consider the 4, - productions one by one.

A > abAb (Not in GNF)
Replacing all the RHS terminals except the first by new variables, we get

A —> ady A, 4; where 4,5 b (In GNF)
Considering the next 4, - production :

A—a (In GNF)
Considering the next 4, - production :

A —> adyb (Notin GNF)
Replacing b by variable 4, (since, we have already defined 4, - b), we get

Ay ady 4 (In GNF)

Consider the 4, - production :
Ay = bA (In GNF)

DEPARTMENT OF CSE

5.46 FORMAL LANGUAGES AND AUTOMATATHEORY

Considering the next 4, - production :

AZ - (1.42 Azb (Not in GND
Replacing b by variable 4 (since, we have already defined 4; - &), we get
Az - (ZAZ Az A3 (In GNF)

Now, all productions given following are in GNE.
Al — aAJA] A3 {alaAz A] N Az = bAl‘ aAzAzA}, and A3 — b

(¢) RenamingS,and Aby 4,and 4, respectively, we get the following productions
A=y Ay 4,00, Ay = A 4| 1
Consider the 4, - productions one by one.
A > Ay Ay (Not in GNF)
Replacing leftmost 4, by 4,4, and 1, we get
A~ 444 (14
Considering the production 4, — 4; 4, 4, , this is not in GNF and has left recursion. Considering
theall 4, - productions 4 —» 44,41 4;| 0 and removing left recursion from the production
A= A A Ay, WE get A —> 14,431 04, (In GNF),
Where Ay — A; Ay Ay] 4, Ay
Considering 4, -production 4, - 4,4, and replacing lefi most 4, by 14, 4, and 04; , we get

A2 il]AZ A3A|‘0A3 Al (In GNF)
Considering A4, - productions 4; - 4,4, 43| 4,4, and replacing 4, by 14, 4; and 04, , we get
Ay —> 14y A A4y |0 Ay Ay | 1 Ay Az Ay Ay 043 4y 4y (In GNF)

Now, the productions in GNF are following .
Al -5 lAzAﬂOA;, Az - 1A2 AZAll OAgAlll 3
aﬂd A3 e lAz .434421 OAJAzl lAz A3 Az A3I 0A3A2 A3
5.7 PUMPING LEMMA FOR CFLs

The pumping lemma for CFLs states that there are always two short substrings close together
that can be pumped same number of times as we like and the resultis a string in the same CFL.

DEPARTMENT OF CSE
CONTEXT FREE GRAMMARS 5.47

Lemma :

Let L be a CFL and a long string z is in L, then there exists a constant n such that | z | ># and z
can be written as uvwxy such that

@ v |21

(1) lwmx 1<n ,and

(i) w' wx'y isinLfori=0,1,2,.......
Proof :

Let G bea CFG in CNF and generates Z-{< } . Since, zis a long string, so parse tree for z
must contain a long path, Suppose, the longest path in parse tree of z has length h. In the parse
tree, no word can be greater that the length 2#-1 or in other words, the maximum length word
would of length 5#-1,

We see the proofas follows :
Since, the grammar G is in CNF (productions are of types 4 — z or 4 —» XY), so parse tree for

zisabinary tree. The parse tree yields longest word if and only ifits all levels except the last level
contain two children as shown in below figure .

it

DEPARTMENT OF CSE

5.48 FORMAL LANGUAGES AND AUTOMATATHEORY

Since, the number of leaves is the length of longest string and it is equal to the number of
nodes at level ; - as shown in above figure .The number of nodes at level i -1 = g

So, the longest word has the length 2!, where h is the longest path length. In other words,
we say that no word can be greater than 2" length.

Let G has k variables and » =2* . Ifzisin L(G) and | z |22 . So, the longest path in the

parse tree of z has length £ 41 and this path contains ¢ +2 vertices (x+1 internal vertices and
one terminal vertex). Since, all the vertices except the terminal are variables, so the longest path
contains g +] variables, It means, one variable appears twice in the longest path. Let variable A

appears twice, So 4= z; 4z, = () A(zy)", where z, and z, are two substrings of z. Let

A= nthen 4= (23) 2,(z4)" . We say that z; and z, canbe pumped same number of times

as we like.

Example : ConsideraCFG S-—> S5 | a and z = aaaa- The parse tree for zisshownin figure(a) .

() ()
[Smp—
z3=aa #n=a Z=2
Figure (a)

Figure (b) Figure (c)

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.49

From the subtree shown in figure (b) , we get g ;'.> aaSe Or s=.> 2 Sz, and considering

the subtree shown in ﬁgure(c),' we get S:‘:» a Of § = 2y

The subtree shown in figure (b) can be added as many times as we like in the parse tree
shown in figure (a). S0, §= 7! § 21 = z,'z, 2}

Therefore, string z can be written as uz;z,z,y for some uand y substrings of z. The substrings
z;, and z, can be pumped as many times as we like. Replacing z,, z, and z, by v, wand x

respectively, we get z=uvwxy and g = et y forsomei=0,1,2, ..cccccerune.
Hence , the statement of theorem is proved.

Application of Pumping Lemma for CFLs

We use the pumping lemma to prove certain languages are not CFL. We proceed as we have
seen in application of pumping lemma for regular sets and get contradiction. The result of this
lemma is always negative.

Procedure for Proving Language is not Context - free

The following steps are considered to show a given language is not context - free.

Step 1:

Suppose that £ iscontext - free. Let 1 be the natural number obtained by using pumping lemma.
Step 2:

Chooseastring xe L such that {x| 21 using pumping lemma principle write z=uvwxy.

Step 3:

Find suitable i so that w 'wx ‘ye 1 . Thisisacontradiction. So L isnot context - free.

DEPARTMENT OF CSE

5.50 FORMAL LANGUAGES AND AUTOMATA THEORY

Example 1 : Considerthe language I ={a" " ¢":n>1} and prove that L is not CFL.

Solution : All the words of L contain equal number of a's, b'sand ¢'s. Let Lisa CFLand z s
along string in L such that {z| = » . Using Pumping Lemma for L, we write z = wvwxy and uy'wx’y
isinL for somei=0, 1, 2, ..ccoecrernene and |vx |21 and | vwx [<n .

The substring vk may be a7, b7, ¢, a®b?, b%" butnot 4e..

Consideri=0,souwyisinL.

Case1: , _ ;7,50 z=uwyp=a""b"c" isinL.

The number of a's is fewer than the number of b's and ¢'s for p = 1, which is a contradiction.
Case2: ,.-p7,50z=uwy=ab"%" iginL.

The number of b's is fewer than the number ofa's and ¢'s for ¢ = 1, which is a contradiction,
Case3d: x-¢" .50 z=uwy=a"b"c"" isinL.

The number of ¢'s is fewer than the number of a's and b's for , > 1, which is a contradiction.
Cased: .- ,7p7,80 z=ywy=a"?p"%" isinL.

The number of a's and b's are fewer than the number of ¢'s for p,¢ = 1, which is a contradiction.
Caseb: ux=pi%’, S0 z=uwy=a"b""" isinL.

The number of b's and ¢'s are fewer than the number of a's for ¢.»z1, which is a contradiction.
Since, we get contradiction for all values of vx, so I is not a CFL.

Example 2 : Prove that following languages are not CFL
(@) L = {aP : p is a prime number}
B L = {a"b™c"d™ :m, n 21}

()L = {a""c™ : m = n}
Solution :

(a) Allthe words of 7, have length prime. Let 1 bea CFL and z isalongstringin 7. Using
Pumping Lemma for 1, wewrite z = wwxy and ;'wx'y isin L forsome i = 0,1, 2, ... and

| vx|=m and | | = n where » isaprime number then | ;v wx"y | =n + mn.AS n + mn is
wwy P | ¥y

not a prime number, S0 uv"wx" y ¢ L and this is a contradiction. Therefore, L isnota CFL.

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.51

(b) Let 7 beaCFLand 7 isalongstringin 7 suchthat z = wvwxy for |vx|=1and| vwx|=k,
where f is some constant.

In 7, all words have equal number of a's and ¢'s and equal number of b's and d's. The value of
yx may be combination of two consecutive symbols like o757, b%c", c"d” .
According to pumping lemma yv'wyx'y isin f forsome i = 0, 1,2, ...
Consider ; = 0,then z = wwy isinL.
Casel: yx = oPp9,then

z =a" Pp" I d"

The number of a's and b's are fewer than the number of c'sand d's for p,¢ = 1, whichisa
contradiction.

CQSCZ: VX = qur,then z.= aﬂbm'-qcn—rdm

The number of b's and ¢'s are fewer than the number of d's and a's for ¢,r 2 1, whichisa
contradiction.

Case3: yy = o"d*.then z = " "g™ s

The number of ¢'s and d's are fewer than number of a's and b's for », 5 2 1, which is a
contradiction.

Since, we are getting contradiction in all cases, so Lisnota CFL.

(¢) Allthe words of L contain equal number of a's, b's and number of ¢'s is greater than number
ofa's(orb's). Let LisaCFLand zisalong stringin L such that | z | = n. Using pumping lemma

for L, we write z = uvwxy and sv'wy'y, whicharein L forsome i = 0,12, ... and |vx|=1

and |vwx|<n.
The substring vx may be oP_p9, ", aPb?, p9c" butnot gPc".
Consider j = 0,souwyisinL.

Casel: yy = gP>90 z = wwy = a" Pb"c" isinL.

The number of a's is fewer than the number of b's for p = 1, whichisa contradiction.

DEPARTMENT OF CSE

5.52 FORMAL LANGUAGES AND AUTOMATATHEORY

Case2: v = 572,80 z = uwy = a’b" 4" isin L.
The number of b's is fewer than the number of a's for ¢ = 1, which is a contradiction.
Case3: v =c¢ 80 z = uwy = a’ptet Tt isin L.

The number of ¢'s may be equal or less than the number of a's (or b's) for » > 1, whichisa
contradiction.
Since, we are getting contradiction in all cases, so L isnota CFL.

Example 3 : Show that the following language is not context free , = {anz /n 13-

Solution :
Method -1: Assume L is context - free and » is the pumping lemma constant

m Z=an2

write uvwxy ,where | vwx|<n and [vx|21]

il

Let lvx|=m, ms=n
As | uvzwx2y|> n2,| uvzwxzy |=k2, where kisz2n + 1

2

But| w?wx?yl=n® +m <n® +2n+1

So | wvlwx?y| strictly lies between 5,2 and (n + 1)> which means w?wx’y ¢ L, a

contradiction. Hence {anz :n =1} isnot context-free

Method -1l : We can also show that

L ={a,aaaa,aaaaaaaaa ...}

wwx’y =e a*aa’a = aaaaaa

uvzwxzy ¢ L

L 1s not context-free.

DEPARTMENT OF CSE
CONTEXT FREE GRAMMARS 5.53

Example 4 : Show that the following language is not context-free
L={0"1"2"/m<n<2m}.

Solution :

Method - | :
Assume L is context-free and » is the pumping lemma constant.
Let Z= 0"
Then Z = uwwxy,where 1 <|vx|zn

So vx cannot contain all the three symbols 0, 1 and 2. If vx contains only 0's and I's then we
can choose i such that uv'wx’y has more than 2, occurrences of a 0 (or 1) and exactly 2

occurrences of L. This means yvfyyx 'y ¢ £ ,a contradiction.

In other cases also we can get a contradiction by proper choice of 7. Thus the given language
is not context - free.

Method - II :
Consider the accepted set of strings from the given language
L={0122,0011222,00112222,...}

7w 2L 2

whwxly = 001)%1(22)22 = 0 0101122222 ¢ L
-, [isnot context-free.

5.7.2 Ogden's Lemma and Its Applications

There exist some non - context free languages which cannot be proved using the lemma of
section 5.7. We need a stronger result. Ogden's lemma is more powerful than the pumping
lemma. This lemma allows us to fix 'distinguished positions' in the sentence z and puts some
conditions for v, X, y with respect to these positions. Proof of Ogden's lemma is beyond the
scope of this book. However, we present the statement of Ogden's lemma and illustrate its
application.

DEPARTMENT OF CSE

5.54 FORMAL LANGUAGES AND AUTOMATATHEORY

Statement of Ogden's Lemma

Let L be a context free language. There exists a constant n such that for any sentence z, |2} = n,
we can fix at least n distinguished positions, and z can be written as uvwxy such that

i, vxcontains at least one distinguished position,

ii. vwx contains at most ndistinguished positions ; and

ii. any string ofthe form wv'wx’y,i =0 isinL.

Note :
1. Pumpinglemmaof 5.7 isaspecial case of Ogden's lemma in which every positioninzis
fistinovished.

2. Inapplying Ogden's lemma, choice of distinguished positions is under our control.

Example :
Prove that L ={a'b/c*|i # j, j# k and i # k } isnot context free.
Solution :
If L is context free we can apply Ogden's lemma. Letn be the constant of the

lemma. Consider the sentence ; — 47 p+,2+n , We will choose all positions in the block
of a's as distinguished. z can be splitas uvwxy such that (i) vx has at least one distinguished
position and (ii) vwx has at most n distinguished positions : By (i), vx should contain at
least one a. These are different cases.

Case 1:

vea® and y ¢p*. Let , - 47 suchthat 1< p<n.Then,pisdivisorofn!. Letq be the integer
such that pg =n!.

Consider z'= uv®*'wx?*!y.
y consists of (2n1+n) ¢'s (remains unchanged).

v2q+l =a2pq+p =aan+p

uVqul =an-pa2n!+p =a2n!+n

Hence in Z, number of a's = number of ¢'s.

DEPARTMENT OF CSE
CONTEXT FREE GRAMMARS 5.55

Case 2:

veat and yc.*. Let ,_,r and pg=n!. Pumping v and x, (¢+1) times, we get :
P wqﬂwxqﬂy .

InZz',no. of a's will be n—-p+nt+ p=ntin,

No.of b's in ' will remain n! +n. Hence, no. ofa's=no. of b'sin z'.

Similarly, in other cases, we can arrive at strings not as per specification of L.
Hence, L is not context free.

5.8 CLOSURE PROPERTIES OF CFLs

The closure properties that hold for regular languages do not always hold for context free languages.
Consider those operations which preserve CFL.

The purpose of these operations are to prove certain languages are CFL and certain languages
are not CFL.

Context-free languages are closed under following properties.
Union
Concatenation and

1
2
3. Kleene Closure (Context-free languages may or may not close under following properties)
4, Intersection

5. Complementation

Theorem 6.8.1 :If [, and L, aretwo CFLs, thenunionof Z, and L, denotedby L; + L,
or I; v Ly is also a CFL.

Proof :

Let CFG G, = (V,,T,,P,S) generates I; and CFG G, = (V,,T,,P,S) generates L,

and G=(V,T, P,S) generates L = L; + L,.

We construct G as follows :

Step 1 : Rename the variables of CFG G,

Ifv, = {S,4,B,.., X} ,thentherenamed variablesare {S;, 4, By,...X,} . Thismodification
should be reflected in productions also.

DEPARTMENT OF CSE

5. 56 FORMAL LANGUAGES AND AUTOMATATHEORY

Step 2 : Rename the variables of CFG G,

If ¥, ={S,4,B,.X}, then the renamed variables are {S,, 4, B,....X5}. This
modification should be reflected in production also.

Step 3 : We get of the productions of G; and G, to get productions of G as follows :

S — Sy |8,,where §; and §, are starting symbols of grammars G; and G, respectively and
Sy - productions and §, - productions remain unchanged.

T o= T] A T2 »
V={SI,AI7Bl""X|}U{SZ!Az’B2""X2}

Since, all productions of G; and G, including § — S; | S, are in context-free form, so
GisaCFG.

Language generated by G :

L(G) = Language generated from (S; or)
=Language generated from 5, or language generated from S,
= L(Gy) or L(G,) (Since, $; and §, are starting symbols of G; and G, respectively.)
= I; or L, (Since, G, produces L, and G, produces L, .)

= Ll *+ [/2
Hence, statement of the theorem is proved.

Example : Considerthe CFGs § — aSh|ab and § — ¢Sdd | cdd , which generate
languages Z; and L, respectively. Construct grammar for I = Ly + L;.

Solution :
Let G, generates I; and G, generates [, and G = (V,T,P,S) generates L = Lj + Ly.
Renaming the variables of G; and G, , we get

v, =1{S,} and ¥, ={S,}, where §; - productions are § — aSb | ab, and
S, - productions are Sy —» c¢Sydd | cdd

EPARTMENT OF CSE
D CONTEXT FREE GRAMMARS 5.57

We define G as follows :
¥ = {8:8::8,),
T = {Terminals of Gy or Gy} = {a,b,c.d},
Pincludes: s - Sy |1 82, 8, — aS,b|ab ,and §2 = eSydd | edd .
L=4L +1I,
={a™b":m,n21) U {c"d*" inz1}
Theorem 5.8.2: It Ly and 1, are two CFLs, then concatenation of Z; and L, denoted by
4L, is also a CFL .

Proof : Let CFG Gy =(¥,T,,P,S) generates L and CFG G, = (VosTy P, S)
generates L and G = (v ,7,p,5) generates L = [;1,.

We construct G as follows :
Step 1: Rename the variables of CFG g;.
Itv, =(5,4,8,.., X'} , then the renamed variables are {81, 4y, By,.. X1} . Thismodification is
reflected in productions also,
Step 2 : Rename the variables of CFG G, :
v, = {§,4,B,... X} , thenthe renamed variables are {s,, Ay, By,...X»}. This modification
is reflected in productions also.

Step 3 : The productions of Gy are followed by the productions of G, to get productions of
G as follows.

S = 8§15, where §; and S, are starting symbols of grammars G, and G, respectively and
S; - productions and S5 - productions remain unchanged.

/s IR

Vi ={8),4),8,.., X} u {S,.4,,8B,.., X,}
Since, all productions of Gy and G, including § - 1S3 are in context-free form, so Gisa
CFG.
Language Generated by G:

L(G) = Language generated from S followed by language generated from S
= L(Gy) L(G,) (Since, §; and S, are starting symbols of G and G, respectively).
= L, (Since, G, produces Ly and G, produces L, .)

Hence, statement of the theorem is proved.

DEPARTMENT OF CSE

5.58 FORMAL LANGUAGES AND AUTOMATA THEORY

Example : Considerthe CFGs S — aSb|ab and § —> ¢8dd | cdd , which generate languages

Ly and I, respectively. Construct grammar for L = L;L,.
Solution :

Let G, generates 1; and G, generates L, and G = (¥ ,T,P,S) generates L = LiL,.
Renaming the variables of G, and G,, we get
Vi={S:} and ¥, = {S,} , where §; - productions are : §; — aSib |ab,and S5 -
productionsare: S, —» ¢Sydd | cdd .
We define G as follows :
V' =18.,5,.8,}, £ = {Terminals of Gy or G,} ={a, b, c,d},
Pincludes: § — §iS;, S, - aS blab ,and S, — cSydd | cdd

L=LL,={a™b" :m,nz1}{c"d*" :n>1}.

Theorem 5.8.3 : If L isa CFL generated by grammar G = (V,T, P, S} , then Kleene
closure of L denoted by 7 is also a CFL.

Proof: Letgrammar G’ = (V,T,P’',S') generates 7, *. We define ' based on given
grammar G .

L* = {e, L, LL, LLL, ...} ,since 7 * includes null string, so G has production: §' — e
and from other productions, ' has to generate multiples of L. So, we have two recursive
S’ -productions: §' — S5’ | 'S, where Sis the starting symbol of G

So, P' = {§' —¢|88'| §'S} U {§ - productions of grammar G}

Since, all productions of ¢ are in context-free form, so G’ isa CFG,

Language generated by ¢’ :
IG) = {e, L, LL, LLL,...} = L *
Thus, statement of theorem is proved.

Example : Considerthe CFGs § — aSa| aa, whichgenerates [, = (42" : » > 13 . Construct

a grammar, which generates f =.
Solution :

LetG'= (¥ ,T,P",S") generates 1 *. We define the productions of ¢ as follows :
S > €| 88| S'S,where S — aSa|aa

DEPARTMENT OF CSE

CONTEXT FREE GRAMMARS 5.59

Language generated by ¢’ :
S'=e

Hence, e isin L(G").

. s =88 (Using §' — §'S)
=5 858 (Using S' —» S'S)
- §'SS ... ptimes (Using ' — S'S » times)
=€ 8§ ... ntimes (Using 8" —»¢)

= S§S ... n times

+ 3
= LL ... n times (Since, G generates language L and S is the starting symbol of G.)
= Lt
So, L(G)={e}u L' =1L’
Theorem 5.8.4: If [, and L, are two CFLs, then intersection of ; and Z, denoted by
Iy n L, may or may not be a CFL.

Proof: We will discuss some examples, which prove the theorem.
Example 1 : Considerthe CFLs L, = {a"b"c™ :m,n21} and L, = {a"b"c" : m,n21},
then intersection of Z; and L, isnota CFL.
Solution:
L, = {abc,aabbcc,aaabbbeee,...} and L, = {abe,abbee ,aabbec ,aabbbeee ,aaabbbecc ...}
So, I} n Ly = {abc, aabbee, aaabbbece,...)
= {a"p"e" :nz1}
Clearly, Z; n L, isnota CFL.
Example 2: Considerthe CFLs I, = {¢"b": n21} and L, = {a?b?: p,q =1}, then

intersection of Z; and L, isa CFL.
Solution :

Ly = {ab, aabb, aaabbb,...} and L, = {ab,aab,aabb,abbb,aabbb, aaabbb,}
So, I; A L, = {ab, aabb, aaabbb,...} = {a*b%: k 21}
Clearly, £, n L, isaCFL.

DEPARTMENT OF CSE

5.60 FORMAL LANGUAGES AND AUTOMATA THEORY

Theorem 5.8. 5 : If L isa CFL over some alphabet 7, then complement of L denoted by
7* - 1 may or may not be a CFL.
Proof :

We will discuss some mathematical identities to prove this theorem. Letus assume that complement
ofaCFLisalso CFL.Itmeans, 7 . 7 * _s isCFL.

Let R and S are two CFLs over 7, then we know that

RAS=T*-(Ru?l) (De Morgan's law)

Since, we have assumed that complement of CFL is also a CFL, so R and § areCFLsand
hence p = R o § isa CFL (Pis union of two CFLs).

SO, RnS=T*-pP

OL,RAS =P

Since, Pisa CFL, so p isa CFL.

Thus, R n 5 isaCFLi.e., intersection of CFLs R and S isa CFL.

But, according to Theorem 5.8.4, R ~ § may or may not be a CFL. So, our assumption
about complement of a CFL is not hundred percent correct.

Since, intersection and complement are interchangeable using De Morgan's law, so whatever
the truth about intersection we have proved that is also applicable to complement.
Therefore, we conclude that complement of a CFL may or may not be a CFL.

We will discuss some examples, which prove the theorem.

Example 1:

Considera CFL Lover T = {a,b} which contains all the strings that not have the number of a's

and b's equal or if number of a's and b's are equal then no two a's or b's are consecutive, then
7 A isa CFL.

Solution :

L={ All strings over {a, b} not havingnumber of a's and b's equal } or {All strings over {a, b}
which have number of a's and b's equal but no two a's and b's are consecutive}
So, L = {g, aab, baa, aaab, ...} \ {ab, abab, baba, R,
= {€, ab, aab, baa, aaab, baaa, abab, baba, ...}

DEPARTMENT OF CSE
CONTEXT FREE GRAMMARS 5. 61

Simply, L = (a + b) * —{a*B* .k >2)
So, T'-—L=(a+b)*~((a+b)"‘—{a"b":n_>.2})

= {All the words over {a, b} having equal number of a's and b's and alla'sand b's are
consecutive }

= {akbk k2 2}
Clearly, 7+ _7 isaCFL.

Example 2:

Considera CFL L over {a, b, ¢} havingall the strings in which numberofa's, number of b'sand

number of ¢'s are not equal or if number of a's,b's and ¢'s are equal then no two a’s,b'sandc's
are consecutive, then T* - L isnota CFL,

Solution :

= {g a,b,c, ab, ba, ac, ca, aaa, bbb, cce, abe,...}

Simply, £, = (a + b + e} * ~{a"b"" : n 22}
Let 7 = {a,b,c} then
T" - L = {aabbec , acabbbeee o)

= { All the words over {q, 5, ¢} having equal number of a's, b's and ¢'s and all a's, b's
and c's are consecutive}

= {@"b"™ n>2)
Clearly, 7+ _ ; isnota CFL.

