

 What is Perl?
Perl is a programming language. Perl stands for Practical Report and Extraction

Language. You'll notice people refer to 'perl' and "Perl". "Perl" is the programming

language as a whole whereas 'perl' is the name of the core executable. There is no

language called "Perl5" -- that just means "Perl version 5". Versions of Perl prior to 5

are very old and very unsupported.

Some of Perl's many strengths are:

Speed of development. You edit a text file, and just run it. You can develop

programs very quickly like this. No separate compiler needed. I find Perl runs a

program quicker than Java, let alone compare the complete modify-compile-run-oh no-

forgot-that-semicolon sequence.

Power. Perl's regular expressions are some of the best available. You can work with

objects, sockets...everything a systems administrator could want. And that's just the

standard distribution. Add the wealth of modules available on CPAN and you have it

all. Don't equate scripting languages with toy languages.

Usuability. All that power and capability can be learnt in easy stages. If you can

write a batch file you can program Perl. You don't have to learn object oriented

programming, but you can write OO programs in Perl. If autoincrementing non-

existent variables scares you, make perl refuse to let you.There is always more than one

way to do it in Perl. You decide your style of programming, and Perl will

accommodate you.

Portability. On the Superhighway to the Portability Panacea, Perl's Porsche powers

past Java's jaded jalopy. Many people develop Perl scripts on NT, or Win95, then just

FTP them to a Unix server where they run. No modification necessary.

Editing tools You don't need the latest Integrated Development Environment for

Perl. You can develop Perl scripts with any text editor. Notepad, vi, MS Word 97, or

even direct off the console. Of course, you can make things easy and use one of the

many freeware or shareware programmers file editors.

Price. Yes, 0 guilders, pounds, dmarks, dollars or whatever. And the peer to peer

support is also free, and often far better than you'd ever get by paying some company to

answer the phone and tell you to do what you just tried several times already, then look

up the same reference books you already own.

 What can I do with Perl ?
Just two popular examples :

The Internet
Go surf. Notice how many websites have dynamic pages with .pl or similar as the

filename extension? That's Perl. It is the most popular language for CGI programming

for many reasons, most of which are mentioned above. In fact, there are a great many

more dynamic pages written with perl that may not have a .pl extension. If you code in

Active Server Pages, then you should try using ActiveState's PerlScript. Quite frankly,

coding in PerlScript rather than VBScript or JScript is like driving a car as opposed to

riding a bicycle. Perl powers a good deal of the Internet.

Systems Administration

If you are a Unix sysadmin you'll know about sed, awk and shell scripts. Perl can do

everything they can do and far more besides. Furthermore, Perl does it much more

efficiently and portably. Don't take my word for it, ask around.

If you are an NT sysadmin, chances are you aren't used to programming. In which case,

the advantages of Perl may not be clear. Do you need it? Is it worth it?

A few examples of how I use Perl to ease NT sysadmin life:

User account creation. If you have a text file with the user's names in it, that is all

you need. Create usernames automatically, generate a unique password for each one

and create the account, plus create and share the home directory, and set the

permissions.

Event log munging. NT has great Event Logging. Not so great Event Reading. You

can use Perl to create reports on the event logs from multiple NT servers.

Anything else that you would have used a batch file for, or wished that you could

automate somehow. Now you can.

Perl Backgrounder: Versions and Naming Conventions

Variables

ATOM_NAME_CBETA

Perl is not type-safe and this can cause confusion and errors. Use a limited prefix

notation for such common basic types as array, hash, FileHandle.

hains

Functions

Modules (packages that are not classes)

Classes
As for modules but with 'C' prefix: CStopwatch, CWindowPanel, Pdb::CResidue

Instance methods

ate method: _plot(), _getColour(), _classifyHetGroups()

Perl, perl or PeRl?

There is also a certain amount of confusion regarding the capitalization of Perl. Should

it be written Perl or perl? Larry Wall now uses ―Perl‖ to signify the language proper

and ―perl‖ to signify the implementation of the language.

Perl History Version Date Version Details

Perl 0 Introduced Perl to Larry Wall’s

office associates

Perl 1 Jan 1988 Introduced Perl to the

world

Perl 2 Jun 1988 Introduced Harry

Spencer’s regular

expression package

Perl 3 Oct 1989 Introduced the ability

to handle binary data

Perl 4 Mar 1991 Introduced the first

―Camel‖ book

(Programming Perl,

by Larry Wall, Tom

Christiansen, and

Randal L Schwartz;

O’Reilly &

Associates). The book

drove the name

change, just so it

could refer to Perl 4,

instead of Perl 3.

Feb 1993 Feb 1993 The last stable release

of Perl 4

Perl 5 Oct 1994 The first stable release

of Perl 5, which

introduced a number

of new features and a

complete rewrite.

Perl .005_02 Aug 1998 The next major stable

release

Perl .005_03 Mar 1999 The last stable release

before 5.6

Main Perl Features:
1. Perl Is Free:

Perl’s source code is open and free anybody can download the C source that constitutes

a Perl interpreter. Furthermore, you can easily extend the core functionality of Perl

both within the realms of the interpreted language and by modifying the Perl source

code.

2. Perl Is Simple to Learn, Concise, and Easy to Read:

It has a syntax similar to C and shell script, among others, but with a less restrictive

format. Most programs are quicker to write in Perl because of its use of built-in

functions and a huge standard and contributed library. Most programs are also quicker

to execute than other languages because of Perl’s internal architecture.

3. Perl Is Fast

Compared to most scripting languages, this makes execution almost as fast as compiled

C code. But, because the code is still interpreted, there is no compilation process, and

applications can be written and edited much faster than with other languages, without

any of the performance problems normally associated with an interpreted language.

4. Perl Is Extensible

You can write Perl-based packages and modules that extend the functionality of the

language. You can also call external C code directly from Perl to extend the

functionality.

5. Perl Has Flexible Data Types

You can create simple variables that contain text or numbers, and Perl will treat the

variable data accordingly at the time it is used.

6. Perl Is Object Oriented

Perl supports all of the object-oriented features—inheritance, polymorphism, and

encapsulation.

7. Perl Is Collaborative

There is a huge network of Perl programmers worldwide. Most programmers supply,

and use, the modules and scripts available via CPAN, the Comprehensive Perl Archive

Network

Compiler or Interpreter:

a. Compiler: A program that decodes instructions written in a higher order language

and produces an assembly language program.

A compiler that generates machine language for a different type of computer than the

one the compiler is running in.

b. Interpreter: In computing, an interpreter is a computer program that reads the

source code of another compute program and executes that program. A program that

translates and executes source language statements one line at a time.

c. Difference between Compiler and Interpreter

A compiler first takes in the entire program, checks for errors, compiles it and then

executes it. Whereas, an interpreter does this line by line, so it takes one line, checks it

for errors and then executes it.

Example of Compiler – Java

Example of Interpreter – PHP

d. Perl is interpreter or compiler?

Neither, and both. Perl is a scripting language. There is a tool, called perl, intended to

run programs written in the perl language.

"Compiled" languages are ones like C and C++, where you have to take the source

code, compile it into an executable file, and THEN run it.

"Interpreted" languages, like Perl, PHP, and Ruby, are ones which do NOT require pre-

compiling.

They are generally compiled on-the-fly (which is what the perl command-line tool

does) into opcodes, and then run. So, Perl is an interpreted language because a tool

reads the source code and immediately runs it.

Perl is a compiler because it has to compile that source code before it can be run while

it's being interpreted.

Popular “Myth conceptions”
1. It’s only for the Web

Probably the most famous of the myths is that Perl is a language used, designed, and

created exclusively for developing web-based applications.

2. It’s Not Maintenance Friendly

Any good (or bad) programmer will tell you that anybody can write unmaintainable

code in any language. Many companies and individuals write maintainable programs

using Perl.

3. It’s Only for Hackers

Perl is used by a variety of companies, organizations, and individuals. Everybody from

programming beginners through ―hackers‖ up to multinational corporations use Perl

to solve their problems.

4. It’s a Scripting Language

In Perl, there is no difference between a script and program. Many large programs and

projects have been written entirely in Perl.

5. There’s No Support

The Perl community is one of the largest on the Internet, and you should be able to find

someone, somewhere, who can answer your questions or help you with your problems.

6. All Perl Programs Are Free

Although you generally write and use Perl programs in their native source form, this

does not mean that everything you write is free. Perl programs are your own

intellectual property and can be bought, sold, and licensed just like any other program.

7. There’s No Development Environment

Perl programs are text based, you can use any source-code revision-control system. The

most popular solution is CVS, or Concurrent Versioning System, which is now

supported under Unix, MacOS and Windows.

8. Perl Is a GNU Project

While the GNU project includes Perl in its distributions, there is no such thing as

―GNU Perl.‖ Perl is not produced or maintained by GNU and the Free Software

Foundation. Perl is also made available on a much more open license than the GNU

Public License.

9. Perl Is Difficult to Learn

Because Perl is similar to a number of different languages, it is not only easy to learn

but also easy to continue learning. Its structure and format is very similar to C, awk,

shell script, and, to a greater or lesser extent, even BASIC.

8.2 Perl Overview:

Installing and using Perl

Perl was developed by Larry Wall. It started out as a scripting language to supplement

rn, the USENET reader. It available on virtually every computer platform.

Perl is an interpreted language that is optimized for string manipulation, I/O, and

system tasks. It has built in for most of the functions in section 2 of the UNIX manuals

-- very popular with sys administrators. It incorporates syntax elements from the

Bourne shell,

csh, awk, sed, grep, and C. It provides a quick and effective way to write interactive

web applications

Writing a Perl Script
Perl scripts are just text files, so in order to actually ―write‖ the script, all you need to

do is create a text file using your favorite text editor. Once you’ve written the script,

you tell Perl to execute the text file you created.

Under Unix, you would use

$ perl myscript.pl

and the same works under Windows:

C:\> perl myscript.pl

Under Mac OS, you need to drag and drop the file onto the MacPerl application. Perl

scripts have a .pl extension, even under Mac OS and Unix.

Perl Under Unix
The easiest way to install Perl modules on Unix is to use the CPAN module. For

example:

shell> perl -MCPAN -e shell

cpan> install DBI

cpan> install DBD::mysql

The DBD::mysql installation runs a number of tests. These tests attempt to connect to

the local MySQL server using the default user name and password. (The default user

name is your login name on Unix, and ODBC on Windows. The default password is

―no password.‖) If you cannot connect to the server with those values (for example, if

your account has a password), the tests fail. You can use force install DBD::mysql to

ignore the failed tests.

DBI requires the Data::Dumper module. It may be installed; if not, you should install it

before installing DBI.

Perl Under Windows
1. Log on to the Web server computer as an administrator.

2. Download the ActivePerl installer from the following ActiveState Web site:

http://www.activestate.com/ (http://www.activestate.com/)

3. Double-click the ActivePerl installer.

4. After the installer confirms the version of ActivePerl that it is going to be installed,

click Next.

5. If you agree with the terms of the license agreement, click I accept the terms in the

license agreement, and then click Next. Click Cancel if you do not accept the license

agreement. If you do so, you cannot continue the installation.

6. To install the whole ActivePerl distribution package (this step is recommended),

click Next to continue the installation. The software is installed in the default location

(typically C:\Perl).

7. To customize the individual components or to change the installation folder, follow

the instructions that appears on the screen.

8. When you are prompted to confirm the addition features that you want to configure

during the installation, click any of the following settings, and then click Next:

a. Add Perl to the PATH environment variable: Click this setting if you want to use

Perl in a command prompt without requiring the full path to the Perl interpreter.

b. Create Perl file extension association: Click this setting if you want to allow Perl

scripts to be automatically run when you use a file that has the Perl file name extension

(.pl) as a command name.

c. Create IIS script mapping for Perl: Click this setting to configure IIS to identify

Perl scripts as executable CGI programs according to their file name extension.

d. Create IIS script mapping for Perl ISAPI: Click this setting to use Perl scripts as

an ISAPI filter.

Perl Components:

Variables
Perl Variables with the techniques of handling them are an important part of the Perl

language. As a language-type script, Perl was designed to handle huge amounts of data

text. Working with variables is fairly straightforward given that it is not necessary to

define and allocate them, so no sophisticated techniques for the release of memory

occupied by them.

As general information, to note that the names of Perl variables contain alphabetic

characters, numbers and the underscore (_) character and are case sensitive.

A specific language feature is that variables have a non-alphabetical prefix that fashion

somewhat cryptic the language.

a. scalar variables – starting with $

b. array variables – starting with @

c. hashes or associative arrays indicated by %

The $, @ and % characters actually predefine the variable type in Perl. Perl language

also offers some built-in predefined variables that facilitate and shorten the

programming code.

Operators
The operators work with numbers and strings and manipulate data objects called

operands. We found the operators in expressions which we need to evaluate.

Statements

The statements are one of the most important topics in the Perl language, actually for

any programming language. We use statements in order to process or evaluate the

expressions. Perl uses the values returned by statements to evaluate or process other

statements.

A Perl statement ends with the semicolon character (;) which is used to tell interpreter

that the statement was complete.

Subroutines (Functions)

Definition: Subroutine is a block of source code which does one or some tasks with

specified

purpose.

Advantages:
1. It reduces the Complexity in a program by reducing the code.

2. It also reduces the Time to run a program.In other way,It’s directly proportional to

Complexity.

3. It’s easy to find-out the errors due to the blocks made as function definition outside

the main function.

Modules:
A Perl module is a discrete component of software for the Perl programming language.

Technically, it is a particular set of conventions for using Perl's package mechanism

that has become universally adopted.

A module defines its source code to be in a package (much like a Java package), the

Perl mechanism for defining namespaces, e.g. CGI or Net::FTP or XML::Parser; the

file structure mirrors the namespace structure (e.g. the source code for Net::FTP is in

Net/FTP.pm). A collection of modules, with accompanying documentation, build

scripts, and usually a test suite, compose a distribution.

8.3 Perl Parsing Rules

The Execution Process:
The execution process of perl contains the following steps

Component Identity
When Perl fails to identify an item as one of the predefined operators, it treats the

character sequence as a ―term.‖ Terms are core parts of the Perl language and include

variables, functions, and quotes. The term-recognition system uses these rules:

suitable variable character, such as $, @, or %.

riables that start with a letter or underscore can contain any further combination

of letters, numbers, and underscore characters.

—be wary of

using variable names starting with digits. The variables such as $0 through to $9 are

used for group matches in regular expressions.

combination of letters, numbers, and underscore characters.

cant—$VAR, $Var, and $var are all different variables.

—$var, @var, and

%var are all separate variables.

—this is only a convention, not a

rule, but it is useful for identification purposes.

Operators and Precedence UNIT-V PERL 8

a) Arithmetic Operators:

The following are the

arithmetic operators in Perl.

Operator

Description

+ Addition operator

- Subtraction operator

* Multiplication operator

/ Division operator

% Modulus operator

** Exponentiation operator

Concentrate on Lab Programs

