
Ruby

Ruby is a scripting language designed by Yukihiro Matsumoto, also known

as Matz. It runs on a variety of platforms, such as Windows, Mac OS, and

the various versions of UNIX. This tutorial gives a complete understanding

on Ruby.

Ruby is a pure object-oriented programming language. It was created in 1993

by Yukihiro Matsumoto of Japan.

Ruby Basic Literals:
The rules Ruby uses for literals are simple and intuitive. This section

explains all basic Ruby Literals.

Integer Numbers:
Ruby supports integer numbers. An integer number can range from -230 to

230-1 or -262 to 262-1. Integers with-in this range are objects of

class Fixnum and integers outside this range are stored in objects of

class Bignum.

You write integers using an optional leading sign, an optional base indicator

(0 for octal, 0x for hex, or 0b for binary), followed by a string of digits in

the appropriate base. Underscore characters are ignored in the digit string.

You can also get the integer value corresponding to an ASCII character or

escape sequence by preceding it with a question mark.

Example:

123 # Fixnum decimal

1_234 # Fixnum decimal with underline

-500 # Negative Fixnum

0377 # octal

0xff # hexadecimal

0b1011 # binary

?a # character code for 'a'

?\n # code for a newline (0x0a)

12345678901234567890 # Bignum

NOTE: Class and Objects are explained in a separate chapter of this

tutorial.

Floating Numbers:
Ruby supports integer numbers. They are also numbers but with decimals.

Floating-point numbers are objects of class Float and can be any of the

following:

Example:

123.4 # floating point value

1.0e6 # scientific notation

4E20 # dot not required

4e+20 # sign before exponential

String Literals:
Ruby strings are simply sequences of 8-bit bytes and they are objects of

class String. Double-quoted strings allow substitution and backslash

notation but single-quoted strings don't allow substitution and allow

backslash notation only for \\ and \'

Example:

#!/usr/bin/ruby -w

puts 'escape using "\\"';

puts 'That\'s right';

This will produce the following result:

escape using "\"

That's right

You can substitute the value of any Ruby expression into a string using the

sequence #{ expr }. Here, expr could be any ruby expression.

#!/usr/bin/ruby -w

puts "Multiplication Value : #{24*60*60}";

 Ruby Syntax:

code, except when they appear in strings.

statement. However, if Ruby encounters operators, such as +, -, or backslash at

the end of a line, they indicate the continuation of a statement.

are case sensitive. It mean Ram and RAM are two different itendifiers in Ruby.

Ruby Data Types:

Basic types are numbers, strings, ranges, arrays, and hashes.

Integer Numbers in Ruby:

123 # Fixnum decimal

1_6889 # Fixnum decimal with underline

-5000 # Negative Fixnum

0377 # octal

0xee # hexadecimal

0b1011011 # binary

?b # character code for 'b'

?\n # code for a newline (0x0a)

12345678901234567890 # Bignum

Ruby Arrays:

Ruby arrays are ordered, integer-indexed collections of any object. Each

element in an array is associated with and referred to by an index.

Array indexing starts at 0, as in C or Java. A negative index is assumed

relative to the end of the array --- that is, an index of -1 indicates the last

element of the array, -2 is the next to last element in the array, and so on.

Ruby arrays can hold objects such as String, Integer, Fixnum, Hash,

Symbol, even other Array objects. Ruby arrays are not as rigid as arrays in

other languages. Ruby arrays grow automatically while adding elements to

them.

Creating Arrays:
There are many ways to create or initialize an array. One way is with

the newclass method:

names = Array.new

You can set the size of an array at the time of creating array:

names = Array.new(20)

The array names now has a size or length of 20 elements. You can return

the size of an array with either the size or length methods:

#!/usr/bin/ruby

names = Array.new(20)

puts names.size # This returns 20

puts names.length # This also returns 20

This will produce the following result:

20

20

You can assign a value to each element in the array as follows:

#!/usr/bin/ruby

names = Array.new(4, "mac")

puts "#{names}"

This will produce the following result:

macmacmacmac

You can also use a block with new, populating each element with what the

block evaluates to:

#!/usr/bin/ruby

nums = Array.new(10) { |e| e = e * 2 }

puts "#{nums}"

This will produce the following result:

024681012141618

There is another method of Array, []. It works like this:

nums = Array.[](1, 2, 3, 4,5)

One more form of array creation is as follows :

nums = Array[1, 2, 3, 4,5]

The Kernel module available in core Ruby has an Array method, which only

accepts a single argument. Here, the method takes a range as an argument

to create an array of digits:

#!/usr/bin/ruby

digits = Array(0..9)

puts "#{digits}"

This will produce the following result:

0123456789

Ruby Hashes:

A Hash is a collection of key-value pairs like this: "employee" => "salary".

It is similar to an Array, except that indexing is done via arbitrary keys of

any object type, not an integer index.

The order in which you traverse a hash by either key or value may seem

arbitrary and will generally not be in the insertion order. If you attempt to

access a hash with a key that does not exist, the method will return nil.

Creating Hashes:
As with arrays, there is a variety of ways to create hashes. You can create

an empty hash with the new class method:

months = Hash.new

You can also use new to create a hash with a default value, which is

otherwise just nil:

months = Hash.new("month")

or

months = Hash.new "month"

When you access any key in a hash that has a default value, if the key or

value doesn't exist, accessing the hash will return the default value:

#!/usr/bin/ruby

months = Hash.new("month")

puts "#{months[0]}"

puts "#{months[72]}"

This will produce the following result:

month

month

#!/usr/bin/ruby

H = Hash["a" => 100, "b" => 200]

puts "#{H['a']}"

puts "#{H['b']}"

This will produce the following result:

100

200

You can use any Ruby object as a key or value, even an array, so following

example is a valid one:

[1,"jan"] => "January"

Features of Ruby
 Ruby is an open-source and is freely available on the Web, but it is subject to a

license.

 Ruby is a general-purpose, interpreted programming language.

 Ruby is a true object-oriented programming language.

 Ruby is a server-side scripting language similar to Python and PERL.

 Ruby can be used to write Common Gateway Interface (CGI) scripts.

 Ruby can be embedded into Hypertext Markup Language (HTML).

 Ruby has a clean and easy syntax that allows a new developer to learn Ruby

very quickly and easily.

 Ruby has similar syntax to that of many programming languages such as C++

and Perl.

 Ruby is very much scalable and big programs written in Ruby are easily

maintainable.

 Ruby can be used for developing Internet and intranet applications.

Ruby is a perfect Object Oriented Programming Language. The features of

the object-oriented programming language include:

 Data Encapsulation:

 Data Abstraction:

 Polymorphism:

 Inheritance:

These features have been discussed in Object Oriented Ruby.

An object-oriented program involves classes and objects. A class is the

blueprint from which individual objects are created. In object-oriented

terms, we say that your bicycle is an instance of the class of objects known

as bicycles.

Take the example of any vehicle. It comprises wheels, horsepower, and fuel

or gas tank capacity. These characteristics form the data members of the

class Vehicle. You can differentiate one vehicle from the other with the help

of these characteristics.

A vehicle can also have certain functions, such as halting, driving, and

speeding. Even these functions form the data members of the class Vehicle.

You can, therefore, define a class as a combination of characteristics and

functions.

A class Vehicle can be defined in Java as follows :

http://www.tutorialspoint.com/ruby/ruby_object_oriented.htm

Class Vehicle

{

 Number no_of_wheels

 Number horsepower

 Characters type_of_tank

 Number Capacity

 Function speeding

 {

 }

 Function driving

 {

 }

 Function halting

 {

 }

}

By assigning different values to these data members, you can form several

instances of the class Vehicle. For example, an airplane has three wheels,

horsepower of 1,000, fuel as the type of tank, and a capacity of 100 liters.

In the same way, a car has four wheels, horsepower of 200, gas as the type

of tank, and a capacity of 25 litres.

Defining a Class in Ruby:
To implement object-oriented programming by using Ruby, you need to first

learn how to create objects and classes in Ruby.

A class in Ruby always starts with the keyword class followed by the name

of the class. The name should always be in initial capitals. The

class Customer can be displayed as:

class Customer

end

You terminate a class by using the keyword end. All the data members in

theclass are between the class definition and the end keyword.

Variables in a Ruby Class:
Ruby provides four types of variables:

 Local Variables: Local variables are the variables that are defined in a method.

Local variables are not available outside the method. You will see more details

about method in subsequent chapter. Local variables begin with a lowercase

letter or _.

 Instance Variables: Instance variables are available across methods for any

particular instance or object. That means that instance variables change from

object to object. Instance variables are preceded by the at sign (@) followed by

the variable name.

 Class Variables: Class variables are available across different objects. A class

variable belongs to the class and is a characteristic of a class. They are

preceded by the sign @@ and are followed by the variable name.

 Global Variables: Class variables are not available across classes. If you want

to have a single variable, which is available across classes, you need to define a

global variable. The global variables are always preceded by the dollar sign ($).

Example:
Using the class variable @@no_of_customers, you can determine the

number of objects that are being created. This enables in deriving the

number of customers.

class Customer

 @@no_of_customers=0

end

Creating Objects in Ruby using new Method:
Objects are instances of the class. You will now learn how to create objects

of a class in Ruby. You can create objects in Ruby by using the

method new of the class.

The method new is a unique type of method, which is predefined in the

Ruby library. The new method belongs to the class methods.

Here is the example to create two objects cust1 and cust2 of the class

Customer:

cust1 = Customer. new

cust2 = Customer. new

Here, cust1 and cust2 are the names of two objects. You write the object

name followed by the equal to sign (=) after which the class name will

follow. Then, the dot operator and the keyword new will follow.

Custom Method to create Ruby Objects :
You can pass parameters to method new and those parameters can be used

to initialize class variables.

When you plan to declare the new method with parameters, you need to

declare the method initialize at the time of the class creation.

The initialize method is a special type of method, which will be executed

when the new method of the class is called with parameters.

Here is the example to create initialize method:

class Customer

 @@no_of_customers=0

 def initialize(id, name, addr)

 @cust_id=id

 @cust_name=name

 @cust_addr=addr

 end

end

In this example, you declare the initialize method with id, name,

and addr as local variables. Here, def and end are used to define a Ruby

method initialize. You will learn more about methods in subsequent

chapters.

In the initialize method, you pass on the values of these local variables to

the instance variables @cust_id, @cust_name, and @cust_addr. Here local

variables hold the values that are passed along with the new method.

Now, you can create objects as follows:

cust1=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")

cust2=Customer.new("2", "Poul", "New Empire road, Khandala")

Member Functions in Ruby Class:
In Ruby, functions are called methods. Each method in a class starts with

the keyword def followed by the method name.

The method name always preferred in lowercase letters. You end a

method in Ruby by using the keyword end.

Here is the example to define a Ruby method:

class Sample

 def function

 statement 1

 statement 2

 end

end

Here, statement 1 and statement 2 are part of the body of the

method functioninside the class Sample. These statments could be any valid

Ruby statement. For example we can put a method puts to print Hello

Ruby as follows:

class Sample

 def hello

 puts "Hello Ruby!"

 end

end

Now in the following example, create one object of Sample class and

call hellomethod and see the result:

#!/usr/bin/ruby

class Sample

 def hello

 puts "Hello Ruby!"

 end

end

Now using above class to create objects

object = Sample. new

object.hello

This will produce the following result:

Hello Ruby!

Ruby Global Variables:
Global variables begin with $. Uninitialized global variables have the

value niland produce warnings with the -w option.

Assignment to global variables alters global status. It is not recommended

to use global variables. They make programs cryptic.

Here is an example showing usage of global variable.

#!/usr/bin/ruby

$global_variable = 10

class Class1

 def print_global

 puts "Global variable in Class1 is #$global_variable"

 end

end

class Class2

 def print_global

 puts "Global variable in Class2 is #$global_variable"

 end

end

class1obj = Class1.new

class1obj.print_global

class2obj = Class2.new

class2obj.print_global

Here $global_variable is a global variable. This will produce the following

result:

NOTE: In Ruby you CAN access value of any variable or constant by putting

a hash (#) character just before that variable or constant.

Global variable in Class1 is 10

Global variable in Class2 is 10

Ruby Instance Variables:
Instance variables begin with @. Uninitialized instance variables have the

valuenil and produce warnings with the -w option.

Here is an example showing usage of Instance Variables.

#!/usr/bin/ruby

class Customer

 def initialize(id, name, addr)

 @cust_id=id

 @cust_name=name

 @cust_addr=addr

 end

 def display_details()

 puts "Customer id #@cust_id"

 puts "Customer name #@cust_name"

 puts "Customer address #@cust_addr"

 end

end

Create Objects

cust1=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")

cust2=Customer.new("2", "Poul", "New Empire road, Khandala")

Call Methods

cust1.display_details()

cust2.display_details()

Here, @cust_id, @cust_name and @cust_addr are instance variables. This

will produce the following result:

Customer id 1

Customer name John

Customer address Wisdom Apartments, Ludhiya

Customer id 2

Customer name Poul

Customer address New Empire road, Khandala

Ruby Class Variables:
Class variables begin with @@ and must be initialized before they can be

used in method definitions.

Referencing an uninitialized class variable produces an error. Class variables

are shared among descendants of the class or module in which the class

variables are defined.

Overriding class variables produce warnings with the -w option.

Here is an example showing usage of class variable:

#!/usr/bin/ruby

class Customer

 @@no_of_customers=0

 def initialize(id, name, addr)

 @cust_id=id

 @cust_name=name

 @cust_addr=addr

 end

 def display_details()

 puts "Customer id #@cust_id"

 puts "Customer name #@cust_name"

 puts "Customer address #@cust_addr"

 end

 def total_no_of_customers()

 @@no_of_customers += 1

 puts "Total number of customers: #@@no_of_customers"

 end

end

Create Objects

cust1=Customer.new("1", "John", "Wisdom Apartments, Ludhiya")

cust2=Customer.new("2", "Poul", "New Empire road, Khandala")

Call Methods

cust1.total_no_of_customers()

cust2.total_no_of_customers()

Here @@no_of_customers is a class variable. This will produce the following

result:

Total number of customers: 1

Total number of customers: 2

Ruby Local Variables:
Local variables begin with a lowercase letter or _. The scope of a local

variable ranges from class, module, def, or do to the corresponding end or

from a block's opening brace to its close brace {}.

When an uninitialized local variable is referenced, it is interpreted as a call

to a method that has no arguments.

Assignment to uninitialized local variables also serves as variable

declaration. The variables start to exist until the end of the current scope is

reached. The lifetime of local variables is determined when Ruby parses the

program.

In the above example local variables are id, name and addr.

Ruby Constants:
Constants begin with an uppercase letter. Constants defined within a class

or module can be accessed from within that class or module, and those

defined outside a class or module can be accessed globally.

Constants may not be defined within methods. Referencing an uninitialized

constant produces an error. Making an assignment to a constant that is

already initialized produces a warning.

#!/usr/bin/ruby

class Example

 VAR1 = 100

 VAR2 = 200

 def show

 puts "Value of first Constant is #{VAR1}"

 puts "Value of second Constant is #{VAR2}"

 end

end

Create Objects

object=Example.new()

object.show

Here VAR1 and VAR2 are constant. This will produce the following result:

Value of first Constant is 100

Value of second Constant is 200

Iterators

Iterators are nothing but methods supported by collections. Objects that

store a group of data members are called collections. In Ruby, arrays and

hashes can be termed collections.

Iterators return all the elements of a collection, one after the other. We will

be discussing two iterators here, each and collect. Let's look at these in

detail.

Ruby each Iterator:
The each iterator returns all the elements of an array or a hash.

Syntax:
collection.each do |variable|

 code

end

Executes code for each element in collection. Here, collection could be an

array or a ruby hash.

Example:
#!/usr/bin/ruby

ary = [1,2,3,4,5]

ary.each do |i|

 puts i

end

This will produce the following result:

1

2

3

4

5

You always associate the each iterator with a block. It returns each value of

the array, one by one, to the block. The value is stored in the variable i and

then displayed on the screen.

Ruby collect Iterator:
The collect iterator returns all the elements of a collection.

Syntax:
collection = collection.collect

The collect method need not always be associated with a block.

The collectmethod returns the entire collection, regardless of whether it is

an array or a hash.

Example:
#!/usr/bin/ruby

a = [1,2,3,4,5]

b = Array.new

b = a.collect

puts b

This will produce the following result:

1

2

3

4

5

NOTE: The collect method is not the right way to do copying between

arrays. There is another method called a clone, which should be used to

copy one array into another array.

You normally use the collect method when you want to do something with

each of the values to get the new array. For example, this code produces an

array b containing 10 times each value in a.

#!/usr/bin/ruby

a = [1,2,3,4,5]

b = a.collect{|x| 10*x}

puts b

This will produce the following result:

10

20

30

40

50

Pattern Matching

A Regexp holds a regular expression, used to match a pattern against strings. Regexps

are created using the /.../ and %r{...} literals, and by theRegexp::new constructor.

Regular expressions (regexps) are patterns which describe the contents of a string.

They’re used for testing whether a string contains a given pattern, or extracting the

portions that match. They are created with the /pat/ and%r{pat} literals or

the Regexp.new constructor.

A regexp is usually delimited with forward slashes (/). For example:

/hay/ =~ 'haystack' #=> 0

/y/.match('haystack') #=> #<MatchData "y">

If a string contains the pattern it is said to match. A literal string matches itself.

Here ‘haystack’ does not contain the pattern ‘needle’, so it doesn’t match:

/needle/.match('haystack') #=> nil

Here ‘haystack’ contains the pattern ‘hay’, so it matches:

/hay/.match('haystack') #=> #<MatchData "hay">

Specifically, /st/ requires that the string contains the letter s followed by the letter t,

so it matches haystack, also.

=~ and #match
Pattern matching may be achieved by using =~ operator or #match method.

=~ operator

=~ is Ruby's basic pattern-matching operator. When one operand is a regular

expression and the other is a string then the regular expression is used as a pattern to

match against the string. (This operator is equivalently defined

byRegexp and String so the order of String and Regexp do not matter. Other classes

may have different implementations of =~.) If a match is found, the operator returns

index of first match in string, otherwise it returns nil.

/hay/ =~ 'haystack' #=> 0

'haystack' =~ /hay/ #=> 0

/a/ =~ 'haystack' #=> 1

/u/ =~ 'haystack' #=> nil

Using =~ operator with a String and Regexp the $~ global variable is set after a

successful match. $~ holds a MatchData object. ::last_match is equivalent to$~.

#match method
The match method returns a MatchData object

Ruby is a general-purpose language; it can't properly be called a web

languageat all. Even so, web applications and web tools in general are

among the most common uses of Ruby.

Not only can you write your own SMTP server, FTP daemon, or Web server

in Ruby, but you can also use Ruby for more usual tasks such as CGI

programming or as a replacement for PHP.

http://ruby-doc.org/core-2.1.1/Regexp.html#method-i-match
http://ruby-doc.org/core-2.1.1/Regexp.html#method-i-match
http://ruby-doc.org/core-2.1.1/Regexp.html
http://ruby-doc.org/core-2.1.1/String.html
http://ruby-doc.org/core-2.1.1/String.html
http://ruby-doc.org/core-2.1.1/Regexp.html
http://ruby-doc.org/core-2.1.1/String.html
http://ruby-doc.org/core-2.1.1/Regexp.html
http://ruby-doc.org/core-2.1.1/MatchData.html
http://ruby-doc.org/core-2.1.1/Regexp.html#method-c-last_match
http://ruby-doc.org/core-2.1.1/Regexp.html#method-i-match
http://ruby-doc.org/core-2.1.1/Regexp.html#method-i-match
http://ruby-doc.org/core-2.1.1/MatchData.html

Please spend few minutes with CGI Programming Tutorial for more detail on

CGI Programming.

Writing CGI Scripts:
The most basic Ruby CGI script looks like this:

#!/usr/bin/ruby

puts "HTTP/1.0 200 OK"

puts "Content-type: text/html\n\n"

puts "<html><body>This is a test</body></html>"

If you call this script test.cgi and uploaded it to a Unix-based Web hosting

provider with the right permissions, you could use it as a CGI script.

For example, if you have the Web site http://www.example.com/ hosted

with a Linux Web hosting provider and you upload test.cgi to the main

directory and give it execute permissions, then visiting

http://www.example.com/test.cgi should return an HTML page saying This

is a test.

Here when test.cgi is requested from a Web browser, the Web server looks

fortest.cgi on the Web site, and then executes it using the Ruby interpreter.

The Ruby script returns a basic HTTP header and then returns a basic HTML

document.

Using cgi.rb:
Ruby comes with a special library called cgi that enables more sophisticated

interactions than those with the preceding CGI script.

Let's create a basic CGI script that uses cgi:

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

http://www.tutorialspoint.com/perl/perl_cgi.htm

puts cgi.header

puts "<html><body>This is a test</body></html>"

Here, you created a CGI object and used it to print the header line for you.

Form Processing:
Using class CGI gives you access to HTML query parameters in two ways.

Suppose we are given a URL of /cgi-

bin/test.cgi?FirstName=Zara&LastName=Ali.

You can access the parameters FirstName and LastName using CGI#[]

directly as follows:

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

cgi['FirstName'] # => ["Zara"]

cgi['LastName'] # => ["Ali"]

There is another way to access these form variables. This code will give you

a hash of all the key and values:

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

h = cgi.params # => {"FirstName"=>["Zara"],"LastName"=>["Ali"]}

h['FirstName'] # => ["Zara"]

h['LastName'] # => ["Ali"]

Following is the code to retrieve all the keys:

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

cgi.keys # => ["FirstName", "LastName"]

If a form contains multiple fields with the same name, the corresponding

values will be returned to the script as an array. The [] accessor returns

just the first of these.index the result of the params method to get them all.

In this example, assume the form has three fields called "name" and we

entered three names "Zara", "Huma" and "Nuha":

#!/usr/bin/ruby

require 'cgi'

cgi = CGI.new

cgi['name'] # => "Zara"

cgi.params['name'] # => ["Zara", "Huma", "Nuha"]

cgi.keys # => ["name"]

cgi.params # => {"name"=>["Zara", "Huma", "Nuha"]}

Note: Ruby will take care of GET and POST methods automatically. There is

no separate treatment for these two different methods.

An associated, but basic, form that could send the correct data would have

HTML code like so:

<html>

<body>

<form method="POST" action="http://www.example.com/test.cgi">

First Name :<input type="text" name="FirstName" value="" />

Last Name :<input type="text" name="LastName" value="" />

<input type="submit" value="Submit Data" />

</form>

</body>

</html>

