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Memory Management 
 

  To provide a detailed description of various ways of organizing memory hardware 
 

  To discuss various memory-management techniques, including paging and segmentation 
 

 To provide a detailed description of the Intel Pentium, which supports both pure segmentation and 

segmentation with paging 
 

  Program must be brought (from disk)  into memory and placed within a process for it to be run 
 

  Main memory and registers are only storage CPU can access directly 
 

  Register access in one CPU clock (or less) 
 

  Main memory can take many cycles 
 

  Cache sits between main memory and CPU registers 
 

  Protection of memory required to ensure correct operation 
 

Base and Limit Registers 
 

A pair of base and limit registers define the logical address space 
 

Binding of Instructions and Data to Memory 
 

    Address binding of instructions and data to memory addresses can happen at three different stages 
 

 Compile time:  If memory location known a priori, absolute code can be generated; must recompile 

code if starting location changes 
 

    Load time:  Must generate relocatable code if memory location is not known at compile time 
 

 Execution time:  Binding delayed until run time if the process can be moved during its execution from 

one memory segment to another.  Need hardware support for address maps (e.g., base and limitregisters) 
 

Multistep Processing of a User Program 

 
 

 The concept of a logical address space that is bound to a separate physical address space is central to 

proper memory management 
 

  Logical address – generated by the CPU; also referred to as virtual address 
 

  Physical address – address seen by the memory unit 
 

  Logical and physical addresses are the same in compile-time and load-time address-binding schemes; 

logical (virtual) and physical addresses differ in execution-time address-binding scheme 
 

Memory-Management Unit (MMU) 
 

Hardware device that maps virtual to physical address 
 

In MMU scheme, the value in the relocation register is added to every address generated by a user 

process at the time it is sent to memory 
 

The user program deals with logical addresses; it never sees the real physical addresses 
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Dynamic relocation using a relocation register 
 
 

Dynamic Loading 
 

    Routine is not loaded until it is called 
 

    Better memory-space utilization; unused routine is never loaded 
 

    Useful when large amounts of code are needed to handle infrequently occurring cases 
 

    No special support from the operating system is required implemented through program design 
 

 
 
 

Dynamic Linking 
 

  Linking postponed until execution time 
 

    Small piece of code, stub, used to locate the appropriate memory-resident library routine   

  Stub replaces itself with the address of the routine, and executes the routine 
 

  Operating system needed to check if routine is in processes’ memory address 
 

  Dynamic linking is particularly useful for libraries 
 

  System also known as shared libraries 
 

Swapping 
 

 
A process can be swapped temporarily out of memory to a backing store, and then brought back 

into memory for continued execution 
 

nBacking store – fast disk large enough to accommodate copies of all memory images for all 
users; 

must provide direct access to these memory images 
 

nRoll out, roll in – swapping variant used for priority-based scheduling algorithms; lower-

priority process is swapped out so higher-priority process can be loaded and executed 
 

nMajor part of swap time is transfer time; total transfer time is directly proportional to the 

amount of memory swapped 
 

nModified versions of swapping are found on many systems (i.e., UNIX, Linux, and 

Windows) System maintains a ready queue of ready-to-run processes which have memory 

images on 

 

 

Contiguous Allocation 
 

Main memory usually into two partitions: 
 

Resident operating system, usually held in low memory with interrupt vector 
 

User processes then held in high memory 
 

nRelocation registers used to protect user processes from each other, and from changing 

operating- system code and data 
 

Base register contains value of smallest physical address 
 

Limit register contains range of logical addresses – each logical address must be less than the 

limit register 
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MMU maps logical address dynamically 
 

Hardware Support for Relocation and Limit 

Registers 
 

    Multiple-partition allocation 
 

    Hole – block of available memory; holes of various size are scattered throughout memory 
 

    When a process arrives, it is allocated memory from a hole large enough to accommodate it 
 

    Operating system maintains information about: 

a) allocated partitions    b) free partitions (hole) 
 
 

 
 

  Best-fit:  Allocate the smallest hole that is big enough; must search entire list, unless ordered by size 

Produces the smallest leftover hole 
 

  Worst-fit:  Allocate the largest hole; must also search entire list 
 

  Produces the largest leftover hole 
 

  First-fit and best-fit better than worst-fit in terms of speed and storage utilization 
 

Fragmentation 
 

  External Fragmentation – total memory space exists to satisfy a request, but it is not contiguous 
 

 Internal Fragmentation – allocated memory may be slightly larger than requested memory; this size 

difference is memory internal to a partition, but not being used 
 

  Reduce external fragmentation by compaction 
 

  Shuffle memory contents to place all free memory together in one large block 
 

  Compaction is possible only if relocation is dynamic, and is done at execution time. 
 

  I/O problem 
 

Latch job in memory while it is involved in I/O 
 

Do I/O only into OS buffers 
 

Paging 
 

Logical address space of a process can be noncontiguous; process is allocated physical memory 

whenever the latter is available 
 

Divide physical memory into fixed-sized blocks called frames (size is power of 2, between 512 bytes 

and 8,192 bytes) 
 

Divide logical memory into blocks of same size called pages 
 

nKeep track of all free frames 
 

To run a program of size n pages, need to find n free frames and load program 
 

Set up a page table to translate logical to physical addresses 
 

Internal fragmentation 

 
Address Translation Scheme 

 

Address generated by CPU is divided into 
 

Page number (p) – used as an index into a pagetable which contains base address of each page in 

physical memory 
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Page offset (d) – combined with base address to define the physical memory address that is sent to the 

memory unit 
 

For given logical address space 2m and page size2n 
 
 
Structure of the Page Table 

In this section, we explore some of the most common techniques for structuring the page table. 
 

1. Hierarchical Paging 

Most modern computer systems support a large logical address space (2
32 

to 2
64

). In such an environment, the 

page table itself becomes excessively large. 

For example, consider a system with a 32-bit logical address space. If the page size in such a system is 4 

KB (2
12

), then a page table may consist of up to 1 million entries (2
32

/2
12

). Assuming that each entry consists of 

4 bytes, each process may need up to 4 MB of physical address space for the page table alone. Clearly, we 

would not want to allocate the page table contiguously in main memory. 

One simple solution to this problem is to divide the page table into smaller pieces. We can accomplish 

this division in several ways. One way is to use a two-level paging algorithm, in which the page table itself is 

also paged. Remember our example of a 32-bit machine 
 

 

A two-level page-table scheme. 

with a page size of 4 KB. A logical address is divided into a page number consisting of 20 bits and a page offset 

consisting of 12 bits. Because we page the page table, the page number is further divided into a 10-bit page 

number and a 10-bit page offset. Thus, a logical address is as follows: 

page number                  page offset 
 

P1       p2                 d 
 

 

 
 
 
 

10             10                      12 
w             1is           ex into              r page table and p2 is the displacement within the page of the outer 

page table. The address-translation method for this architecture is shown in Figure. Because address translation 

works from the outer page table inward, this scheme is also known as a forward-mapped page table. 

 

 
Address translation for a two-level 32-bit paging architecture. 

For a system with a 64-bit logical-address space, a two-level paging scheme is no longer appropriate. To 

illustrate this point, let us suppose that the page size in such a system, is 4 KB (2
12

). In this case, the page table 

consists of up to 2
52 

entries. If we use a two-level paging scheme, then the inner page tables can conveniently be 

one page long, or contain 2
10 

4-byte entries. The addresses look like this: 
 

 
 
 
 
 
 
 
 

The outer page table consists of 2
42 

entries, or 2
44 

bytes. The obvious way to avoid such a large table is 

to divide the outer page table into smaller pieces. This approach is also used on some 32-bit processors for 

added flexibility and efficiency. 

We can divide the outer page table in various ways. We can page the outer page table, giving us a three- 

level paging scheme. Suppose that the outer page table is made up of standard-size pages (2
32  

entries, or 2
12 

bytes); a 64-bit address space is still daunting: The outer page table is still 2
32 

bytes in size. 
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2. Hashed Page Tables 

A common approach for handling address spaces larger than 32 bits is to use a hashed page table, with 

the hash value being the virtual page number. Each entry in the hash table contains a linked list of elements that 

hash to the same location (to handle collisions). Each element consists of three fields: (1) the virtual page 

number, (2) the value of the mapped page frame, and (3) a pointer to the next element in the linked list. 

The algorithm works as follows: The virtual page number in the virtual address is hashed into the hash 

table. The virtual page number is compared with field 1 in the first element in the linked list. If there is a match, 

the corresponding page frame (field 2) is used to form the desired physical address. If there is no match, 

subsequent entries in the linked list are searched for a matching virtual page number. This scheme is shown in 

Figure. 
 
 

 
To solve this problem, we can. use an inverted page table. An inverted page table has one entry for 

each real page (or frame) of memory. Each entry consists of the virtual address of the page stored in that real 

memory location, with information about the process that owns that page. Thus, only one page table is in the 

system, and it has only one entry for each page of physical memory. Figure shows the operation of an inverted 

page table. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Inverted Page Table Architecture 

Each virtual address in the system consists of a triplet <process-id, page-number, offset>. 

Each inverted page-table entry is a pair <process-id, page-number> where the process-id assumes the role of the 

address-space identifier. When a memory reference occurs, part of the virtual address, consisting of <process-id, 

pagenumber>, is presented to the memory subsystem. The inverted page table is then searched for a match. If a 

match is found—say; at entry i—then the physical address <i, offset> is generated. If no match is found, then 

an illegal address access has been attempted. 

Although this scheme decreases the amount of memory needed to store each page table, it increases the 

amount of time needed to search the table when a page reference occurs. Because the inverted page table is 

sorted by physical address, but lookups occur on virtual addresses, the whole table might need to be searched 

for a match. This search would take far too long. 
 

 

5. Segmentation 

Segmentation is a memory-management scheme that supports this user view of memory. A logical 

address space is a collection of segments. Each segment has a name and a length. The addresses specify both 

the  segment  name  and  the  offset  within  the  segment.  The  user  therefore  specifies  each  address  by  two 

quantities: a segment name and an offset For simplicity of implementation, segments are numbered and are 

referred to by a segment number, rather than by a segment name. Tluis, a logical address consists of a two tuple: 

< segment-number, offset >. 

Address mapping is effected by a segment table. Each entry in the segment table has a segment base and a 

segment limit. The segment base contains the starting physical address where the segment resides in memory, 

whereas the segment limit specifies the length of the segment. The use of a segment table is illustrated in 

Figure. 
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Segmentation hardware. 

 

ogical address consists of two parts: a segment number, s, and an offset into that segment, d. 

nt number is used as an index to the segment table. The offset d of the logical address m 

nd the segment limit. If it is not, we trap to the operating system (logical addressing attempt b 

ent). 

n an offset is legal, it is added to the segment base to produce the address in physical memory  Whe            of the 

desired byte. The segment table is thus essentially an array of base-limit register pairs. 
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The segme                                                                                                                                                       ust be 

between 0 a                                                                                                                                                      eyond, 

end of segm 
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1.Virtual memory 

VIRTUAL MEMORY MANAGEMENT 

Virtual memory is a technique that allows the execution of processes that are not completely in memory. 

One major advantage of this scheme is that programs can be larger than physical memory. This technique frees 

programmers from the concerns of memory limitations. 

The entire process to be executed must be in physical memory is reasonable, but infact the entire 

program is not needed. For instance, consider the following: 

• Programs often have code to handle unusual error conditions. Since these errors rarely occur in practice, this 

code is almost never executed. 

• Arrays, lists, and tables are often allocated more memory than they actually need. 

• Certain options and features of a program may be used rarely. 

Even in those cases where the entire program is needed, it may not all be needed at the same time. The 

ability to execute a program that is partially in memory would provide many benefits: 

• A program would no longer be constrained by the amount of physical memory that is available. 

• Because each user program could take less physical memory, more programs could be run at the same time, 

with a corresponding increase in CPU utilization and throughput but with no increase in response time or 

turnaround time. 

• Less I/O would be needed to load or swap each user program into memory, so each user program would run 

faster. 

Thus, running a program that is not entirely in memory would benefit both the system and the user. 

Virtual memory also allows files and memory to be shared by two or more processes Through  page 

sharing. This leads to the following benefits: 

• System libraries can be shared by several processes through mapping of the shared object into a virtual 

address space. 

• Similarly, virtual memory enables processes to share memory. Virtual memory allows one process to create a 

region of memory that it can share with another process. 

• Virtual memory can allow pages to be shared during process creation with the forkO system call, thus 

speeding up process creation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.Demand Paging 

Load the entire program in physical memory at program execution time is called pre paging. Load pages 

only as they are needed are known as demand paging and is commonly used in virtual memory systems. With 

demand-paged virtual memory, pages are only loaded when they are demanded during program execution 

In this, we need some form of hardware support to distinguish between the pages that are in memory and 

the pages that are on the disk. The valid-invalid bit can be used for this purpose. 

When this bit is set to "valid/" the associated page is both legal and in memory. If the bit is set to 

"invalid," the page either is not valid or is valid but is currently on the disk. The page-table entry for a page that 

is brought into memory is set as usual, but the page-table entry for a page that is not currently in memory is 

either simply marked, invalid . 

 

Page table when some pages are not in main memory. 



IIIB.TECH–I SEM CSE (OS) UNIT-IV 
 
 

 
Notice that marking a page invalid will have no effect if the process never attempts to access that 

page. But if the process tries to access a page that was not brought into memory, it causes a page-fault 

trap. The procedure for handling this page fault is. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Steps in Handling Page Replacement 
 

 

1. We check an internal table for this process to determine whether the reference was a valid or an invalid 

memory access. 

2. If the reference was invalid, we terminate the process. If it was valid, but we have not yet brought in that 

page, we now page it in. 

3. We find a free frame (by taking one from the free-frame list, for example). 

4. We schedule a disk operation to read the desired page into the newly allocated frame. 

5. When the disk read is complete, we modify the internal table kept with the process and the page table to 

indicate that the page is now in memory. 

6. We restart the instruction that was interrupted by the trap. 

The process can now access the page as though it had always been in memory. 

In the extreme case, we can start executing a process with no pages in memory. When the operating system sets 

the instruction pointer to the first instruction of the process, which is on a   disk, the page is brought into 

memory, the process continues to execute, faulting as necessary until every page that it needs is in memory. 

This scheme is pure demand paging. 

If the page fault occurs on the instruction fetch, we can restart by fetching the instruction again. If a page 

fault occurs while we are fetching an operand, we must fetch and decode the instruction again and then fetch the 

operand 

Performance of Demand Paging 

Demand paging can significantly affect the performance of a computer system. As long as we have no 

page faults, the effective access time is equal to the memory access time. If, however, a page fault occurs, we 

must first read the relevant page from disk and then access the desired word. 

Let p be the probability of a page fault (0 s p 5 1). We would expect p to be close to zero—that is, we 

would expect to have only a few page faults. The effective access time is then 

Effective access time = (1 - p) x ma + p x page fault time. 

To compute the effective access time, we must know how much time is needed to service a page fault. A page 

fault causes the following sequence to occur: 

1. Service the page-fault interrupt. 

2. Read in the page. 

3. Restart the process. 

The first and third tasks can be reduced, with careful coding, to several hundred instructions. These tasks 

may take from 1 to 100 microseconds each. The page-switch time, however, will probably be close to 8 

milliseconds and a memory-access time of 200 nanoseconds, then the effective access time is 

Effective access time = (1 - p) x (200) + p (8 milliseconds) 

= (1 - p) x 200 + p x 8.00(1000 

= 200 + 7,999,800 x p. 

We see that the effective access time is directly proportional to the page-fault rate. The computer will be slowed 

down because of demand paging. 

Copy-on-Write 
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Process creation using the fork () system call may initially bypass the need for demand paging by 

using a technique similar to page sharing .The fork() system call creates a child process as a duplicate of 

its parent. We can use a technique known as copy-on-write, which works by allowing the parent and 

child processes initially to share the same pages. These shared pages are marked as copy-on-write pages, 

meaning that if either process writes to a shared page, a copy of the shared page is created. Copy-on- 

write is illustrated in Figures which show the contents of the physical memory before and after process 1 

modifies page C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For example, assume that the child process attempts to modify a page containing portions of the stack, 

with the pages set to be copy-on-write. The operating system will then create a copy of this page, mapping it to 

the address space of the child process. The child process will then modify its copied page and not the page 

belonging to the parent process. Note, that only pages that can be modified need be marked as copy-onwrite. 

Pages that cannot be modified (pages containing executable code) can be shared by the parent and child. 

Many operating systems provide a pool of free pages for such requests. Operating systems typically 

allocate these pages using a technique known as zero-fill-on-demand. 

3.Page Replacement 

While a user process is executing, a page fault occurs. The operating system finds that there are no free 

frames on the free-frame list; all memory is in use. Then we follow the most common solution: page 

replacement. Page replacement takes the following approach. 

1. Find the location of the desired page on the disk. 

2. Find a free frame: 

a. If there is a free frame, use it. 

b. If there is no free frame, use a page-replacement algorithm to select victim frame. 

c. Write the victim frame to the disk; change the page and frame tables accordingly. 

3. Read the desired page into the newly freed frame; change the page and frame tables. 

4. Restart the user process. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Page Replacement 
 
 

 
4.Page Replacement Algorithms 

If we have multiple processes in memory, we must decide how many frames to allocate to each process. 

Further, when page replacement is required, we must select the frames that are to be replaced. There are many 

different page-replacement algorithms. We want the one with the lowest page-fault rate. We evaluate an 

algorithm by running it on a particular string of memory references and computing the number of page faults. 

The string of memory references is called a reference string. the number of frames available increases, the 
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number of page faults decreases.We illustrate several page-replacement algorithms. We use the reference string 

7, 0,1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2,1, 2, 0, 1, 7, 0,1 

for a memory with three frames. 

FIFO Page Replacement 

It is the simplest page-replacement algorithm. A FIFO replacement algorithm associates with each page 

the time when that page was brought into memory. When a page must be replaced, the oldest page is chosen. 

We can. Create a FIFO queue to hold all pages in memory. We replace the page at the head of the queue. When 

a page is brought into memory, we insert it at the tail of the queue. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For our example reference string, our three frames are initially empty. The first three references (7,0,1) 

cause page faults and are brought into these empty frames. The next reference (2) replaces page 7, because page 

7 was brought in first. Since 0 is the next reference and 0 is already in memory, we have no fault for this 

reference. The first reference to 3 results in replacement of page 0, since it is now first in line. Because of this 

replacement, the next reference, to 0, will fault. Page 1 is then replaced by page 0. This process continues as 

shown in Figure. Every time a fault occurs, we show which pages are in our three frames. There are 15 faults 

altogether. 

The FIFO page-replacement algorithm is easy to understand and program. But if we select for 

replacement a page that is in active use, everything still works correctly. After we replace an active page with a 

new one, a fault occurs almost immediately to retrieve the active page. Some other page will need to be 

replaced to bring the active page back into memory. Thus, a bad replacement choice increases the page-fault 

rate and slows process execution. To illustrate the problems, we consider the following reference string: 

1,2,3,4,1,2,5,1,2,3,4,5 

Notice that the number of faults for four frames (ten) is greater than the number of faults for three frames 

(nine)! This most unexpected result is known as Belady's anomaly: For some page-replacement algorithms, the 

page-fault rate may increase as the number of allocated frames increases. 

Optimal Page Replacement 

An optimal page-replacement algorithm has the lowest page-fault rate of all algorithms and will never 

suffer from Belady's anomaly. Such an algorithm does exist and has been called OPT or MIN. It is simply this: 

Replace the page that will not be used for the longest period of time. 

Use of this page-replacement algorithm guarantees the lowest possible page fault rate for a fixed 

number of frames. For example, on our sample reference string, the optimal page-replacement algorithm 

would yield nine page faults, as shown in Figure. 
 

 
 
 
 
 
 
 
 

The first three references cause faults that fill the three empty frames. The reference to page 2 replaces 

page 7, because 7 will not be used until reference 18, whereas page 0 will be used at 5, and page 1 at 14. The 

reference to page 3 replaces page 1, as page 1 will be the last of the three pages in memory to be referenced 

again. With only nine page faults, optimal replacement is much better than a FIFO algorithm, which resulted in 

fifteen faults. 

Unfortunately, the optimal page-replacement algorithm is difficult to implement, because it requires 

future knowledge of the reference string. 

LRU Page Replacement 

This approach is the least-recently-used (LRU) algorithm. In this, it uses the recent past as an 

approximation of the near future, then we can replace the page that has not been used for the longest 
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period of time. LRU replacement associates with each page the time of that page's last use. When a page 

must be replaced, LRU chooses the page that has not been used for the longest period of time. 

 
 

 

The result of applying LRU replacement to our example reference string is shown in Figure. The LRU 

algorithm produces 12 faults. Notice that the first 5 faults are the same as those for optimal replacement. When 

the reference to page 4 occurs, however, LRU replacement sees that, of the three frames in memory, page 2 was 

used least recently. Thus, the LRU algorithm replaces page 2, not knowing that page 2 is about to be used. 

When it then faults for page 2, the LRU algorithm replaces page 3, since it is now the least recently used of the 

three pages in memory. Despite these problems, LRU replacement with 12 faults is much better than FIFO 

replacement with 15. 

The major problem is how to implement LRU replacement. An LRU page-replacement algorithm may 

require substantial hardware assistance. The problem is to determine an order for the frames defined by the time 

of last use. Two implementations are feasible: 

• Counters. In this, we associate with each page-table entry a time-of-use field and add to the CPU a logical 

clock or counter. The clock is incremented for every memory reference. Whenever a reference to a page is 

made, the contents of the clock register are copied to the time-of-use field in the page-table entry for that page. 

In this way, we always have 

the "time" of the last reference to each page. We replace the page with the smallest time value. 

• Stack. Another approach to implementing LRU replacement is to keep a stack of page numbers. Whenever a 

page is referenced, it is removed from the stack and put on the top. In this way, the most recently used page is 

always at the top of the stack and the least recently used page is always at the bottom. 

Like optimal replacement, LRU replacement does not suffer from Belady's anomaly. 

Additional-Reference-Bits Algorithm 

We can gain additional ordering information by recording the reference bits at regular intervals. We can 

keep an 8-bit byte for each page in a table in memory. At regular intervals (say, every 100 milliseconds), a timer 

interrupt transfers 

control to the operating system. The operating system shifts the reference bit for each page into the high-order 

bit of its 8-bit byte. These 8-bit shift registers contain the history of page use for the last eight time periods. If 

the shift register contains 00000000, for example, then the page has not been used for eight time periods; a page 

that is used at least once in each period has a shift register value of 11111111. A page with a history register 

value of 11000100 has been used more 

recently than one with a value of 01110111. 

The number of bits of history can be varied. In the extreme case, the number can be reduced to zero, 

leaving 

only the reference bit itself. This algorithm is called the second-chance page replacement algorithm. 

Second-Chance Algorithm 

The basic algorithm of second-chance replacement is a FIFO replacement algorithm. When a page 

has been selected, however, we inspect its reference bit. If the value is 0, we proceed to replace this page; 

but if the reference bit is set to 1, we give the page a second chance and move on to select the next FIFO 

page. When a page gets a second chance, its reference bit is cleared, and its arrival time is reset to the 

current time. Thus, a page that is given a second chance will not be replaced until all other pages have 

been replaced 

One way to implement the second-chance algorithm is as a circular queue. A pointer indicates 

which page is to be replaced next. When a frame is needed, the pointer advances until it finds a page with 

a 0 reference bit. Once a victim page is found, the page is replaced, and the new page is inserted in the 

circular queue in that position. 
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Second-Chance (clock) Page-Replacement Algorithm 
 
 

 
Enhanced Second-Chance Algorithm 

We can enhance the second-chance algorithm by considering the reference bit and the modify bit  as an 

ordered pair. With these two bits, we have the following four possible classes: 

1. (0, 0) neither recently used nor modified—best page to replace 

2. (0, 1) not recently used but modified—not quite as good, because the page will need to be written out before 

replacement 

3. (1., 0) recently used but clean—probably will be used again soon 

4. (1,1) recently used and modified—probably will be used again soon, and the page will be need to be written 

out to disk before it can be replaced 

Each page is in one of these four classes. When page replacement is called for, we use the same scheme 

as in the clock algorithm; but instead of examining whether the page to which we are pointing has the reference 

bit set to 1, we examine the class to which that page belongs. We replace the first page encountered in the 

lowest nonempty class. Notice that we may have to scan the circular queue several times before we find a page 

to be replaced. 

Counting-Based Page Replacement 

There are many other algorithms that can be used for page replacement. For example, we can keep a 

counter of the number of references that have been made to each page and develop the following two schemes. 

• The least frequently used (LFU) page-replacement algorithm requires that the page with the smallest count 

be replaced. The reason for this selection is that an actively used page should have a large reference count. 

• The most frequently used (MFU) page-replacement algorithm is based on the argument that the page with the 

smallest count was probably just brought in and has yet to be used. 

As you might expect, neither MFU nor LFU replacement is common. The implementation of these 

algorithms is expensive. 

5. Allocation of Frames 

We discuss the issue of allocate the fixed amount of free memory among the various processes. The 

minimum number of frames per process is defined by the architecture, the maximum number is defined by the 

amount of available physical memory. There are two allocation algorithms used. 

Allocation Algorithms 

The easiest way to split in frames among n processes is to give everyone an equal share, m/n 

frames. For instance, if there are 93 frames and five processes, each process will get 18 frames. The 

leftover three frames can be used as a free-frame buffer pool. This scheme is called equal allocation. 

An alternative is to recognize that various processes will need differing amounts of memory. We can use 

proportional allocation, in which we allocate available memory to each process according to its size. Let the 

size of the virtual memory for process pi  be si and define 

S=∑si 

Then, if the total number of available frames is m, we allocate ai frames to process pi,-, where ai is 

approximately 

ai = Si/S x m. 
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Of course, we must adjust each ai to be an integer that is greater than the minimum number of frames 

required by the instruction set, with a sum not exceeding m. 

In this way, both processes share the available frames according to their "needs," rather than equally. 

In both equal and proportional allocation, of course, the allocation may vary according to the multiprogramming 

level. If the multiprogramming level is increased, each process will lose some frames to provide the memory 

needed  for  the  new  process.  Conversely,  if  the  multiprogramming  level  decreases,  the  frames  that  were 

allocated to the departed process can be spread over the remaining processes. 

In either equal or proportional allocation, a high-priority process is treated the same as a low-priority 

process. By its definition, however, we may want to give the high-priority process more memory to speed its 

execution, to the detriment of low-priority processes. One solution is to use a proportional allocation scheme 

wherein the ratio of frames depends not on the relative sizes of processes but rather on the priorities of 

processes or on a combination of size and priority. 

Global versus Local Allocation 

Another important factor in the way frames are allocated to the various processes is page replacement. 

With multiple processes competing for frames, we can classify page-replacement algorithms into two broad 

categories: global replacement and local replacement. 

Global replacement allows a process to select a replacement frame from the set of all frames, even if that 

frame is currently allocated to some other process; that is, one process can take a frame from another. 

Local replacement requires that each process select from only its own set of allocated frames. 

A process can select a replacement from among its own frames or the frames of any lower-priority 

process. This approach allows a high-priority process to increase its frame allocation at the expense of a low- 

priority process. 

With a local replacement strategy, the number of frames allocated to a process does not change. With 

global replacement, a process may happen to select only frames allocated to other processes, thus increasing the 

number of frames allocated to it. 

One problem with a global replacement algorithm is that a process cannot control its own page-fault 

rate. The set of pages in memory for a process depends not only on the paging behavior of that process but also 

on the paging behavior of other processes. Therefore, the same process may perform quite differently. 

Under local replacement, the set of pages in memory for a process is affected by the paging behavior of 

Only that process. Local replacement might hinder a process, however, by not making available to it other, less 

used pages of memory. 

Thus, global replacement generally results in greater system throughput and is therefore the more 

common method. 

6. Thrashing 

If the number of frames allocated to a low-priority process falls below the minimum number required by 

the computer architecture, we must suspend that process's execution. We should then page out its remaining 

pages, freeing all its allocated frames. This provision introduces a swap-in, swap-out level of intermediate CPU 

scheduling. 

If the process does not have the number of frames it needs to support pages in active use, it will quickly 

page-fault. At this point, it must replace some page. However, since all its pages are in active use, it must 

replace a page that will be needed again right away. Consequently, it quickly faults again, and again, and again, 

replacing pages that it must bring back in immediately. 

This high paging activity is called thrashing. A process is thrashing if it is spending more time paging 

than executing. 

Cause of Thrashing 

Thrashing results in severe performance problems.  If CPU utilization is too low, we increase the 

degree of multiprogramming by introducing a new process to the system. A global page-replacement 

algorithm is used; it replaces pages without regard to the process to which they belong. Now suppose that 

a process enters a new phase in its execution and needs more frames. It starts faulting and taking frames 

away from other processes. These processes need those pages, however, and so they also fault, taking 

frames from other processes. These faulting processes must use the paging device to swap pages in and 

out. As they queue up for the paging device,the ready queue empties. As processes wait for the paging 

device, CPU utilization decreases. 
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This phenomenon is illustrated in Figure in which CPU utilization is plotted against the degree of 

multiprogramming. As the degree of multiprogramming increases, CPU utilization also increases, until a 

maximum is reached. If the degree of multiprogramming is increased even further, thrashing sets in, and CPU 

utilization drops sharply. At this point, to increase CPU utilization and stop thrashing, we must decrease the 

degree of multiprogramming. 

We can limit the effects of thrashing by using a local replacement algorithm (or priority replacement 

algorithm). With local replacement, if one process starts thrashing, it cannot steal frames from another process 

and cause the latter to thrash as well. 

To prevent thrashing, we must provide a process with as many frames as it needs. 


