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SYNCHRONIZATION 

The system consisting of cooperatingsequential processes or threads, all running asynchronously and 

possiblysharing data. We illustrated this model with the producer-consumer problem,described how a bounded 

buffer could be used to enable processes to sharememory. 

Solution allows at most BUFFER.SIZE - 1 items in the buffer at the sametime. Suppose we want to 

modify the algorithm to remedy this deficiency. Onepossibility is to add an integer variable counter, initialized 

to 0. counter isincremented every time we add a new item to the buffer and is decrementedevery time we 

remove one item from the buffer. The code for the producerprocess can be modified as follows: 

while (true) 

{ 

/* produce an item in nextProduced */ 

while (counter == BUFFER.SIZE) 

; /* do nothing */ 

buffer[in] = nextProduced; 

in = (in + 1) % BUFFER-SIZE; 

counter++; 

} 

The code for the consumer process can be modified as follows: 

while (true) 

{ 

while (counter == 0) 

; /* do nothing */ 

nextConsumed = buffer [out] ,- 

out = (out + 1) % BUFFER_SIZE; 

counter--; 

/* consume the item in nextConsumed */ 

} 

Although  both  the  producer  and  consumer  routines  are  correct  separately,they  may  not  function 

correctly when executed concurrently. As an illustration,suppose that the value of the variable counter is 

currently 5 and that theproducer and consumer processes execute the statements "counter++" and"counter—" 

concurrently. 

We can show that the value of counter may be incorrect as follows. Notethat the statement "counter++" 

may be implemented in machine language (ona typical machine) as 

Register1=- counter 

Register1 = register1 + 1 

counter =register1 

where register1is a local CPU register. Similarly, the statement "counter—" isimplemented as follows: 

register2=counter 

register2 = register2- 1 

counter = register2 

where  again  register2is  a  local  CPU  register.  Even  though  register1andregister2may be  the  same 

physical register (an accumulator, say), rememberthat the contents of this register will be saved and restored by 

the interrupthandler. 

The concurrent execution of "counter++" and "counter—" is equivalentto a sequential execution where the 

lower-level statements presented previouslyare interleaved in some arbitrary order. One such interleaving is 

Register1= counter {register1 = 5} 

register 1= register1+ 1 {register1= 6} 

register2. = counter {register2 =5} 

register2 = registeri — 1 {register2 =4} 

counter = register1 {counter = 6} 

counter = register2 {counter = 4} 

Notice that we have arrived at the incorrect state "counter == 4", indicatingthat four buffers are full, 

when, in fact, five buffers are full. If we reversed theorder of the statements, we would arrive at the incorrect 

state"counter —— 6". 
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We would arrive at this incorrect state because we allowed both processesto manipulate the variable 

counter concurrently. A situation like this, whereseveral processes access and manipulate the same data 

concurrently and theoutcome of the execution depends on the particular order in which the accesstakes place, is 

called a race condition. To guard against the race conditionabove, we need to ensure that only one process at a 

time can be manipulatingthe variable counter. To make such a guarantee, we require that the processes 

be synchronized in some way. 

1. The Critical-Section Problem 

Consider a system consisting of n processes {PQ, PI, ..., P,,~\}. Each processhas a segment of code, 

called a critical section, in which the process maybe changing common variables, updating a table, writing a 

file, and so on.The important feature of the system is that, when one process is executing inits critical section, 

no other process is to be allowed to execute in its criticalsection. That is, no two processes are executing in their 

critical sections at thesame time. The critical-section problem is to design a protocol that the processes 

can use to cooperate. Each process must request permission to enter its criticalsection. The section of code 

implementing this request is the entry section. Thecritical section may be followed by an exit section. The 

remaining code is theremainder section. The general structure of a typical process P, is shown inFigure 6.1. 

The entry section and exit section are enclosed in boxes to highlightthese important segments of code. 

do{ 

\\entry section 

critical section 

\\exit section 

\\remainder section 

} while (TRUE); 

General structure of a typical process Pi. 

A solution to the critical-section problem must satisfy the following threerequirements: 

1. Mutual exclusion. If process P; is executing in its critical section, then noother processes can be executing in 

their critical sections. 

2. Progress. If no process is executing in its critical section and someprocesses wish to enter their critical 

sections, then only those processesthat are not executing in their remainder sections can participate in the 

decision on which will enter its critical section next, and this selectioncannot be postponed indefinitely. 

3. Bounded waiting. There exists a bound, or limit, on the number of timesthat other processes are allowed to 

enter their critical sections after aprocess has made a request to enter its critical section and before that 

request is granted. 

2. Peterson's Solution 

It is   a classic software-based solution to the critical-sectionproblem known as Peterson's solution. 

Peterson's solution is restricted to two processes that alternate executionbetween their critical sections and 

remainder sections. The processes arenumbered Po and Pi. For convenience, when presenting P,-, we use Pj 

todenote the other process; that is, j equals 1 — i. 

Peterson's solution requires two data items to be shared between the twoprocesses: 

int turn; 

boolean f l a g [2] • 

The variable turn indicates whose turn it is to enter its critical section. That is,if turn == i, then process 

P; is allowed to execute in its critical section. Theflag array is used to indicate if a process is ready to enter its 

critical section.For example, if f lag[i] is true, this value indicates that P; is ready to enterits critical section. 

To enter the critical section, process P, first sets flag[i] to be true andthen sets turn to the value j, thereby 

asserting that if the other process wishesto enter the critical section, it can do so. If both processes try to enter at 

thesame time, turn will be set to both i and j at roughly the same time. Onlyone of these assignments will last; 

the other will occur but will be overwrittenimmediately. The eventual value of turn decides which of the two 

processesis allowed to enter its critical section first. 

do 

{ 

flag[i] = TRUE; 

turn = j ; 

while (flag[j] turn == j ) ; 

critical section 

flag[i] = FALSE; 
remainder section 

} while (TRUE); 

The structure of process P-, in Peterson's solution. 
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We now prove that this solution is correct. We need to show that: 

1. Mutual exclusion is preserved. 

2. The progress requirement is satisfied. 

3. The bounded-waiting requirement is met. 

To prove property 1, we note that each P; enters its critical section onlyif either flag[j] == false or turn -- 

i. Also note that, if both processescan be executing in their critical sections at the same time, then flag [0] == 

flag [1] == true. These two observations imply that Po and Pi could not havesuccessfully executed their while 

statements at about the same time, since thevalue of turn can be either 0 or 1 but cannot be both. Hence, one of 

the processes—say Pj—must have successfully executed the while statement, whereas P,had to execute at least 

one additional statement ("turn == j"). However, since,at that time, f lag[j] == true, and turn == j, and this 

condition will persistas long as Pj is in its critical section, the result follows: Mutual exclusion ispreserved. 

To prove properties 2 and 3, we note that a process P, can be prevented fromentering the critical section 

only if it is stuck in the while loop with the conditionflag [j] == true and turn == j; this loop is the only one 

possible. If P; is notready to enter the critical section, then flag [j] == false, and P; can enter itscritical section. If 

Pj has set flag [j ] to true and is also executing in its whilestatement, then either turn == i or turn == j . If turn 

== i, then P, will enterthe critical section. If turn == j, then Pj will enter the critical section. However,once P; 

exits its critical section, it will reset f lag[j] to false, allowing P, toenter its critical section. If Pj resets flag [j ] to 

true, it must also set turn to i. 

Thus, since P, does not change the value of the variable turn while executingthe while statement, P,- will 

enter the critical section (progress) after at mostone entry by P/ (bounded waiting). 

3.  Synchronization Hardware 

We have just described one software-based solution to the critical-sectionproblem. We explore several 

more solutions to thecritical-section problem using techniques ranging from hardware to softwarebasedAPIs 

available to application programmers. Hardware features can make any programming task easier and improve 

system efficiency. In this section, we present some simple hardware instructionsthat are available on many 

systems and show how they can be used effectivelyin solving the critical-section problem. 

The critical-section problem could be solved simply in a uniprocessor environment, we could be sure 

that  the  current  sequenceof  instructions  would  be  allowed  to  execute  in  order  without  preemption. 

Unfortunately, this solution is not as feasible in a multiprocessor environment.Disabling interrupts on a 

multiprocessor can be time consuming, as themessage is passed to all the processors. This message passing 

delays entry intoeach critical section, and system efficiency decreases. 

boolean TestAndSet(boolean *target) { 

boolean rv = *target; 

*target = TRUE; 

return rv; 

The definition of the TestAndSet () instruction. 
 

do { 

while (TestAndSetLock(&lock) ) 

; // do nothing 

// critical section 

lock = FALSE; 

// remainder section 

}while (TRUE); 

Mutual-exclusion implementation with TestAndSet ( ) . 

The TestAndSet() instruction can be defined as shown in Figure . The important characteristic is that 

this instruction is executed atomically.Thus, if two TestAndSet C) instructions are executed simultaneously 

(each ona different CPU), they will be executed sequentially in some arbitrary order. Ifthe machine supports the 

TestAndSet () instruction, then we can implementmutual exclusion by declaring a Boolean variable lock, 

initialized to false.The structure of process P, is shown in above Figure. 

The SwapO instruction, in contrast to the TestAndSet0 instruction,operates on the contents of two 

words; it is defined as shown in Figure .Like the TestAndSet 0 instruction, it is executed atomically. If the 

machinesupports the SwapO instruction, then mutual exclusion can be provided asfollows. A global Boolean 

variable lock is declared and is initialized to false.In addition, each process has a local Boolean variable key. 

The structure ofprocess P, is shown in Figure . 
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void Swap(boolean *a, boolean *b) 

{ 

boolean temp = *a; 

*a = *b; 

*b = temp; 

} 

The definition of the Swap () instruction. 
 

do { , 

key = TRUE; 

while (key == TRUE) 

Swap (&lock, &key) ,- 

// critical section 

lock = FALSE; 

// remainder section 

}while (TRUE); 

Mutual-exclusion implementation with the SwapO instruction. 
 
4. Semaphores 

The  various  hardware-based  solutions  to  the  critical-section  problem  (usingthe  TestAndSetC)  and 

SwapO instructions) arecomplicated for application programmers to use. To overcome this difficulty,we can use 

a synchronization tool called a semaphore. 

A semaphore S is an integer variable that, apart from initialization, isaccessed only through two standard 

atomic operations: wait () and signal ().The waitO operation was originally termed P (from the Dutch probercn, 

"totest"); signal () was originally called V (from verhogen, "to increment"). Thedefinition of wait()   is as 

follows: 

wait(S) { 

while (S <= 0) 

; // no-op 

S--; 

} 

The definition of signal () is as follows: 

signal(S) { 

S + + ; 

} 

All the modifications to the integer value of the semaphore in the wait ()and signal() operations must be 

executed indivisibly. That is, when oneprocess modifies the semaphore value, no other process can 

simultaneouslymodify that same semaphore value. 

In  addition,  in  the case of wait(S), thetesting of the integer value of  S  (S < 0),  and  its possible 

modification (S—),must  also  be executed without  interruption.  We shall  see how these operationscan  be 

implemented in Section 6.5.2; first, let us see how semaphores can beused. 

Operating systems often distinguish between counting and binary semaphores.The value of a counting 

semaphore can range over an unrestricted domain.The value of a binary semaphore can range only between 0 

and 1. On somesystems, binary semaphores are known as mutex locks, as they are locks thatprovide mutual 

Exclusion. 

We can use binary semaphores to deal with the critical-section problem formultiple processes. The n 

processes share a semaphore, mutex, initialized to 1.Each process P, is organized as shown in Figure. 

do { 

wait(mutex); 

// critical section 

signal(mutex); 

// remainder section 

}while (TRUE); 

Mutual-exclusion implementation with semaphores. 
 

Counting semaphores can be used to control access to a given resourceconsisting of a finite number of 

instances. The semaphore is initialized to thenumber of resources available. Each process that wishes to use a 
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resourceperforms  a  waitQ  operation  on  the  semaphore  (thereby  decrementing  thecount).  When  a  process 

releases a resource, it performs a signal () operation(incrementing the count). When the count for the semaphore 

goes to 0, allresources are being used. After that, processes that wish to use a resource willblock until the count 

becomes greater than 0. 

The main disadvantage of the semaphore definition given here is that it requiresbusy waiting. While a 

process is in its critical section, any other process thattries to enter its critical section must loop continuously in 

the entry code. Thiscontinual looping is clearly a problem in a real multiprogramming system,where a single 

CPU is shared among many processes. Busy waiting wastesCPU cycles that some other process might be able 

to use productively. Thistype of semaphore is also called a spinlock because the process "spins" whilewaiting 

for the lock. 

To overcome the need for busy waiting, we can modify the definition ofthe wait () and signal () 

semaphore operations. When a process executes thewait () operation and finds that the semaphore value is not 

positive, it mustwait. However, rather than engaging in busy waiting, the process can blockitself. The block 

operation places a process into a waiting queue associatedwith the semaphore, and the state of the process is 

switched to the waitingstate. Then control is transferred to the CPU scheduler, which selects anotherprocess to 

execute. 

A process that is blocked, waiting on a semaphore S, should be restartedwhen some other process 

executes a signal() operation. The process isrestarted by a wakeup () operation, which changes the process from 

the waitingstate to the ready state. The process is then placed in the ready queue. 

To implement semaphores under this definition, we define a semaphore asa "C" struct: 

typedef struct { 

int value; 

struct process *list; 

} semaphore; 

Each semaphore has an integer value and a list of processes l i s t . Whena process must wait on a 

semaphore, it is added to the list of processes. Asignal () operation removes one process from the list of waiting 

processesand awakens that process. 

The wait () semaphore operation can now be defined as 

wait(semaphore *S) { 

S->value—; 

if (S->value < 0) { 

add this process to S->list; 

block(); 
 

}          } 
 
The signal () semaphore operation can now be defined as # 

signal(semaphore *S) { 

S->value++; 

if (S->value <= 0) { 

remove a process P from S->list; 

wakeup(P); 

} 

} 

The  block()  operation  suspends  the  process  that  invokes  it.  The  wakeup(P)operation  resumes  the 

execution of a blocked process P. These two operationsare provided by the operating system as basic system 

calls. 

If the semaphore value is negative, its magnitudeis the number of processes waiting on that semaphore. 

The list of waiting processes can be easily implemented by a link field ineach process control block (PCB). 

Each semaphore contains an integer valueand a pointer to a list of PCBs. One way to add and remove processes 

fromthe list in a way that ensures bounded waiting is to use a FIFO queue, wherethe semaphore contains both 

head and tail pointers to the queue. 

Deadlocks and Starvation 

The implementation of a semaphore with a waiting queue may result in asituation where two or more 

processes are waiting indefinitely for an eventthat can be caused only by one of the waiting processes. The 
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event in questionis the execution of a signal() operation. When such a state is reached, theseprocesses are said to 

be deadlocked. 

To illustrate this, we consider a system consisting of two processes, P1 and P2 , each accessing two 

semaphores, S and Q, set to the value 1: 

P1                               P2 

wait(S);                       wait(Q); 

wait(Q);                       wait(S); 

---------                         ----------- 

---------            ------------ 

signal(S);      signal(Q); 

signal(Q);                    signal(S); 

Suppose that P1executes wait (S) and then P2 executes wait (Q). When P1 executes wait(Q), it must 

wait until P2 executes signal(Q). Similarly, whenP2 executes wait(S), it must wait until P1 executes signal(S). 

Since thesesignal () operations cannot be executed, P1 and P2 are deadlocked. 

We say that a set of processes is in a deadlock state when every process inthe set is waiting for an event 

that can be caused only by another process in theset. 

Another  problem  related  to  deadlocks  is  indefinite  blocking,  or  starvation,a  situation  in  which 

processes wait indefinitely within the semaphore.Indefinite blocking may occur if we add and remove processes 

from the listassociated with a semaphore in LIFO (last-in, first-out) order. 

5. Classic Problems of Synchronization 

In this section, we present a number of synchronization problems as examples. In our solutionsto the 

problems, we use semaphores for synchronization. 

The Bounded-Buffer Problem 

The bounded-buffer problem is commonlyused to illustrate the power of synchronization primitives. 

We assume that the pool consists of n buffers, each capable of holdingone item. 

The mutex semaphore provides mutual exclusion for accesses to thebuffer pool and is initialized to the 

value 1. 

The empty and f u l l semaphorescount the number of empty and full buffers. The semaphore empty is 

initializedto the value n; the semaphore f u l l is initialized to the value 0. 

The code for the producer process is shown in below Figure ; the code forthe consumer process is shown 

in below Figure. We can interpret this code as the producerproducing full buffers for the consumer or as the 

consumer producing emptybuffers for the producer. 

do { 

// produce an item in nextp 

wait(empty); 

wait(mutex); 

// add nextp to buffer 

signal(mutex); 

signal(full); 

}while (TRUE) ,- 

The structure of the producer process. 

do { 

wait(full); 

wait(mutex); 

// remove an item from buffer to nextc 

signal(mutex); 

signal(empty); 

// consume the item in nextc 

}while (TRUE); 

The structure of the consumer process. 
 

 

The Readers-Writers Problem 

A database is to be shared among several concurrent processes. Some of theseprocesses may want only 

to read the database, whereas others may want toupdate (that is, to read and write) the database. We distinguish 

between thesetwo types of processes by referring to the former as readers and to the latteras writers. 
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Obviously,  if  two  readers  access  the  shared  data  simultaneously,  noadverse  affects  will  result. 

However, if a writer and some other thread (eithera reader or a writer) access the database simultaneously, 

chaos may ensue.To ensure that these difficulties do not arise, we require that the writershave exclusive access 

to the shared database. This synchronization problem isreferred to as the readers-writers problem. 

The readers-writers problem, requires that no readerwill be kept waiting unless a writer has already 

obtained permission to usethe shared object. In other words, no reader should wait for other readers to 

finish simply because a writer is waiting. 

In the solution to the readers-writers problem, the reader processesshare the following data structures: 

semaphore mutex, wrt; 

int readcount; 

The semaphores mutex and wrt are initialized to 1; readcount is initializedto 0. The semaphore wrt is 

common to both reader and writer processes. 

The mutex semaphore is used to ensure mutual exclusion when the variablereadcount is updated. The 

readcount variable keeps track of how manyprocesses are currently reading the object. 

The semaphore wrt functions as amutual-exclusion semaphore for the writers. It is also used by the first reader 

that enters or exits the critical section. It is not used by readers whoenter or exit while other readers are in their 

critical sections or last. 

do { 

wait(wrt); 

// writing is performed 

signal (wrt) ,- 

}while (TRUE); 

The structure of a writer process. 

do { 

wait(mutex); 

readcount + + ; 

if (readcount == 1) 

wait(wrt); 

signal(mutex); 

// reading is performed 

wait (mutex) ,- 

readcount--; 

if (readcount == 0) 

signal(wrt); 

signal(mutex); 

Jwhile (TRUE); 

The structure of a reader process. 

The code for a writer process is shown in above Figure; the code for a readerprocess is shown in above 

Figure. Note that, if a writer is in the critical sectionand n readers are waiting, then one reader is queued on wrt, 

and n — 1 readersare queued on mutex. Also observe that, when a writer executes signal (wrt),we may resume 

the execution of either the waiting readers or a single waitingwriter. The selection is made by the scheduler. 

The Dining-Philosophers Problem 

Consider five philosophers who spend their lives thinking and eating. Thephilosophers share a circular table 

surrounded by five chairs, each belongingto one philosopher. In the center of the table is a bowl of rice, and the 

table is laidwith five single chopsticks. When a philosopher thinks, she doesnot interact with her colleagues. 

From time to time, a philosopher gets hungryand tries to pick up the two chopsticks that are closest to her (the 

chopsticksthat are between her and her left and right neighbors). A philosopher may pickup only one chopstick 

at a time. Obviously, she cannot pick up a chopstick thatis already in the hand of a neighbor. When a hungry 

philosopher has both herchopsticks at the same time, she eats without releasing her chopsticks. Whenshe is 

finished eating, she puts down both of her chopsticks and starts thinkingagain. 

 
 

The situation of the dining philosophers. 
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One simple solution is to represent each chopstick with a semaphore. Aphilosopher tries to grab a 

chopstick by executing a wait () operation on thatsemaphore; she releases her chopsticks by executing the 

signal() operationon the appropriate semaphores. Thus, the shared data are 

semaphore chopstick[5]; 

where all the elements of chopstick are initialized to 1. The structure ofphilosopheri  is shown in Figure 

do { 

wait (chopstick [i] ) ,- 

wait(chopstick [ (i + 1) % 5] ) ; 

// eat 

signal(chopstick [i]); 

signal(chopstick [(i + 1) % 5]); 

/ / think 

}while (TRUE); 

The structure of philosopher i. 

Although this solution guarantees that no two neighbors are eatingsimultaneously, it nevertheless must 

be rejected because it could create adeadlock. Suppose that all five philosophers become hungry 

simultaneouslyand each grabs her left chopstick. All the elements of chopstick will now beequal to 0. When 

each philosopher tries to grab her right chopstick, she will bedelayed forever. 

we present a solution to the dining-philosophers problem thatensures freedom from deadlocks. 

• Allow at most four philosophers to be sitting simultaneously at the table. 

• Allow a philosopher to pick up her chopsticks only if both chopsticks areavailable. 

• Use an asymmetric solution; that is, an odd philosopher picks up first herleft chopstick and then her right 

chopstick, whereas an even philosopherpicks up her right chopstick and then her left chopstick. 

Finally, any satisfactory solution to the dining-philosophers problem mustguard against the possibility 

that one of the philosophers will starve to death.A deadlock-free solution does not necessarily eliminate the 

possibility of starvation. 

Sleeping barber Problem 
 

The analogy is based upon a hypothetical barber shop with one barber. The barber has one barber chair 

and a waiting room with a number of chairs in it. When the barber finishes cutting a customer's hair, he ismisses 

the customer and then goes to the waiting room to see if there are other customers waiting. If there are, he rings 

one of them back to the chair and cuts his hair. If there are no other customers waiting, he returns to his chair 

and sleeps in it. 
 

Each customer, when he arrives, looks to see what the barber is doing. If the barber is sleeping, then the 

customer wakes him up and sits in the chair. If the barber is cutting hair, then the customer goes to the waiting 

room. If there is a free chair in the waiting room, the customer sits in it and waits his turn. If there is no free 

hair, then the customer leaves. Based on a naïve analysis, the above description should ensure that the shop 

unctions correctly, with the barber cutting the hair of anyone who arrives until there are no more customers, and 

then sleeping until the next customer arrives. In practice, there are a number of problems that can occur that are 

illustrative of general scheduling problems. 
 

Many possible solutions are available. The key element of each is a mutex, which ensures that only one 

of the participants can change state at once. The barber must acquire this mutex exclusion before checking for 

customers and release it when he begins either to sleep or cut hair. A customer must acquire it before entering 

the shop and release it once he is sitting in either a waiting room chair or the barber chair. This eliminates both 

of the problems mentioned in the previous section. A number of  semaphores are also required to indicate the 

state of the system. For example, one might store the number of people in the waiting room. 
 

# The first two are mutexes (only 0 or 1 possible) 

Semaphore barberReady =0 

Semaphore accessWRSeats =1 # if 1, the # of seats in the waiting room can be incremented or decremented 

Semaphore custReady =0# the number of customers currently in the waiting room, ready to be served 

int numberOfFreeWRSeats = N  # total number of seats in the waiting room 

def Barber(): 

do 

{                 # Run in an infinite loop. 

wait(custReady);          # Try to acquire a customer - if none is available, go to sleep. 

http://en.wikipedia.org/wiki/Mutex
http://en.wikipedia.org/wiki/Semaphore_(programming)
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wait(accessWRSeats);   # Awake - try to get access to modify # of available seats, otherwise sleep. 

numberOfFreeWRSeats +=1# One waiting room chair becomes free. 

signal(barberReady)         # I am ready to cut. 

signal(accessWRSeats)       # Don't need the lock on the chairs anymore. 

# (Cut hair here.) 

} while (true); 

def Customer(): 

do# Run in an infinite loop to simulate multiple customers. 

{wait(accessWRSeats)         # Try to get access to the waiting room chairs. 

if numberOfFreeWRSeats >0: # If there are any free seats: 

numberOfFreeWRSeats -=1#   sit down in a chair 

signal(custReady)         #   notify the barber, who's waiting until there is a customer 

signal(accessWRSeats)     #   don't need to lock the chairs anymore 

wait(barberReady)         #   wait until the barber is ready 

# (Have hair cut here.) 

else:                       # otherwise, there are no free seats; tough luck -- 

signal(accessWRSeats)     #   but don't forget to release the lock on the seats! 

# (Leave without a haircut.) 

} while (true); 
 

 

6. Monitors 

Although semaphores provide a convenient and effective mechanism forprocess synchronization, using 

them incorrectly can result in timing errors that are difficult to detect. 

To illustrate how, we review the semaphore solution to the criticalsectionproblem. All processes share a 

semaphore variable mutex, which is.initialized to 1. Each process must execute wait (mutex) before entering 

thecritical section and signal (mutex) afterward. If this sequence is not observed,two processes may be in their 

critical sections simultaneously. 

Let us examinethe various difficulties that may result. 

• Suppose that a process interchanges the order in which the wait(j andsignal () operations on the semaphore 

mutex are executed, resulting inthe following execution: 

signal(mutex); 

critical section 

wait(mutex); 

In this situation, several processes may be executing in their critical sectionssimultaneously, violating the 

rmitual-exclusion requirement. 

• Suppose that a process replaces signal (mutex) with wait (mutex). Thatis, it executes 

wait(mutex); 

critical section 

wait(mutex); 

In this case, a deadlock will occur. 

• Suppose that a process omits the wait (mutex), or the signal (mutex), orboth. In this case, either mutual 

exclusion is violated or a deadlock willoccur. 

To deal with such errors, researchers have developed high-level languageconstructs. In this section, we 

describe one fundamental high-level synchronizationconstruct—the monitor type. 

Usage 

A type, or abstract data type, encapsulates private data with public methodsto operate on that data. A 

monitor type presents a set of programmer-definedoperations that are provided mutual exclusion within the 

monitor. The syntax of a monitor is shown in Figure. 

monitor monitor name f 

{ 

II shared variable declarations 

procedure PI ( . . . ) { 

} 

p r o c e d u r e P 2 ( . . . ) {…..} 

:::::::::::::::::::::::::::::::::::::::: 

p r o c e d u r e P n ( . . . ) {….} 
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i n i t i a l i z a t i o n c o d e ( . . . ) { 

…….. 

} 

} 

Syntax of a monitor. 
 

 

Thus, a procedure defined within a monitor can access onlythose variables declared locally within the 

monitor and its formal parameters.Similarly, the local variables of a monitor can be accessed by only the 

localprocedures. 

The monitor construct ensures that only one process at a time can beactive within the monitor. 

Consequently, the monitor construct, as defined so far, is not sufficiently powerful formodeling some 

synchronization schemes. For this purpose, we need to defineadditional synchronization mechanisms. These 

mechanisms are provided bythe condition construct. A programmer who needs to write a tailor- 

madesynchronization scheme can define one or more variables of type condition: 

condition x, y; 

The only operations that can be invoked on a condition variable are wait ()and signal(). The operation 

x.waitO ; 

means that the process invoking this operation is suspended until anotherprocess invokes 

x . s i g n a l ( ) ; 

The x. signal () operation resumes exactly one suspended process. If noprocess is suspended, then the signal () 

operation has no effect; that is, thestate of x is the same as if the operation had never been executed. Contrast 

this operation with the signal () operation associated withsemaphores, which always affects the state of the 

semaphore. 

Now suppose that, when the x. s ignal () operation is invoked by a processP, there is a suspended process 

Q associated with condition x. Clearly, if thesuspended process Q is allowed to resume its execution, the 

signaling process Pmust wait. Otherwise, both P and Q would be active simultaneously within themonitor. Note, 

however, that both processes can conceptually continue withtheir execution. Two possibilities exist: 

1. Signal and wait. P either waits until Q leaves the monitor or waits foranother condition. 

2. Signal and continue. Q either waits until P leaves the monitor or waitsfor another condition. 

Dining-Philosophers Solution Using Monitors 

We now illustrate monitor concepts by presenting a deadlock-free solution tothe dining-philosophers 

problem. This solution imposes the restriction that aphilosopher may pick up her chopsticks only if both of them 

are available. Tocode this solution, we need to distinguish among three states in which we mayfind a 

philosopher. For this purpose, we introduce the following data structure: 

enum {thinking, hungry, eating} s t a t e [5] ; 

Philosopher i can set the variable s t a t e [i] = eating only if her twoneighbors are not eating: ( s t a te [(i+4) °/» 

5] != eating) and ( s t a te [(i+1)% 5] != eating). 

We also need to declarecondition self [5]; 

where philosopheri can delay herself when she is hungry but is unable toobtain the chopsticks she needs. 

We are now in a position to describe our solution to the dining-philosophersproblem. The distribution of 

the chopsticks is controlled by the monitor dp,whose definition is shown in Figure. 

dp.pickup(i); 

eat 

dp.putdown(i); 
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Each philosopher, before starting toeat, must invoke the operation pi ckup (). This may result in the 

suspension ofthe philosopher process. After the successful completion of the operation, thephilosopher may eat. 

Following this, the philosopher invokes the putdownOoperation. Thus, philosopher i must invoke the operations 

pi ckup () andputdownO in the following sequence: 

monitor DP 

{ 

enum { THINKING; HUNGRY, EATING) state [5] ; 

condition self [5]; 

void pickup (int i) { 

state[i] = HUNGRY; 

test(i); 

if (state[i] != EATING) self [i].wait; 

} 
 

 

void putdown (int i) { 

state[i] = THINKING; 

// test left and right neighbors 

test((i + 4) % 5); 

test((i + 1) % 5); 

} 
 

 

void test (int i) { 

if ( (state[(i + 4) % 5] != EATING) && 

(state[i] == HUNGRY) && 

(state[(i + 1) % 5] != EATING) ) { 

state[i] = EATING ; 

self[i].signal () ; 

} 

} 

initialization_code() { 

for (int i = 0; i < 5; i++) 

state[i] = THINKING; 

} 

} 

A monitor solution to the dining-philosopher problem. 

It is easy to show that this solution ensures that no two neighbors are eatingsimultaneously and that no 

deadlocks will occur. We note, however, that it ispossible for a philosopher to starve to death. We do not 

present a solution tothis problem but rather leave it as an exercise for you. 

Implementing a Monitor Using Semaphores 

We now consider a possible implementation of the monitor mechanism usingsemaphores. For each 

monitor, a semaphore mutex (initialized to 1) is provided.A process must execute wait (mutex) before entering 

the monitor and mustexecute signal (mutex) after leaving the monitor. 

Since a signaling process must wait until the resumed process either leavesor waits, an additional 

semaphore, next, is introduced, initialized to 0, onwhich the signaling processes may suspend themselves. An 

integer variablenext-count is also provided to count the number of processes suspended onnext. Thus, each 

external procedure F is replaced by 

wait(mutex); 

body of F 

if (next_count > 0) 

signal(next); 

else 

signal(mutex); 

Mutual exclusion within a monitor is ensured. 

We can now describe how condition variables are implemented. For eachcondition x, we introduce a 

semaphore x_sem and an integer variable x_countboth initialized to 0. 

The operation x. wait () can now be implemented as 
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x_count++; 

if (next_count > 0) 

signal(next); 

else 

signal(mutex); 

wait(x_sem); 

x_count—; 

The operation x. signal () can be implemented as 

if (x_count > 0) { 

next_count++; 

signal(x_sem); 

wait(next) ; 

next_count--; 

7. Synchronization Examples 

    Solaris 

    Windows XP 

    Linux 

    Pthreads 

Solaris Synchronization 

 Implements a variety of locks to support multitasking, multithreading (including real-time threads), 

and multiprocessing 

    Uses adaptive mutexes for efficiency when protecting data from short code segments 

    Uses condition variables and readers-writers locks when longer sections of code need access to data 

 Uses turnstiles to order the list of threads waiting to acquire either an adaptive mutex or reader-writer 

lock 

Windows XP Synchronization 

    Uses interrupt masks to protect access to global resources on uniprocessor systems 

    Uses spinlocks on multiprocessor systems 

    Also provides dispatcher objects which may act as either mutexes and semaphores 

    Dispatcher objects may also provide events 

    An event acts much like a condition variable 

Linux Synchronization 

    Linux:lPrior to kernel Version 2.6, disables interrupts to implement short critical sections 

    Version 2.6 and later, fully preemptive 

    Linux provides: 

    semaphores 

    spin locks 

Pthreads Synchronization 

    Pthreads API is OS-independent 

    It provides: 

    mutex locks 

    condition variablesnNon-portable extensions include: 

    read-write locks 

    spin locks 


