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1. Process Concept 
 

The Process 

Process Management 

 

A process is a program in execution. A processis more than the program code, which is sometimes 

known as the text section.It also includes the current activity, as represented by the value of the 

programcounter and the contents of the processor's registers. A process generally alsoincludes the process 

stack, which contains temporary data (such as functionparameters, return addresses, and local variables), and a 

data section, whichcontains global variables. A process may also include a heap, which is memorythat is 

dynamically allocated during process run time.  

We emphasize that a program by itself is not a process; a program is a passiveentity, such as a file 

containing a list of instructions stored on disk (often calledan executable file), whereas a process is an active 

entity, with a program counterspecifying the next instruction to execute and a set of associated resources. 

Aprogram becomes a process when an executable file is loaded into memory. 

Process State 
 

As a process executes, it changes state. The state of a process is defined inpart by the current activity of 

that process. Each process may be in one of thefollowing states: 

• New. The process is being created. 
 

• Running. Instructions are being executed. 
 

• Waiting. The process is waiting for some event to occur (such as an I/Ocompletion or reception of a signal). 
 

• Ready. The process is waiting to be assigned to a processor. 
 

• Terminated. The process has finished execution. 
 

It is important to realizethat only one process can be running on any processor at any instant. Many 

processes may be ready and limiting, however. The state diagram correspondingto these states is presented in 

Figure. 

 

 

 

Process Control Block 
 

Each process is represented in the operating system by a process control block(PCB)—also called a 

task control block. A PCB is shown in Figure . It containsmany pieces of information associated with a specific 

process, including these: 
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• Process state. The state may be new, ready, running, waiting, halted, andso on. 
 

• Program counter. The counter indicates the address of the next instructionto be executed for this process. 
 

• CPU registers. The registers vary in number and type, depending onthe computer architecture. They include 

accumulators, index registers,stack pointers, and general-purpose registers, plus any condition-codeinformation. 

Along with the program counter, this state information mustbe saved when an interrupt occurs, to allow the 

process to be continuedcorrectly afterward. 

• CPU-scheduling information. This information includes a process priority,pointers to scheduling queues, and 

any other scheduling parameters. 

• Memory-management information. This information may include suchinformation as the value of the base 

and limit registers, the page tables,or the segment tables, depending on the memory system  used by the 

operating system. 

• Accounting information. This information includes the amount of CPUand real time used, time limits, 

account mimbers, job or process numbers,and so on. 

• I/O status information.This information includes the list of I/O devicesallocated to the process, a list of open 

files, and so on.In brief,the PCB simply serves as the repository for any information that mayvary from process 

to Process. 
 
 
 
 

 

2. Process Scheduling 

CPU Switch from Process to Process 

 

The objective of multiprogramming is to have some process running at alltimes, to maximize CPU 

utilization. The objective of time sharing is to switch theCPU among processes so frequently that users can 

interact with each programwhile it is running. To meet these objectives, the  process scheduler selectsan 

available process (possibly from a set of several available processes) forprogram execution on the CPU. For a 

single-processor system, there will neverbe more than one running process. If there are more processes, the rest 

willhave to wait until the CPU is free and can be rescheduled. 

Scheduling Queues 
 

As processes enter the system, they are put into a job queue, which consistsof all processes in the 

system. The processes that are residing in main memoryand are ready and waiting to execute are kept on a list 

called the ready queue.This queue is generally stored as a linked list. A ready-queue header containspointers to 
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the first and final PCBs in the list. Each PCB includes a pointer fieldthat points to the next PCB in the ready 
 

queue. 
 

The system also includes other queues. When a process is allocated theCPU, it executes for a while and 

eventually quits, is interrupted, or waits forthe occurrence of a particular event, such as the completion of an I/O 

request.Suppose the process makes an I/O request to a shared device, such as a disk.Since there are many 

processes in the system, the disk may be busy with theI/O request of some other process. The process therefore 

may have to wait forthe disk. The list of processes waiting for a particular I/O device is called adevice queue. 

Each device has its own device queue  

 
The ready queue and various I/O device queues. 

 

A common representation for a discussion of process scheduling is aqueueing diagram, such as that in 

Figure . Each rectangular box representsa queue. Two types of queues are present: the ready queue and a set of 

devicequeues. The circles represent the resources that serve the queues, and thearrows indicate the flow of 

processes in the system. 

 

A new process is initially put in the ready queue. It waits there tmtil it isselected for execution, or is 
 

dispatched. Once the process is allocated the CPUand is executing, one of several events could occur: 
 

• The process could issue an I/O request and then be placed in an I/O queue. 
 

• The process could create a new subprocess and wait for the subprocess'stermination. 
 

• The process could be removed forcibly from the CPU, as a result of aninterrupt, and be put back in the ready 

queue. 

Schedulers 
 

A process migrates among the various scheduling queues throughout itslifetime. The operating system 

must select, for scheduling purposes, processesfrom these queues in some fashion. The selection process is 

carried out by theappropriate scheduler. 

The long-term scheduler, or jobscheduler, selects processes from this pool and loads them into 

memory forexecution. The short-term scheduler, or CPU scheduler, selects from amongthe processes that are 

ready to execute and allocates the CPU to one of them. 
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The primary distinction between these two schedulers lies in frequencyof execution. The short-term 

scheduler must select a new process for the CPUfrequently. A process may execute for only a few milliseconds 

before waitingfor an I/O request. Often, the short-term scheduler executes at least once every100 milliseconds. 

Because of the short time between executions, the short-termscheduler must be fast. The long-term scheduler 

executes much less frequently; minutes may separatethe creation of one new process and the next. The long- 

term schedulercontrols the degree of multiprogramming 

It is important that the long-term scheduler make a careful selection. Ingeneral, most processes can be 

described as either L/O bound or CPU bound. AnI/O-bound process is one that spends more of its time doing 

I/O than it spendsdoing computations. A CPU-bound process, in contrast, generates I/O requestsinfrequently, 

using more of its time doing computations. It is important that thelong-term scheduler select a good process 

mix of I/O-bound and CPU-bound processes. 

 

If  all  processes  are  I/O  bound,  the  ready queue  will  almost  alwaysbe  empty,  and  the  short-term 

scheduler will have little to do. If all processesare CPU bound, the I/O waiting queue will almost always be 

empty, devices 

will go unused, and again the system will be unbalanced. The system with thebest performance will thus have a 

combination of CPU-bound and I/O-boundprocesses. 

Some operating systems, such as time-sharing systems, may introduce anadditional, intermediate level 

of scheduling. This medium-term scheduler isdiagrammed in Figure . The key idea behind a medium-term 

scheduler is 

that sometimes it can be advantageous to remove processes from memory(and from active contention for the 

CPU) and thus reduce the degree ofmultiprogramming. Later, the process can be reintroduced into memory, and 

itsexecution can be continued where it left off. This scheme is called swapping.The process is swapped out, and 

is later swapped in, by the medium-termscheduler. Swapping may be necessary to improve the process mix or 

because 

a change in memory requirements has overcommitted available memory,requiring memory to be freed up. 
 

Context Switch 
 

An interrupts cause the operating system to change a CPUfrom its current task and to run a kernel 

routine. Such operations happenfrequently on general-purpose systems. When an interrupt occurs, the 

systemneeds to save the current context of the process currently running on theCPU so that it can restore that 

context when its processing is done, essentiallysuspending the process and then resuming it. 

The context is represented inthe PCB of the process; it includes the value of the CPU registers, the 
 

process 



IIIB.TECH–I SEM CSE (OS) UNIT-II 

5 

 

 

 

state (see Figure), and memory-management information. Generically, weperform a state save of the current 

state of the CPU, be it in kernel or user mode,and then a state restore to resume operations. 

Switching the CPU to another process requires performing a stat^ save of the current process and a state 

restore of a different process. This task is known as a context switch. When a context switch occurs, the kernel 

saves the context of the old process in its PCB and loads the saved context of the new process scheduled to run. 

Context-switch time is pure overhead, because the system does no useful work while switching. 

3. Operations on Processes 
 

The processes in most systems can execute concurrently, and they may be created and deleted 

dynamically. Thus, these systems must provide a mechanism for process creation and termination. 

Process Creation 
 

A process may create several new processes, via a create-process system call, during the course of 

execution. The creating process is called a parent process, and the new processes are called the children of that 

process. Each of these 

new processes may in turn create other processes, forming a tree of processes. 
 

Most operating systems  identify processes according to a unique process identifier (or pid), which is 

typically an integer number. Figure illustrates a typical process tree for the Solaris operating system, showing 

the name of each process and its pid. In Solaris, the process at the top of the tree is the sched process, with pid 

of 0. The sched process creates several children processes—including pageout and f sf lush. These processes are 

responsible for managing memory and file systems. The sched process also creates the i n i t process, which 

serves as the root parent process for all user processes. 

 

 

In general, a process will need certain resources (CPU time, memory, files, I/O devices) to accomplish its task. 

When a process creates a subprocess, that subprocess may be able to obtain its resources directly from the 

operatiiigsystem, or it may be constrained to a subset of the resources of the parent process. The parent may 

have to partition its resources among its children, or it may be able to share some resources (such as memory or 

files) among several of its children. Restricting a child process to a subset of the parent's resources prevents any 

process from overloading the system by creating too many subprocesses. 

When a process creates a new process, two possibilities exist in terms ofexecution: 
 

 

1. The parent continues to execute concurrently with its children. 
 

2. The parent waits until some or all of its children have terminated. 



IIIB.TECH–I SEM CSE (OS) UNIT-II 

6 

 

 

 

There are also two possibilities in terms of the address space of the new process: 
 

1. The child process is a duplicate of the parent process (it has the sameprogram and data as the parent). 
 

2. The child process has a new program loaded into it. 
 

 

Process Termination 
 

A process terminates when it finishes executing its final statement and asks theoperating system to 

delete it by using the exit () system call. At that point, theprocess may return a status value (typically an integer) 

to its parent process (viathe wait() system call). All the resources of the process—including physical andvirtual 

memory, open files, and I/O buffers—are deallocated by the operatingsystem. 

A parent may terminate the execution of one of its children for a variety ofreasons, such as these: 
 

• The child has exceeded its usage of some of the resources that it has beenallocated. (To determine whether this 
 

has occurred, the parent must havea mechanism to inspect the state of its children.) 
 

• The task assigned to the child is no longer required. 
 

• The parent is exiting, and the operating system does not allow a child tocontinue if its parent terminates. 
 

Some systems, including VMS, do not allow a child to exist if its parenthas terminated. In such systems, if a 

process terminates (either normally orabnormally), then all its children must also be terminated. This 

phenomenon,referred to as cascading termination, is normally initiated by the operatingsystem. 

To illustrate process execution and termination, consider that, in UNIX, wecan terminate a process by 

using the 

e x i t() system call; its parent processmay wait for the termination of a child process by using the waitO 

systemcall. The wait () system call returns the process identifier of a terminated childso that the parent can tell 

which of its possibly many children has terminated. 

4. Interprocess Communication 
 

Processes  executing  concurrently in  the  operating  system  may be  either  independent  processes  or 

cooperating processes. A process is independent if it cannot affect or be affected by the other processes 

executing in the system.Any process that does not share data with any other process is independent. 

A process is cooperating if it can affect or be affected by the other processes executing in the system. Clearly, 

any process that shares data with other processes is a cooperating process. 

There are several reasons for providing an environment that allows process cooperation: 
 

• Information sharing. Since several users may be interested in the same piece of information (for instance, a 

shared file), we must provide an environment to allow concurrent access to such information. 

• Computation speedup. If we want a particular task to run faster, we must break it into subtasks, each of 

which will be executing in parallel with the others. 

• Modularity. We may want to construct the system in a modular fashion, dividing the system functions into 

separate processes or threads. 

• Convenience. Even an individual user may work on many tasks at the same time. For instance, a user may be 

editing, printing, and compiling in parallel. 

Cooperating processes require an interprocess communication (IPC) mechanism that will allow them 

to exchange data and information. There are two fundamental models of interprocess communication:  (1) 

shared memory and (2) message passing. 

In the shared-memory model, a region of memory that is shared by cooperating processes is established. 

Processes  can  then  exchange  information  by  reading  and  writing  data  to  the  shared  region.  In  the 
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messagepassingmodel, communication takes  place by means of messages exchanged between the cooperating 

processes. The two communications models are contrasted in Figure. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Communications models, (a) Message passing, (b) Shared memory. 
 

 

Both of the models just discussed are common in operating systems, and many systems implement both. 

Message passing is useful for exchanging smaller amounts of data, because no conflicts need be avoided. 

Message passing is also easier to implement than is shared memory for intercomputer communication. Shared 

memory allows maximum speed and convenience of communication, as it can be done at memory speeds when 

within a computer. 

Shared memory is faster than message passing, as message-passing systemsare typically implemented 

using system calls and thus require the more timeconsumingtask of kernel intervention. In contrast, in shared- 

memory systems, 

system calls are required only to establish shared-memory regions. Once sharedmemory is established, all 

accesses are treated as routine memory accesses, andno assistance from the kernel is required. 

Shared-Memory Systems 
 

Interprocess  communication  using  shared  memory  requires  communicatingprocesses  to  establish  a 

region of shared memory. Typically, a shared-memoryregion resides in the address space of the process creating 

the shared-memorysegment. Other processes that wish to communicate using this shared-memorysegment must 

attach it to their address space. They can then exchange information by reading and writingdata in the shared 

areas. The form of the data and the location are determined bythese processes and are not under the operating 

system's control. The processes 

are also responsible for ensuring that they are not writing to the same locationsimultaneously. 
 

To illustrate the concept of cooperating processes, let's consider theproducer-consumer problem, which 

is a common paradigm for cooperatingprocesses. A producer process produces information that is consumed 

by aconsumer process. 

Message-Passing Systems 
 

Message passing provides a mechanism to allow processes to communicate and to synchronize their 

actions without sharing the same address space and is particularly useful in a distributed environment, where the 

communicating 

processes may reside on different computers connected by a network. 
 

A message-passing facility provides at least two operations: send(message) and receive(message). 

Messages sent by a process can be of either fixed or variable size. If only fixed-sized messages can be sent, the 

system-level implementation is straightforward. This restriction, however, makes the task of programming more 

difficult. Conversely, variable-sized messages require a more complex system-level implementation, but the 

programming task   becomes simpler. This is a common kind of tradeoff seen throughout operating system 

design. 
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If processes P and Q want to communicate, they must send messages to and receive messages from each 

other; a communication link must exist between them. This link can be implemented in a variety of ways. 

Here are several methods for logically implementing a link and the send()/receive () operations: 
 

• Direct or indirect communication 
 

• Synchronous or asynchronous communication 
 

• Automatic or explicit buffering 
 

We look at issues related to each of these features next. 
 

Naming 
 

Processes that want to communicate must have a way to refer to each other. They can use either direct or 

indirect communication. 

Under direct communication, each process that wants to communicate must explicitly name the recipient 

or sender of the communication. In this scheme, the send.0 and receive() primitives are defined as: 

• send(P, message)—Send a message to process P. 
 

• receive (Q, message)—Receive a message from process Q. 
 

A communication link in this scheme has the following properties: 
 

• A link is established automatically between every pair of processes that want to communicate. The processes 

need to know only each other's identity to communicate. 

• A link is associated with exactly two processes. 
 

• Between each pair of processes, there exists exactly one link. 
 

This scheme exhibits symmetry in addressing; that is, both the sender process and the receiver process must 

name the other to communicate. A variant of this scheme employs asymmetry in addressing. Here, only the 

sender names the recipient; the recipient is not required to name the sender. In this scheme, the send() and 

receive () primitives are defined as follows: 

• send(P, message)—Send a message to process P. 
 

• receive(id, message)—-Receive a message from any process; the variable id is set to the name of the process 

with which communication has taken place. 

With indirect communication, the messages  are sent to  and  received  from mailboxes, or ports. A 

mailbox can be viewed abstractly as an object into which messages can be placed by processes and from which 

messages can be removed. 

Each mailbox has a unique identification. 
 

Two processes can communicate only if the processes have a shared mailbox, however. The sendC) and receive 
 

() primitives are defined as follows: 
 

• send(A, message)—Send a message to mailbox A. 
 

• receive(A, message)—Receive a message from mailbox A. 
 

In this scheme, a communication link has the following properties: 
 

• A link is established between a pair of processes only if both members of 
 

the pair have a shared mailbox. 
 

• A link may be associated with more than two processes. 
 

• Between each pair of communicating processes, there may be a number of 
 

different links, with each link corresponding to one mailbox. 
 

In contrast, a mailbox that is owned by the operating system has anexistence of its own. It is independent 

and is not attached to any particularprocess. The operating system then must provide a mechanism that allows 

aprocess to do the following: 
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• Create a new mailbox. 
 

• Send and receive messages through the mailbox. 
 

• Delete a mailbox. 
 

The process that creates a new mailbox is that mailbox's owner by default.Initially, the owner is the only 

process that can receive messages through thismailbox. However, the ownership and receiving privilege may be 

passed toother processes through appropriate system calls. Of course, this provisioncould result in multiple 

receivers for each mailbox. 

Synchronization 
 

Communication between processes takes place through calls to sendO andreceive () primitives. There are 

different design options for implementingeach primitive. Message passing may be either blocking or 

nonblockingalso known as synchronous and asynchronous. 

• Blocking send. The sending process is blocked until the message isreceived by the receiving process or by the 

mailbox. 

• Nonblocking send. The sending process sends the message and resumesoperation. 
 

• Blocking receive. The receiver blocks until a message is available. 
 

• Nonblocking receive. The receiver retrieves either a valid message or anull. 
 

Buffering 
 

Whether communication is direct or indirect, messages exchanged by communicatingprocesses reside in 

a temporary queue. Basically, such queues can beimplemented in three ways: 

• Zero capacity. The queue has a maximum length of zero; thus, the linkcannot have any messages waiting in 

it. In this case, the sender must blockuntil the recipient receives the message. 

• Bounded capacity. The queue has finite length n; thus, at most n messagescan reside in it. If the queue is not 

full when a new message is sent, themessage is placed in the queue (either the message is copied or a pointerto 

the message is kept), and the sender can continue execution withoutwaiting. The links capacity is finite, 

however. If the link is full, the sendermust block until space is available in the queue. 

• Unbounded capacity. The queues length is potentially infinite; thus, anynumber of messages can wait in it. 

The sender never blocks. 

The zero-capacity case is sometimes referred to as a message system with nobuffering; the other cases 

are referred to as systems with automatic buffering. 

5. Overview of Threads 
 

A thread is a basic unit of CPU utilization; it comprises a thread ID, a programcounter, a register set, and 

a stack. It shares with other threads belongingto the same process its code section, data section, and other 

operating-systemresources, such as open files and signals. A traditional (or heavyweight) processhas a single 

thread of control. process has multiple threads of control, itcan perform more than one task at a time. Figure 

illustrates the differencebetween a traditional single-threaded process and a multithreaded process. 
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Single-threaded and multithreaded processes. 
 

 

The benefits of multithreaded programming can be broken down into fourmajor categories: 
 

1. Responsiveness. Multithreading an interactive application may allow aprogram to continue running even if 

part  of  it  is  blocked  or  is  performinga  lengthy  operation,  thereby increasing  responsiveness  to  the  user. 

Forinstance, a multithreaded web browser could still allow user interactionin one thread while an image was 

being loaded in another thread. 

2. Resource sharing. By default, threads share the memory and theresources of the process to which they 

belong. The benefit of sharingcode and data is that it allows an application to have several differentthreads of 

activity within the same address space. 

3. Economy. Allocating memory and resources for process creation is costly.Because threads share resources of 

the   process   to   which   they   belong,   itis   more   economical   to   create   and   context-switch   threads. 

Empiricallygauging the difference in overhead can be difficult, but in general it ismuch more time consuming to 

create and manage processes than threads. 

4. Utilization of multiprocessor architectures. The benefits of multithreadingcan be greatly increased in a 

multiprocessor architecture, wherethreads may be running in parallel on different processors. A singlethreaded 

process can only run on one CPU, no matter how many areavailable. Multithreading on a multi-CPU machine 

increases concurrency. 

Multithreading Models 
 

Supportfor threads may be provided either at the user level, for user threads, or by thekernel, for kernel 

threads. User threads are supported above the kernel andare managed without kernel support, whereas kernel 

threads are supportedand managed directly by the operating system. 

Ultimately, there must exist a relationship between user threads and kernelthreads. In this section, we 

look at three common ways of establishing thisrelationship. 

Many-to-One Model 
 

The many-to-one model maps many user-level threads to onekernel thread. Thread management is done 

by the thread library in userspace, so it is efficient; but the entire process will block if a thread makes ablocking 

system call. Also, because only one thread can access the kernel at atime, multiple threads are unable to run in 

parallel on multiprocessors. Greenthreads—a thread library available for Solaris—uses this model, as does 

GNUPortable Threads. 

 

 
 

One-to-One Model 
 

The one-to-one model maps each user thread to a kernel thread. Itprovides more concurrency than the many-to- 

one model by allowing anotherthread to run when a thread makes a blocking system call; it also allowsmultiple 

threads to run in parallel on multiprocessors. The only drawback tothis model is that creating a user thread 

requires creating the correspondingkernel thread. Because the overhead of creating kernel threads can burden 
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theperformance of an application, most implementations of this model restrict thenumber of threads supported 

by the system. Linux, along with the family ofWindows operating systems—including Windows 95, 98, NT, 

2000, and XPimplement the one-to-one model. 
 
 
 

 
 

Many-to-Many Model 
 

The many-to-many model multiplexes many user-level threads toa smaller or equal number of kernel 

threads. The number of kernel threadsmay be specific to either a particular application or a particular machine 

(aon a uniprocessor). Whereas the many-to-one model allows the developer tocreate as many user threads as she 

wishes, true concurrency is not gainedbecause the kernel can schedule only one thread at a time. The one-to- 

onemodel allows for greater concurrency, but the developer has to be careful notto create too many threads 

within an application (and in some instances maybe limited in the number of threads she can create). The many- 

to-many modelsuffers from neither of these shortcomings: Developers can  create as many userthreads as 

necessary, and the corresponding kernel threads can run in parallelon a multiprocessor. Also, when a thread 

performs a blocking system call, thekernel can schedule another thread for execution. 

One popular variation on the many-to-many model still multiplexes manyuser-level threads to a smaller or 

equal number of kernel threads but also allowsa user-level thread to be bound to a kernel thread. This variation, 

sometimesreferred to as the tivo-level model (Figure), is supported by operating systemssuch as IRIX, HP-UX, 

and Tru64 UNIX. The Solaris operating system supportedthe two-level model  

 

 
6. CPU Scheduling 

 

CPU-scheduling decisions may take place under the following four circumstances: 
 

1. When a process switches from the running state to the waiting state 
 

2. When a process switches from the running state to the ready state 
 

3. When a process switches from the waiting state to the ready state 
 

4. When a process terminates 
 

For situations 1 and 4, there is no choice in terms of scheduling. A new process(if one exists in the ready 

queue) must be selected for execution. There is achoice, however, for situations 2 and 3. 

When scheduling takes place only under circumstances 1 and 4, we saythat the scheduling scheme is 

nonpreemptive or cooperative; otherwise, itis preemptive. Under nonpreemptive scheduling, once the CPU 

has beenallocated to a process, the process keeps the CPU until it releases the CPU eitherby terminating or by 
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switching to the waiting state. This scheduling methodwas used by Microsoft Windows 3.x; Windows 95 

introduced preemptivescheduling, and all subsequent versions of Windows operating systems haveused 

preemptive scheduling. 

 
 

Unfortunately, preemptive scheduling incurs a cost associated with accessto shared data. Consider the 

case of two processes that share data. While oneis updating the data, it is preempted so that the second process 

can run. Thesecond process then tries to read the data, which are in an inconsistent state. 

Dispatcher 
 

Another component involved in the CPU-scheduling function is the dispatcher.The dispatcher is the 

module that gives control of the CPU to the process selectedby the short-term scheduler. This function involves 

the following: 

• Switching context 
 

• Switching to user mode 
 

• Jumping to the proper location in the user program to restart that program 
 

The dispatcher should be as fast as possible, since it is invoked during everyprocess switch. The time it 

takes for the dispatcher to stop one process andstart another running is known as the dispatch latency. 

Scheduling Criteria 

Different CPU scheduling algorithms have different properties, and the choiceof a particular algorithm 
 

based onMany criteria have been suggested for comparing CPU scheduling algorithms.The criteria include 

thefollowing: 

• CPU utilization. We want to keep the CPU as busy as possible. Conceptually,CPU utilization can range from 
 

0 to 100 percent. In a real system, itshould range from 40 percent (for a lightly loaded system) to 90 percent. 
 

• Throughput. One measure of CPU work is the number of processes that are completedper time unit, called 

throughput. For long processes, this rate may be oneprocess per hour; for short transactions, it may be 10 

processes per second. 

• Turnaround time. It is how long it takes to execute that process. The intervalfrom the time of submission of 

a process to the time of completion is theturnaround time. Turnaround time is the sum of the periods spent 

waitingto get into memory, waiting in the ready queue, executing on the CPU, anddoing I/O. 

• Waiting time. Theamount of time that a process spends waiting in the ready queue. Waitingtime is the sum of 

the periods spent waiting in the ready queue. 

• Response time. The time from the submissionof a request until the first response is produced. This measure, 

calledresponse time, is the time it takes to start responding, not the time it takesto output the response. The 

turnaround time is generally limited by thespeed of the output device. 

It is desirable to maximize CPU utilization and throughput and to minimizeturnaround time, waiting 

time, and response time. In most cases, we optimizethe average measure. However, under some circumstances, 

it is desirableto optimize the minimum or maximum values rather than the average. 

Scheduling Algorithms 
 

CPU scheduling deals with the problem of deciding which of the processesin the ready queue is to be 

allocated the CPU. There are many different CPUscheduling algorithms. In this section, we describe several of 

them. 

1. First-Come, First-Served Scheduling 
 

The simplest CPU-scheduling algorithm is the first-come, first-served(FCFS) scheduling algorithm. 
 

With this scheme, the process that requests theCPU first is allocated the CPU first. The implementation of the 



IIIB.TECH–I SEM CSE (OS) UNIT-II 

13 

 

 

 

FCFS policy iseasily managed with a FIFO queue. When a process enters the ready queue, itsPCB is linked 

onto the tail of the queue. When the CPU is free, it is allocated tothe process at the head of the queue. The 

running process is then removed fromthe queue. The code for FCFS scheduling is simple to write and 

understand.The  average  waiting  time  under  the  FCFS  policy,  however,  is  often  quitelong.  Consider  the 

following set of processes that arrive at time 0, with thelength of the CPU burst given in milliseconds: 

Process           Burst Time 
 

P1 24 

P2 3 

P3 3 

 

If the processes arrive in the order P1, P2, P3, and are served in FCFS order,we get the result shown in the 
 

following Gantt chart: 
 

 
 
 

P1                                                    P2                P3 
 
 
 

0                                                 24           2           30 
 
 

The waiting time is 0 milliseconds for process Pi, 24 milliseconds for process 
 

Pn, and 27 milliseconds for process Pj. Thus, the average waiting time is (0 

+ 24 + 27)/3 = 17 milliseconds. If the processes arrive in the order Pi, P3, Pi, 

however, the results will be as showrn in the following Gantt chart: 

 

P2                P3                                                    P1 
 

 
 

0             3            6                                                30 
The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reductionis substantial. Thus, the average 

waiting time under an FCFS policy is generallynot minimal and may vary substantially if the process's CPU 

burst times varygreatly. 

In addition, consider the performance of FCFS scheduling in a dynamicsituation. Assume we have one 

CPU-bound process and many I/O-boundprocesses. As the processes flow around the system, the following 

scenariomay result. The CPU-bound process will get and hold the CPU. During thistime, all the other processes 

will finish their I/O and will move into the readyqueue, waiting for the CPU. While the processes wait in the 

ready queue, theI/O devices are idle. Eventually, the CPU-bound process finishes its CPU burstand moves to an 

I/O device. All the I/O-bound processes, which have shortCPU bursts, execute quickly and move back to the 

I/O queues. At this point,the CPU sits idle. The CPU-bound process will then move back to the readyqueue and 

be allocated the CPU. Again, all the I/O processes end up waiting inthe ready queue until the CPU-bound 

process is done. 

There is a convoy effectas all the other processes wait for the one big process to get off the CPU. 

Thiseffect results in lower CPU and device utilization than might be possible if theshorter processes were 

allowed to go first. 

The FCFS scheduling algorithm is nonpreemptive. Once the CPU has beenallocated to a process, that 

process keeps the CPU until it releases the CPU, eitherby terminating or by requesting I/O. The FCFS algorithm 
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is thus particularlytroublesome for time-sharing systems, where it is important that each user geta share of the 
 

CPU at regular intervals. 
 

2. Shortest-Job-First Scheduling 
 

The shortest-job-first (SJF) schedulingalgorithm associates with each process the length of 

theprocess's next CPU burst. When the CPU is available, it is assigned to the processthat has the smallest next 

CPU burst. If the next CPU bursts of two processes arethe same, FCFS scheduling is used to break the tie. Note 

that   a   more   appropriateterm   for   this   scheduling   method   would   be   the   shortest-next-CPU-burst 

algorithm,because scheduling depends on the length of the next CPU burst of a process,rather than its total 

length.As an example of SJF scheduling, consider the following set of processes,with the length of the CPU 

burst given in milliseconds: 
 

Process 
 

P1 

Burst Time 
 

6 

P2 8 

P3 7 

P4 3 

 
 

Using SJF scheduling, we would schedule these processes according to thefollowing Gantt chart: 
 

 

P4                               P1 
P3                        P2 

 

 
 

0              3                        9                16                     24 
The waiting time is 3 milliseconds for process P1, 16 milliseconds for processP2, 9 milliseconds for 

process P3, and 0 milliseconds for process P4. Thus, theaverage waiting time is (3 + 16 + 9 + 0)/4 - 7 

milliseconds. By comparison, ifwe were using the FCFS scheduling scheme, the average waiting time wouldbe 

10.25 milliseconds. 
 

The SJF scheduling algorithm is provably optimal, in that it gives theminimum average waiting time for 

a given set of processes. Moving a shortprocess before a long one decreases the waiting time of the short 

process morethan it increases the waiting time of the long process. Consequently, the averagewaiting time 

decreases. 

The real difficulty with the SJF algorithm is knowing the length of the nextCPU request. There is no 

way to know the length of the nextCPU burst. One approach is to try to approximate SJF scheduling. We may 

notknow the length of the next CPU burst, but we may be able to predict its value.We expect that the next CPU 

burst will be similar in length to the previous ones.Thus, by computing an approximation of the length of the 

next CPU burst, wecan pick the process with the shortest predicted CPU burst.The next CPU burst is generally 

predicted as an exponential average of themeasured lengths of previous CPU bursts. Let tn be the length of the 

»th CPUburst, and let T,,+I be our predicted value for the next CPU burst. Then, for a, 0< a < 1, define 
 

T n + 1 =atn + ( l – a)Tn. 
 

This formula defines an exponential average. The value of tn contains ourmost recent information; in 

stores the past history. The parameter a controlsthe relative weight of recent and past history in our prediction. 

If a = 0, thenTn,+I =Tn,, and recent history has no effect (current conditions are assumedto be transient); if a = 

1, then Tn+1= tn, and only the most recent CPU burstmatters (history is assumed to be old and irrelevant). More 
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commonly, a =1/2, so recent history and past history are equally weighted. The initial T0 canbe defined as a 

constant or as an overall system average. 

The SJF algorithm can be either preemptive or nonpreemptive. The choicearises when a new process 

arrives at the ready queue while a previous process isstill executing. The next CPU burst of the newly arrived 

process may be shorterthan what is left of the currently executing process. A preemptive SJF algorithmwill 

preempt the currently executing process, whereas a nonpreemptiTe SJFalgorithm will allow the currently 

running process to finish its CPU burst.Preemptive SJF scheduling is sometimes called shortest-remaining- 

time-firstscheduling. 

As an example, consider the following four processes, with the length ofthe CPU burst given in milliseconds: 
 

Process           Arrival Time             Burst Time 
 

P1 0 8 

P2 1 4 

P3 2 9 

P4 3 5 

 
 

If the processes arrive at the ready queue at the times shown and need theindicated burst times, then the 

resulting preemptive SJF schedule is as depictedin the following Gantt chart: 

 

 
 
 
 
 
 
 

Process Pi is started at time 0, since it is the only process in the queue. ProcessP2 arrives at time 1. The 

remaining time for process Pi (7 milliseconds) islarger than the time required by process P2 (4 milliseconds), so 

process Pi ispreempted, and process P2 is scheduled. The average waiting time for thisexample is ((10 - 1) + (1 

- 1) + (17 - 2) + (5 - 3))/4 = 26/4 = 6.5 milliseconds.Nonpreemptive SJF scheduling would result in an average 

waiting time of 7.75milliseconds. 

3 Priority Scheduling 
 

The  SJF  algorithm  is  a  special  case  of  the  general  priority  scheduling  algorithm.A  priority  is 

associated with each process, and the CPU is allocated to the processwith the highest priority. Equal-priority 

processes are scheduled in FCFS order.An SJF algorithm is simply a priority algorithm where the priority (p) is 

theinverse of the (predicted) next CPU burst. The larger the CPU burst, the lowerthe priority, and vice versa. 

Note that we discuss scheduling in terms of  high priority and low  priority.Priorities are generally 

indicated by some fixed range of numbers, such as 0to 7 or 0 to 4,095. However, there is no general agreement 

on whether 0 is thehighest or lowest priority. Some systems use low numbers to represent lowpriority; others 

use low numbers for high priority. This difference can lead toconfusion. In this text, we assume that low 

numbers represent high priority. 

As an example, consider the following set of processes, assumed to havearrived at time 0, in the order 
 

P1, P2, • • -, P5, with the length of the CPU burstgiven in milliseconds 
 

Process 
 

Pi 

Pi 

P3 

PA 

 

Ps 
 

 
 

Burst Time 
 

10 
 

1 

 

2 
 

1 
 

5 
 

 
 

Priority 
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3 4 2 

1 5  

Using priority scheduling, we would schedule these processes according to thefollowing Gantt chart: 
 

 
 

 

The average waiting time is 8.2 milliseconds. 
 

Priorities can be defined either internally or externally. Internally definedpriorities use some measurable 

quantity or quantities to compute the priorityof a process 

Priority scheduling can be either preemptive or nonpreemptive. When aprocess arrives at the ready 

queue, its priority is compared with the priorityof the currently running process. A preemptive priority 

scheduling algorithmwill preempt the CPU if the priority of the newly arrived process is higherthan the priority 

of the currently running process. A nonpreemptive priorityscheduling algorithm will simply put the new process 

at the head of the readyqueue. 

A major problem with priority scheduling algorithms is indefinite blocking,or starvation. A process 

that is ready to run but waiting for the CPU canbe considered blocked. A priority scheduling algorithm can 

leave some lowpriorityprocesses waiting indefinitely. In a heavily loaded computer system, asteady stream of 

higher-priority processes can prevent a low-priority processfrom ever getting the CPU. Generally, one of two 

things will happen. Either theprocess will eventually be run  or the computer system will eventually crash and 

lose allunfinished low-priority processes. 

A solution to the problem of indefinite blockage of low-priority processesis aging. Aging is a technique 

of gradually increasing the priority of processesthat wait in the system for a long time. For example, if priorities 

range from127 (low) to 0 (high), we could increase the priority of a waiting process by1 every 15 minutes. 

Eventually, even a process with an initial priority of 127would have the highest priority in the system and 

would be executed. In fact,it would take no more than 32 hours for a priority-127 process to age to apriority-0 

process. 

4 Round-Robin Scheduling 
 

The round-robin  (RR) scheduling algorithm  is  designed  especially for timesharingsystems.  It  is 

similar to FCFS scheduling, but preemption is added toswitch between processes. A small unit of time, called a 

time quantum or timeslice, is defined. A time quantum is generally from 10 to 100 milliseconds. Theready 

queue is treated as a circular queue. The CPU scheduler goes around theready queue, allocating the CPU to each 

process for a time interval of up to 1time quantum. 

To implement RR scheduling, we keep the ready queue as a FIFO queue ofprocesses. New processes are 

added to the tail of the ready queue. The CPUscheduler picks the first process from the ready queue, sets a timer 

to interruptafter 1 time quantum, and dispatches the process.One of two things will then happen. 

The process may have a CPU burst ofless than 1 time quantum. In this case, the process itself will 

release the CPUvoluntarily. The scheduler will then proceed to the next process in the readyqueue. Otherwise, if 

the CPU burst of the currently running process is longerthan 1 time quantum, the timer will go off and will 

cause an interrupt to theoperating system. A context switch will be executed, and the process will beput at the 

tail of the ready queue. The CPU scheduler will then select the nextprocess in the ready queue. 
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The average waiting time under the RR policy is often long. Consider thefollowing set of processes that 
 

arrive at time 0, with the length of the CPU burstgiven in milliseconds: 
 

Process 
 

Pi 
 

Pi 
 

P3 

 

Burst Time 
 

24 
 

3 
 

3 
 

If we use a time quantum of 4 milliseconds, then process P1 gets the first4 milliseconds. Since it 

requires another 20 milliseconds, it is preempted afterthe first time quantum, and the CPU is given to the next 

process in the queue,process P2. Since process P2 does not need 4 milliseconds, it quits before itstime quantum 

expires. The CPU is then given to the next process, process P3.Once each process has received 1 time quantum, 

the CPU is returned to processP1 for an additional time quantum. The resulting RR schedule is 
 

 

P1 P2 P3 P1 P1 P1 P1 P1 

0      4       7     10     14    18   22     26    30 
The average waiting time is 17/3 = 5.66 milliseconds. 

 

In the RR scheduling algorithm, no process is allocated the CPU for morethan 1 time quantum in a row 

(unless it is the only runnable process). If aprocess's CPU burst exceeds 1 time quantum, that process is 

preempted and isput back in the ready queue. The RR scheduling algorithm is thus preemptive.If there are n 

processes in the ready queue and the time quantum is q,then each process gets 1/n of the CPU time in chunks of 

at most q time units. 

Each process must wait no longer than (n — 1) x q time units until itsnext time quantum. For example, 

with five processes and a time quantum of 20milliseconds, each process will get up to 20 milliseconds every 

100 milliseconds. 
 

The performance of the RR algorithm depends heavily on the size of thetime quantum. At one extreme, 

if the time quantum is extremely large, the RRpolicy is the same as the FCFS policy If the time quantum is 

extremely small(say, 1 millisecond), the RR approach is called processor sharing and (in theory)creates the 

appearance that each of n processes has its own processor runningat 1/n the speed of the real processor. 

In software, we need also to consider the effect of context switching on theperformance of RR 

scheduling. Let us assume that we have only one process of10 time units. If the quantum is 12 time units, the 

process finishes in less than 1time quantum, with no overhead. If the quantum is 6 time units, however, 

theprocess requires 2 quanta, resulting in a context switch. If the time quantum is1 time unit, then nine context 

switches will occur, slowing the execution of theprocess accordingly. 

Thus, we want the time quantum to be large with respect to the contextswitchtime. If the context-switch 

time is approximately 10 percent of thetime quantum, then about 10 percent of the CPU time will be spent in 

contextswitching. In practice, most modern systems have time quanta ranging from10 to 100 milliseconds. The 

time required for a context switch is typically lessthan 10 microseconds; thus, the context-switch time is a small 

fraction of thetime quantum. 

 
 
 
 
 
 
 
 

 
Time Quantum and Context Switch Time 
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Turnaround time also depends on the size of the time quantum. As we cansee from Figure, the average 

turnaround time of a set of processes doesnot necessarily improve as the time-quantum size increases. In 

general, theaverage turnaround time can be improved if most processes finish their nextCPU burst in a single 

time quantum. For example, given three processes of 10time units each and a quantum of 1 time unit, the 

average turnaround time is29. If the time quantum is 10, however, the average turnaround time drops to20. If 

context-switch time is added in, the average turnaround time increasesfor a smaller time quantum, since more 

context switches are required.Although the time quantum should be large compared with the contextswitchtime, 

it should not be too large. If the time quantum is too large, RRscheduling degenerates to FCFS policy. A rule of 

thumb is that 80 percent of theCPU bursts should be shorter than the time quantum. 

5 Multilevel Queue Scheduling 
 

Another class of scheduling algorithms has been created for situations inwhich processes are easily 

classified into different groups. For example, acommon division is made between foreground (interactive) 

processes andbackground (batch) processes. These two types of processes have differentresponse-time 

requirements and so may have different scheduling needs. Inaddition, foreground processes may have priority 

(externally defined) overbackground processes. 

A  multilevel  queue  scheduling  algorithm  partitions  the  ready queue  intoseveral  separate  queues 

(Figure 5.6). The processes are permanently assigned toone queue, generally based on some property of the 

process, such as memorysize, process priority, or process type. Each queue has its own scheduling algorithm. 

 

 

to separate queues might be used for foreground andbackground processes. The foreground quetie might be 

scheduled by an RRalgorithm, while the background queue is scheduled by an FCFS algorithm.In addition, there 

must be scheduling among the queues, which is commonlyimplemented as fixed- priority preemptive scheduling. 

For example, theforeground queue may have absolute priority over the background queue.Let's look at an 

example of a multilevel queue scheduling algorithm withfive queues, listed below in order of priority: 

1. System processes 
 

2. Interactive processes 
 

3. Interactive editing processes 
 

4. Batch processes 
 

5. Student processes 
 

Each queue has absolute priority over lower-priority queues. No process in thebatch queue, for example, 

could run unless the queues for system processes,interactive processes, and interactive editing processes were 
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all empty. If aninteractive editing process entered the ready queue while a batch process wasrunning, the batch 

process would be preempted. 

6 Multilevel Feedback-Queue Scheduling 
 

Normally, when the multilevel queue scheduling algorithm is used, processesare permanently assigned 

to a queue when they enter the system. If thereare separate queues for foreground and background processes, for 

example,processes do not move from one queue to the other, since processes do notchange their foreground or 

background nature. This setup has the advantageof low scheduling overhead, but it is inflexible. 

The multilevel feedback-queue scheduling algorithm, in contrast, allowsa process to move between 

queues. The idea is to separate processes accordingto the characteristics of their CPU bursts. If a process uses 

too much CPU time,it will be moved to a lower-priority queue. This scheme leaves I/O-bound andinteractive 

processes in the higher-priority queues. In addition, a process thatwaits too long in a lower-priority queue may 

be moved to a higher-priorityqueue. This form of aging prevents starvation. 

For example, consider a multilevel feedback-queue scheduler with threequeues, numbered from 0 to 2. 

The scheduler first executes allprocesses in queue 0. Only when queue 0 is empty will it execute processes 

in queue 1. Similarly, processes in queue 2 will only be executed if queues 0and 1 are empty. A process that 

arrives for queue 1 will preempt a process inqueue 2. A process in queue 1 will in turn be preempted by a 

process arrivingfor queue 0.A process entering the ready queue is put in queue 0. A process in queue 0is given a 

time quantum of 8 milliseconds. If it does not finish within this time,it is moved to the tail of queue 1. If queue 

0 is empty, the process at the headof queue 1 is given a quantum of 16 milliseconds. If it does not complete, it 

ispreempted and is put into queue 2. Processes in queue 2 are run on an FCFSbasis but are run only when 

queues 0 and 1 are empty. 

This scheduling algorithm gives highest priority to any process with a CPUburst of 8 milliseconds or 

less. Such a process will quickly get the CPU, finishits CPU burst, and go off to its next I/O burst. Processes 

that need more than8 but less than 24 milliseconds are also served quickly, although with lowerpriority than 

shorter processes. Long processes automatically sink to queue2 and are served in FCFS order with any CPU 

cycles left over from queues 0 and 1. 

 

n general, a multilevel feedback-queue scheduler is defined by thefollowing parameters: 
 

• The number of queues 
 

• The scheduling algorithm for each queue 
 

• The method used to determine when to upgrade a process to a higherpriorityqueue 
 

• The method used to determine when to demote a process to a lowerpriorityqueue 
 

• The method used to determine which queue a process will enter when thatprocess needs service 
 

The definition of a multilevel feedback-queue scheduler makes it the mostgeneral CPU-scheduling algorithm. 
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7. Algorithm Evaluation 
 

The first problem is defining the criteria to be used in selecting an algorithm.As we saw , criteria are 

often defined in terms of CPU utilization,response time, or throughput. To select an algorithm, we must first 

definethe relative importance of these measures. Our criteria may include severalmeasures, such as: 

• Maximizing CPU utilization under the constraint that the maximumresponse time is 1 second 
 

• Maximizing throughput such that turnaround time is (on average) linearlyproportional to total execution time 
 

Once the selection criteria have been defined, we want to evaluate thealgorithms under consideration. 

We next describe the various evaluationmethods we can use. 

1 Deterministic Modeling 
 

One major class of evaluation methods is analytic evaluation. Analyticevaluation uses the given 

algorithm and the system workload to produce aformula or number that evaluates the performance of the 

algorithm for thatworkload. 

One type of analytic evaluation is deterministic modeling. This methodtakes a particular predetermined 

workload and defines the performance of eachalgorithm for that workload. 

Deterministic modeling  is  simple and  fast.  It  gives  us  exact  numbers,allowing us  to  compare  the 

algorithms. However, it requires exact numbers forinput, and its answers apply only to those cases. 

2 Queuing Models 
 

On many systems, the processes that are run vary from day to day, so thereis no static set of processes 

(or times) to use for deterministic modeling. Whatcan be determined, however, is the distribution of CPU and 

I/O bursts. Thesedistributions can be measured and then approximated or simply estimated. Theresult is a 

mathematical formula  describing the probability of a particular CPUburst. Commonly, this distribution is 

exponential and is described by its mean. 

Similarly, we can describe the distribution of times when processes arrive inthe system (the arrival-time 

distribution). From these two distributions, it ispossible to compute the average throughput, utilization, waiting 

time, and soon for most algorithms. 

Queueing analysis can be useful in comparing scheduling algorithms,but it also has limitations. At the 

moment, the classes of algorithms anddistributions that can be handled are fairly limited. The mathematics of 

complicated algorithms and distributions can be difficult to work with. 

3 Simulations 
 

To  get  a  more  accurate  evaluation  of  scheduling  algorithms,  we  can  usesimulations.  Running 

simulations involves programming a model of thecomputer system. Software data structures represent the major 

componentsof the system. Simulations can be expensive, often requiring hours of computer time. Amore 

detailed simulation provides more accurate results, but it also requiresmore computer time. In addition, trace 

tapes can require large amounts ofstorage space. Finally, the design, coding, and debugging of the simulator 

canbe a major task. 

4 Implementation 
 

Even a simulation is of limited accuracy. The only completely accurate wayto evaluate a scheduling 

algorithm is to code it up, put it in the operatingsystem, and see how it works. This approach puts the actual 

algorithm in thereal system for evaluation under real operating conditions. 

The major difficulty with this approach is the high cost. Another difficulty is that the environment in 

which  the  algorithm  is  usedwill  change.  The  environment  will  change  not  only  in  the  usual  way,  as 

newprograms are written and the types of problems change, but also as a resultof the performance of the 

scheduler.
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